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Abstract— Observational causal inference is useful for decision-
making in medicine when randomized clinical trials (RCTs) are
infeasible or nongeneralizable. However, traditional approaches
do not always deliver unconfounded causal conclusions in prac-
tice. The rise of “doubly robust” nonparametric tools coupled
with the growth of deep learning for capturing rich representa-
tions of multimodal data offers a unique opportunity to develop
and test such models for causal inference on comprehensive elec-
tronic health records (EHRs). In this article, we investigate causal
modeling of an RCT-established causal association: the effect of
classes of antihypertensive on incident cancer risk. We develop
a transformer-based model, targeted bidirectional EHR trans-
former (T-BEHRT) coupled with doubly robust estimation to
estimate average risk ratio (RR). We compare our model to
benchmark statistical and deep learning models for causal infer-
ence in multiple experiments on semi-synthetic derivations of our
dataset with various types and intensities of confounding. In order
to further test the reliability of our approach, we test our model
on situations of limited data. We find that our model provides
more accurate estimates of relative risk [least sum absolute
error (SAE) from ground truth] compared with benchmark
estimations. Finally, our model provides an estimate of class-wise
antihypertensive effect on cancer risk that is consistent with
results derived from RCTs.

Index Terms— Causal inference, deep learning, electronic
health records (EHRs), machine learning.
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I. INTRODUCTION

ESTIMATING causal effect of a treatment is an important
problem in the field of epidemiology [1]. Consider the

following example of treatment effect: the investigation of
the effect of various antihypertensive drug classes on can-
cer. The effect of a particular drug class is ideally investi-
gated experimentally with a randomized control trial (RCT).
Researchers randomly treat patients with different classes of
antihypertensives—e.g., some treated with angiotensin con-
verting enzyme inhibitors (ACEIs) and others and beta-
blockers—and then compare incidence of cancer between
exposure groups. This comparison is often measured as empir-
ical risk ratio (RR) otherwise known as relative risk, which is
the proportion of cancer in one exposure group divided by
the same in the other. Since patients are randomized, one can
assume that confounders have no meaningful difference across
exposure groups. Therefore, trials offer an unconfounded esti-
mate of the association. In the case of association of classes
of antihypertensives and cancer, numerous RCTs have indeed
pursued this investigation and found it to be null [2]—i.e.,
any given class of antihypertensives does not cause cancer
any more than any other class.

However, where an RCT does not exist, is unfeasible,
or fails to generalize, decision makers will have to draw
upon evidence from observational data [3]–[5]. In this obser-
vational capacity, adjustment of confounding variables (i.e.,
variables that effect both exposure assignment and outcome)
is a necessity, and insufficient adjustment can result in biased
conclusions.

Traditionally, conventional statistical models are used for
confounding adjustment and estimation of RR in epidemio-
logical studies. However, these models require manual feature
engineering and fare poorly in observational settings with
issues of selection bias and finite sample estimation bias [6].
To address these issues, statisticians have recently developed
“doubly robust” estimators for approximating population-level
causal effect [6], [7].

In parallel, the growing availability of routinely collected,
administrative clinical records databases with linked elec-
tronic health records (EHRs) that capture numerous variables
describing large numbers of individuals on a population level
provides an encouraging opportunity to conduct observational
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studies in the medical domain [8]. These administrative EHR
datasets such as Clinical Practice Research Datalink (CPRD)
in the U.K. offer a multitude of temporal and static vari-
ables in addition to data linkages to other datasets [9],
ultimately providing multiple types of routine EHR for
modeling.

More recently, developments in the field of deep learning
have allowed scalable modeling of such high-dimensional
data for various tasks. Across several domains, deep
learning modeling has shown superior predictive performance
as compared with traditional approaches. In particular,
the development of representation learning methods
such as multitask unsupervised training strategies has
allowed for richer feature extraction and more generalizable
performance [10].

Since RR is generally used to estimate effect in most ran-
domized and observational cohort studies, our objective in this
work is to develop and evaluate methods that bring together
contributions from deep learning and statistics in order to
estimate RR more accurately as compared with benchmark
models. We address this objective through a combination of
three contributions.

Our first contribution is a novel model, targeted bidirec-
tional EHR transformer (T-BEHRT) for more accurate RR
estimation. Our method synthesizes the following elements in
a novel multitask learning framework: 1) expanded BEHRT
architecture (transformer-based feature extractor) for adjust-
ment of both temporal and static variables [11], [12]; 2) novel
auxiliary unsupervised learning for richer feature extraction;
and 3) doubly robust semi-parametric estimation for mitigating
finite-sample estimation biases.

As our second contribution, we develop an environment to
objectively evaluate accuracy of RR estimation of models.
Focusing on the aforementioned case study: the effect of
various classes of antihypertensives on cancer, we form an
observational dataset by including patients taking different
classes of antihypertensives and investigate risk of cancer. Our
reference exposure is ACEIs, one of said classes of antihyper-
tensives. Since counterfactual outcomes (i.e., outcome under
a specific exposure status) are missing in our observational
dataset, ground truth RR is inaccessible, thereby making model
comparisons difficult. Thus, we first construct semi-synthetic
derivations of our observational dataset with generated ground
truth RR, and then apply our model against statistical and
deep learning benchmarks in several experiments to identify
the model with best RR estimation. In addition, to test our
model in situations of limited data, we demonstrate the utility
of T-BEHRT compared with other models in finite-sample
estimation experiments.

As our third and final contribution: after validating our
model on semi-synthetic derivations of routine clinical obser-
vational data, we demonstrate that our model can be applied
to the aforementioned observational study: the effect of
ACEIs on cancer relative to other drug classes. Where tradi-
tional statistical models have demonstrated conflicting results,
these associations have been deemed null in numerous RCTs
[13], [14] with narrow confidence intervals (CIs), across a wide
range of patient groups, for multiple cancer subtypes.

A. Background
Traditionally, semi-parametric and parametric statistical

modeling have been predominantly explored in observational
longitudinal causal inference in the field of epidemiology.
Regression-based models (e.g., logistic regression (LR), log-
binomial regression, Poisson regression, and Cox proportional
hazards model) utilize the exposure as a covariate and imple-
ment regression fitting for estimation of outcomes [15], [16].
In addition to standard regression modeling, recent G-methods
for longitudinal data modeling have been developed to
relax assumptions of identifiability of causal effect and
have been implemented in epidemiological studies [17]–[19].
However, both classes of models have known limita-
tions [20], [21]. First, they require careful manual feature
engineering—useful for modeling known confounders but
impractical for unknown or interacting variables. Furthermore,
these models are susceptible to finite-sample estimation biases
(i.e., biased estimation manifesting when the set of adjusted
variables is high-dimensional with limited overlap between
exposure groups while sample size is limited) [15]. One
solution proposed is to adjust solely for the variables that are
associated with exposure by propensity score modeling [21];
however, naïve propensity score-based methods require cor-
rect specification of the exposure prediction model, often
not guaranteed [7]. If misspecified, the errors of the weights
rapidly increase rendering highly erratic downstream causal
estimates [22].

More recent work in semi-parametric estimation theory—
namely “doubly robust” estimation theory—circumvents mis-
specification issues of these modeling approaches. These
doubly robust estimators rely on the consistency of either pre-
diction of propensity score or prediction of outcome to produce
unbiased causal effect estimates [23], [24], and examples such
as targeted maximum likelihood estimation (TMLE) and deriv-
atives such as the cross-validated TMLE (CV-TMLE) have
been prolifically used to explore causal inference problems
of average treatment effect (ATE) [25]–[27]. TMLE-based
methods have recently also been applied for epidemiological
studies on EHR-based causal inference [28].

In contrast, deep learning has been a rapidly evolving field
over the past few years. Specifically, for her-based tasks,
there have been many convolutional, recurrent, and trans-
former neural networks models designed for feature extrac-
tion (i.e., “representation learning”) from raw records and
risk prediction [11], [29], [30]. One such transformer model,
BEHRT, leverages contextualized embeddings to represent
longitudinal clinical encounters and multihead self-attention
to achieve the state-of-the-art performances in various EHR-
based tasks [31], [32]. Furthermore, there has been much
progress in representation learning and generalizability for
deep learning. Research has shown that auxiliary unsuper-
vised learning: 1) adds an additional inductive bias ultimately
improving generalizability and 2) helps to learn representa-
tions shared or beneficial for the main task—in our case, the
two tasks being propensity confounding adjustment and causal
inference [10], [33], [34].

In the last decade, there have been advances in deep
learning for causal inference. Models like treatment agnostic
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representation network (TARNET), Dragonnet, causal effect
variational autoencoder (CEVAE), and others have been tested
on synthetic and semi-synthetic derivations of static tabu-
lar data [3], [35]–[37]. The TARNET model has also been
applied in epidemiological studies [38]. In particular, Drag-
onnet exploits the sufficiency of the propensity score to simul-
taneously model the propensity score and the outcomes [39].
However, these models have not been specifically tested in
observational settings involving routine multivariate EHR.
And even though deep learning can incorporate multimodal
variables, few approaches firstly model both temporal and
static variables for causal inference and, secondly, develop
environments to objectively test proposed solutions against
benchmarks. Lastly, the considerable literature of deep learn-
ing for causal inference investigates ATE and conditional
ATE/individualized treatment effect (ITE) almost exclusively;
methods have rarely been evaluated for accuracy of RR
estimation—a metric preferred by clinicians since RR captures
risk relative to baseline risk (i.e., risk in the control cohort).

II. METHODS

A. Problem Setup

Our objective in this work is to estimate RR in the setup
of binary exposure and outcome. Consider the population of
patients described by a tuple generated independently and
identically: (Xi ,Yi , Ti) ∼ P . Each patient i is described
by medical records, Xi and is assigned exposure status,
Ti ∈ {0, 1}. The exposures, Ti , in the presented work are two
classes of antihypertensives with one of the classes acting as
reference group. The variable Yi corresponds to the observed
outcome—cancer—in our proposed investigations. In a fixed
amount of “follow-up” time after hypothetical treatment,
Ti = 0, outcome of cancer is notated as Y T =0

i , and similarly
for treatment, Ti = 1, Y T =1

i . These two outcome variables are
known as the potential outcomes under the Neyman–Rubin
potential outcomes framework [40].

With this, the RR is defined as

RR = E
[
Y T =1

]
E
[
Y T =0

] . (1)

As is fundamental to the problem of causal inference, only
one of the two outcomes are observed, so equation (1) cannot
directly be computed. However, with the following standard
assumptions, the exposure effect is identifiable and RR is
estimable.

1. Consistency: The potential outcome for T is the observed
outcome if the given exposure was indeed T.

2. Positivity: For all X, there is a nonzero probability of
being assigned any exposure status, Ti ∈ {0, 1}.

3. Unconfoundedness or “no Hidden Confounding”: The
potential outcomes are independent of the exposure
given all confounders are adjusted for. In synthetic data
experimental designs, this assumption is more securable.
In reality however, this is not measurable, but with
richer observational data in the form of comprehensive
medical records comprising of various health indica-
tors (e.g., diagnoses, medications, measurements data),

Fig. 1. Representation learning data selection pipeline. We use Clinical
Practice Research Datalink (CPRD) and extract diagnoses, medications, blood
pressure, smoking, region, and sex records. We homogenize codes from
ICD-10 and read to one format. Unmapped read codes were kept for com-
pleteness.

confounders can be better adjusted [41]. Under these
assumptions, the causal effect is identifiable and naïve
RR estimator can be defined as

ψ̂ = E

[
E[Y |X, T = 1]

E[Y |X, T = 0]

]
. (2)

Other more complex estimators utilizing propensity score such
as CV-TMLE are also implemented in this work.

B. Dataset and Patient Selection

For our investigations, we used a data cut from CPRD,
which has been described previously [31]. The data entail
records from 1 January 1985 up to 31 December 2015 and
is linked to national administrative databases including hos-
pitalizations (Hospital Episode Statistics, or HES) and death
registration (from Office of National Statistics).

The dataset for the investigations was restricted to patients
in the database who met the following criteria: 1) registered
with the general practice for at least 12 months; 2) aged
≥16 years at registration; 3) registered with the practice con-
sidered providing “up-to-standard” data to CPRD; 4) individ-
ual data marked by CPRD to be of “acceptable” quality for
research purposes (as determined by CPRD); and 5) registered
with a practice that provided consent for linking the data with
national databases for hospitalizations and death registry.

We extracted diagnoses, medications, blood pressure mea-
surements, sex (male, female), region (ten regions in U.K.),
and smoking status (non, previous, or current smoker).
We mapped diagnoses and medication codes to a homoge-
nized format for machine readability. This led to a dataset of
6 777 845 patients, which was used for general representation
learning (shown in Fig. 1) for deep learning models.

For our causal inference investigation (i.e., investigating the
effect of antihypertensive on incident cancer), a dataset con-
taining five subpopulations had to be selected—one for each
class of antihypertensives: ACEIs, diuretics, calcium channel
blockers (CCBs), beta blockers (BBs), and angiotensin II
receptor blockers (ARBs). Patients were selected in one of
these groups based on first class of antihypertensive medica-
tions recorded before 2009 and if free of cancer report before
this first prescription; the year 2009 was chosen conveniently
to have sufficient “follow-up” time for the occurrence of
potential cancers. The date of this first prescription was defined
as “baseline” (a date between 1985 and 31 December 2008).
Patients were then followed up from baseline until cancer
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diagnosis (including cancer diagnoses as cause of death) or end
of five-year follow-up period. The learning period included the
entire patients’ medical records up to a random point between
six and 12 months before baseline; this is to account for any
potential inaccuracies in timing of prescription (or decision
to prescribe) and to avoid possibility of antihypertensive pre-
scription itself influencing the model training. “CPRD Product
codes” are used for identifying classes of antihypertensives
and the set of codes were obtained from a dataset published
by University of Bristol [42]. Codes for cancer are found in
Table II and derived from clinically established publication of
codes [43].

C. Semi-Synthetic Data Derivation

Data generation of sequential, temporal variables is a diffi-
cult task, and currently, there is no medically validated method
of generating realistic EHR medical history. Thus, we utilized
the existing medical history in observational data to exclu-
sively simulate binary factual and counterfactual outcomes.

Inspired by other semi-synthetic data simulations [37], [44],
intuitively, we first modeled the association between a med-
ical history variable Zi (e.g., some diagnosis/medication) and
exposure Ti with the empirical propensity in the dataset: λi =
P(Ti = 1 | Zi). If associated with an exposure (λi �= 0.5),
we generated the potential outcomes, Y T =1

i and Y T =0
i as a

function of λi and exposure Ti = 1 and Ti = 0, respectively.
In this way, semi-synthetic outcomes arose from an association
between Zi and exposure and Zi and the outcome. Thus,
the relationship between exposure and outcome is confounded
by Zi . While the empirical RR—the proportion of the out-
come in one exposure group divided by the same in the
other—would yield confounded causal conclusions, effectively
adjusting for the confounder variable, Zi , would yield iden-
tifiable (see Appendix Section A) causal association between
exposure and outcome.

In addition, to test model adjustment potential in situations
of varying confounding intensity, we weighted the contribution
of the confounding with a β factor: the greater the β implies
the greater the confounding. More details of the semi-synthetic
data generative process and functions modeled are given in
Appendix Section A.

In our work, we present investigations in semi-synthetic data
utilizing two forms of confounders: persisting and transient
confounding. We define persisting confounding as confounders
that are assigned at birth and persist through one’s life course;
e.g., ethnicity, sex, genes, and other variables assigned at birth
that associate with variables later in age. We define transient
confounding as confounders that manifest at a point or period
of one’s life effecting events downstream in time; e.g., disease
diagnoses, age itself, prescriptions, and other variables not
assigned at birth. These two distinctions of confounding are
presented in this work because they naturally capture prevalent
forms of confounding seen in population health databases [45].

From our observational dataset, we investigated two expo-
sure groups—ACEIs and diuretics and noticed female sex was
associated with the diuretics exposure status and thus, chose
it to be a persistent confounder and generated conditional

outcomes. For another pair of exposures, i.e., ARBs and
CCBs, we identified association of incidence of at least one
of heart failure, hypertension, ischemic heart disease, and
diabetes mellitus to CCBs. Thus, we named occurrence of
at least one of these diseases as “cardiometabolic diseases”
and utilize it as a transient confounder for the second set
of semi-synthetic data experiments. We set low, medium,
and high confounding intensity for experiments with sex and
cardiometabolic disease as confounder (β values: [1, 5, 10]
and [25, 50, 75], respectively) totaling six experiments on
semi-synthetic data. In sum, with this confounding generation
method, model confounding adjustment ability will be tested
with two forms of confounding at various degrees of intensity
(β values).

On the semi-synthetic dataset with highest intensity of car-
diometabolic disease confounding, we additionally conducted
finite-sample causal estimation experiments. Since estimation
in limited sample settings is known to be unstable in many
cases (e.g., for inverse probability weighted estimators) despite
asymptotic guarantees [15], we wished to assess our model for
finite-sample estimation ability. And, we specifically set the
confounding to the highest intensity level (β = 75) because
we wished to investigate how the model performs in estimation
of RR in situations of high confounding. We investigated the
finite-sample estimation ability of our proposed model and
other deep learning models by applying the models on random
subsamples of this dataset: 2.5%, 5%, 10%, 25%, 50%, and
finally, the entire dataset.

D. Proposed Model Development

Our model, T-BEHRT, utilizes a modified feature BEHRT
extractor to capture both static and temporal medical history
variables and captures initial estimates of RR. BEHRT is a
state-of-the-art transformer model for EHR data. By using
contextualized embeddings to represent longitudinal clinical
encounters (e.g., diagnoses/prescriptions) and time of medical
visit—both relative in terms of age/visit number and absolute
in terms of calendar year—and multihead self-attention for
feature extraction, BEHRT has demonstrated the state-of-the-
art performances in various EHR-based tasks [5], [16]. After
predicting propensity score and conditional outcomes, we use
CV-TMLE to correct for bias in initial RR estimate and
compute corrected RR (see Fig. 2).

Intuitively, T-BEHRT first extracts latent EHR features
from static covariates and fixed subsequences of medical
history with BEHRT. Second, the model predicts propensity
of exposure and conditional outcome using these learned fea-
tures. Third, by additionally conducting auxiliary unsupervised
learning, the model trains on reconstruction of both static and
temporal data with two-part masked EHR modeling (MEM).

The propensity prediction model is modeled as 1-hidden
layer multilayer perceptron (MLP) and for each conditional
outcome, we use a 2-hidden layer MLP with exponential linear
unit (ELU) activation.

With patient data tuple (Xi ,Yi , Ti ) as described in Appendix
Section A, parameters θ , propensity prediction head g(Xi),
and conditional outcome prediction heads, H (Xi, Ti) for input
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Fig. 2. Targeted BEHRT and embedding structure. (a) Above, the model
is shown. Generally, an input x (static and temporal variables) is fed to
a feature extractor, which outputs a dense latent state (for EHR modeling,
this feature extractor is BEHRT). The output of the final layer of the BEHRT
feature extractor is fed to the MEM prediction head to predict any masked
encounters. TN+1 token state is fed to a variational autoencoder (VAE)
neural network to predict masked static variables. The latent state of the first
token (T1) is fed to a pooling layer to predict propensity and conditional
outcomes with multiple prediction heads with feed forward (FF) neural
network layers. The loss consists of the unsupervised loss from two MEM
components—temporal (temp) and static (static) unsupervised data training—
and the supervised loss of the propensity and factual outcomes. (b) Below, the
embedding structure for modeling rich EHR data is shown. Clinical encounters
timestamped by age/year/position (visit number) are converted into vector
representations and fed to model as temporal variables. Static data variable
embeddings: patient sex, region in U.K., and smoking status are concatenated
to the temporal variable embeddings.

Xi and exposure Ti for patient i , the loss is

Ô(Xi ; θ) = CrossEntropy(H (Xi , Ti ; θ),Yi )

+ CrossEntropy(g(Xi ; θ), Ti ). (3)

Next, we conduct MEM for two-part unsupervised learning:
1) temporal variable and 2) static variable modeling. The first
part—unsupervised learning on temporal data—functions sim-
ilar to masked language modeling (MLM) in natural language
processing [46]. In MLM, the model receives a combination
of masked, replaced, and unperturbed tokens (temporal or
textual data) and the task is to predict the masked or replaced
encounters. We do the same but additionally enforce another
constraint: when replacing encounters, we do not replace
encounters with those that define the exposure or outcome—
antihypertensives and cancer in the current set of experiments.
With encounter j for patient i represented as Ei, j ⊂ Xi (i.e.,
encounters being a subset of the input Xi), masked/replaced
encounters represented as Ẽi, j , BEHRT feature extractor B ,
temporal unsupervised prediction network M , neural network
parameters φMEM−Temp, we develop objective function

�LMEM-Temp
(
Ei, j ;φMEM−Temp

)

=
|Ei |∑
j=1

CrossEntropy
(
M

(
B

(
Ẽi, j ;φMEM−Temp

))
, Ei, j

)
. (4)

For the second part of the MEM, static data model-
ing, we chose using VAE for unsupervised learning due to
cumulative literature empirically demonstrating its strength
in representation learning in addition to the utilization of
VAE structures in other causal deep learning models such as
CEVAE [35]. We model static categorical variables: region,
smoking status at baseline, and sex; the three variables
are embedded in high-dimensional embeddings (embedding
dimensions for each variable are hyperparameters of the
T-BEHRT model) and mapped (via 1-layer MLP) to the size
of the encounter (temporal) embeddings and, finally, concate-
nated to the encounter embeddings. Thus, the BEHRT model
functions as feature extractor for static/temporal variables and
encoder for the VAE (see Fig. 2). The temporal variables
interact with the static variables through the multihead self-
attention mechanism of the BEHRT architecture [31]. For
training the VAE, similar to the temporal modeling, we mask
some variables as input and use a variable-specific decoder to
decode the variable (if masked). Specifically, for static variable
Xi,v of a total of V static variables patient i , qφEnc(Z i | X i )
representing the encoder, and pφDec(Xi,v | Z i) representing the
multivariate Bernoulli decoder for variable v, and the VAE
loss is

ˆLMEM-Static(xi;φEnc, φDec)

=
V∑
v=1

n∑
i=1

logpφDec

(
Xi,v | Zi

)

−
n∑

i=1

DK L
(
qφEnc(Zi | Xi)||pφDec(Zi)

)
. (5)

The complete objective function to be minimized is the
summation of (3), (4), and (5) as shown in the following
equation:

θ̂ , ε̂, φ̂Enc, φ̂Dec, φ̂MEM−Temp

= argmin
θ,ε,φEnc,φDec,φU

n∑
i=1

Ô(Xi ; θ)

+ δ
(

�LMEM-Temp
(
Ei, j ;φMEM−Temp

)
+ �LMEM-Static(Xi;φEnc, φDec)

)
. (6)

With hyperparameter δ for weighting the contribution of the
unsupervised MEM loss terms.

E. Feature Selection and Preprocessing

The modalities of CPRD considered for deep learning mod-
eling were sex, region, diagnoses from both primary and
secondary care, medications, systolic blood pressure (BP)
measurements, and smoking status.

We mapped read codes from primary care and ICD-10
codes from secondary care to 1471 unique ICD-10 diagnostic
codes [47], [48] to harmonize disease codes in the dataset;
unmapped codes were included for completion. Furthermore,
we mapped medication codes to 426 codes in the British
National Formulary (BNF) [49] coding format. Since sys-
tolic BP is a continuous variable and our feature extractor
requires discretized elements (see BEHRT feature extraction
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in Appendix Section D), systolic BP measurements (in mm
Hg) were grouped into 16 categories based on prespecified
boundaries ([90–116], (116,121], (121,126], . . . , (181,186],
>186). Furthermore, we utilized calendar year, age (months),
and relative position (visit number) for the sequential/temporal
modalities. Each patient p had n p encounters, or instances of
modalities: diagnoses, medications, and systolic BP measure-
ments. Smoking status at baseline (non, previous, or current
smoker), region (ten regions in U.K.), and sex (male, female)
were static variables included in modeling.

F. Benchmarks and Causal Estimation

Before pursuing the causal investigations with deep learning
modeling, we pretrained contextualized EHR embeddings and
network weights through MEM on the pretraining dataset. This
MEM task generally trains weights on all patients in CPRD
before progressing to causal modeling (6 777 845 patients in
Fig. 1).

For semi-synthetic investigations, we implemented statisti-
cal and deep learning models to serve as benchmarked com-
parison models for causal inference. The benchmarks include
Bayesian additive regression trees (BART) [50], LR and L1/L2
regularization variants, and LR with TMLE [51]. We chose
the covariates for these models to be baseline age, smoking
status, sex, region, incidence of 33 curated disease groups,
and additionally prescription of four additional medications
groups. While inclusion of baseline variables in epidemiolog-
ical observational studies is standard practice, we specifically
include the disease/medication groups to enable a fairer com-
parison to deep learning modeling. Furthermore, diagnoses
and medications are known to be confounders in observational
studies, so adjustment of these variables is important for causal
estimation. To ensure that the diagnoses and medication groups
are medically valid clusters of diseases and medications,
respectively, we utilized groups compiled by past medical
research [42], [43]. A deeper explication is given in Appendix
Section C.

To serve as deep learning benchmarks, we implemented
staple deep learning models for average causal effect:
TARNET, TARNET + MEM (i.e., with unsupervised MEM
component), and Dragonnet with BEHRT feature extractor and
the embedding format presented in Fig. 2(a). We initialized
these models with pretrained weights. After implementing
and evaluating benchmarks, we implemented T-BEHRT with
pretrained network weights where applicable and pursue mod-
eling of semi-synthetic data investigations.

For the semi-synthetic data experiments, we did not feed
variables denoting cardiometabolic disease and sex, respec-
tively, as input; we wish the statistical and deep learning
models to infer confounding from remaining input variables.
In routine clinical data, the observational studies would often
not have access to all confounding variables—thus, important
to test models’ ability to adjust for confounding given limited
input variables.

For all investigations, we conducted experiments with
five-fold cross validation causal estimation. We calculated
RR on the test dataset for each fold as advised by

Chernozhukov et al. [23] and compute 95% CIs over the five
folds. We computed RR defined by naïve estimator on a finite
sample: ψ̂ = E[(E[H (X, 1)]/E[H (X, 0)])] for TARNET,
TARNET-MEM, LR (and L1/L2 regularization variants), and
BART. For T-BEHRT, we use the CV-TMLE method for the
estimation of RR. For Dragonnet, we implement the model
with the CV-TMLE estimator in order to directly compare
our model with this benchmark model. In addition, we also
implement the Dragonnet model with the naïve estimator (i.e.,
the original model without post-hoc estimator). For more infor-
mation on the CV-TMLE method, advantages over TMLE,
and implementation, please refer to Appendix Section B. For
models that utilized predicted propensity scores, we conducted
propensity score trimming and exclude patients with predicted
propensity score greater than 0.97 and less than 0.03 [52]
before pursuing RR calculation.

We identified the superior model by identifying the model
with least sum absolute error (SAE) over the three β values for
each confounding experiment. We give the standard error (SE)
for the SAE; this was calculated using additive propagation
of error [53]. For deep learning models, we also demonstrate
change of SAE as modules are removed from our proposed
model.

G. Implementation

We developed all statistical and deep learning models on
python. The deep learning models were implemented with
Pytorch [54]. Hyperparameters for the BEHRT feature extrac-
tor are found in Table III. For training all deep learning
models, we used the Adam optimizer [55] with exponential
decay scheduler (decay rate = 0.95) to ensure training conver-
gence. For TARNET-MEM and T-BEHRT, we pretrained five
epochs on exclusively the MEM task before initiating joint
MEM-causal task training.

After fitting deep learning and statistical models, in order
to derive estimates for RR estimation, we conducted the
evaluation of the model on the test fold of the dataset
using standard g-computation methods [1]. For all patients in
the test set, we first derived risk estimates [e.g., estimation
of P(Y | X, T = 0)] patients as if they were all assigned
T = 0, and similarly, derived estimates [e.g., estimation of
P(Y | X, T = 1)] as if they were all assigned T = 1. In this
way, the RR estimate, ψ̂ , can be derived as a function of these
two quantities

ψ̂ = E

[
E[H (X, T = 1)]

E[H (X, T = 0)]

]
. (7)

LR (and regularization variants), BART, TMLE, and
CV-TMLE were implemented in python. The code was
inspired by past works utilizing TMLE [3]. To fit the nuisance
parameter for the TMLE estimate update step, Nelder-mead
optimization was utilized [6], [56]. For deep learning models
implemented with CV-TMLE, the naïve estimator (7) was
not used; rather, the CV-TMLE estimator was implemented
utilizing conditional outcome predictions, H (X, T = 1),
H (X, T = 0), and propensity score prediction, g(X).
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TABLE I

POPULATION STATISTICS

III. RESULTS

A. Population Statistics

In the dataset for the investigation of antihyperten-
sives on incident cancer, we identified 186 709, 150 098,
128 597, 28 991, and 21 970 patients for ACEIs, BBs, CCBs,
diuretics, and ARBs, respectively, totaling 516 365 patients.
We demonstrate population statistics in Table I. Cancer inci-
dence counts/percentage of exposure group were 13 728/7%,
9819/7%, 10 232/8%, 1784/6%, and 1709/8% for ACEIs, BBs,
CCBs, diuretics, and ARBs, respectively.

B. Semi-Synthetic Data Experiments

In the semi-synthetic experiments on confounders’ car-
diometabolic diseases and sex, we tested the T-BEHRT mod-
els against several statistical and deep learning benchmarks.
In Fig. 3(a) and (b), we show SAE with SE measures cal-
culated over all β-specific semi-synthetic data experiments.
We include more detailed experimental results in Table IV.

We found that our proposed model, T-BEHRT, outperforms
all given deep learning and statistical model solutions in terms
of SAE whilst maintaining narrow SE. In addition, across both
experiments, we found that deep learning models for EHR
benefit from inclusion of CV-TMLE. This is seen by superior
performance of both Dragonnet + CV-TMLE and T-BEHRT in
comparison with TARNET, which does not handle propensity
score modeling. However, by investigating the exclusion of
various modules from the chassis of T-BEHRT shown in our
ablation analysis [see Fig. 3(c)], we see that exclusion of
MEM diminished RR estimation accuracy in a parallel way;
the TARNET model with inclusion of MEM (SAE increase of
0.213) did approximately as well as Dragonnet + CV-TMLE
(SAE increase of 0.305) averaged over experiments of persis-
tent and transient confounding. Removal of CV-TMLE from
Dragonnet + CV-TMLE further deteriorated the performance
of the Dragonnet model (SAE increase of 0.077). Ultimately,
the improvement in combining both MEM and propensity/
CV-TMLE modeling and forming T-BEHRT demonstrated a
greatest SAE reduction of 0.676—more so than the sum of its
parts: 0.518 (0.231 + 0.305).

Fig. 3. Experiments on semi-synthetic data with (a) sex and (b) car-
diometabolic disease as confounders; (c) module inclusion analysis of causal
modules. We show sum absolute error (SAE) between ground truth risk
ratio (RR) and estimated RR with standard error measures in both panels.
The x-axis is shown by the models implemented on these datasets, and the
y-axis is the SAE (lower is better). We present the numerical value and
standard error measures underneath the model names. In (c), we present the
transformation from T-BEHRT into other deep learning benchmarks. We show
increase in average SAE (i.e., increase in error) across experiments of transient
and persistent confounding in red as our model strips away components from
its architecture indicated by (–).

In the finite-sample estimation experiments shown in Fig. 4,
we showed that T-BEHRT outperforms other models in RR
estimation in individual and across data subsamples. While
improvement of T-BEHRT over Dragonnet + CV-TMLE is
less pronounced than over other models, panel B shows that
T-BEHRT still demonstrates superior RR estimation perfor-
mance with respect to the deep learning benchmarks. Further-
more, we found that inclusion of MEM aids more precise
estimation of RR; TARNET-MEM and T-BEHRT perform
better than TARNET over all finite samples as shown in
Fig. 4(b). However, we note that the application of CV-TMLE
is more important than MEM in smaller datasets as seen by
superior performance of Dragonnet + CV-TMLE as opposed
to TARNET + MEM in Fig. 4(b). Furthermore, models
equipped with propensity modeling (and CV-TMLE specif-
ically) maintain relatively stable SAE across subsampling
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Fig. 4. Finite-sample experiments on semi-synthetic data. (a) We con-
duct experiments on finite subsamples of the semi-synthetic dataset for car-
diometabolic confounding (β = 75). The subsampling fraction of the dataset
is shown on the x-axis. The y-axis shows error from ground truth risk ratio
(RR). The models: TARNET (and with MEM), Dragonnet (and with CV-
TMLE), and T-BEHRT estimate RR on the fractional samples of the dataset.
The point estimate is the mean value on five-fold cross validation and the
error bars represent 95% confidence intervals for those point estimates of
RR. (b) Sum absolute error (SAE) across the seven subsamples of the dataset
is shown for each model (denoted by color). The four models are represented
by the four bars with interval defined by standard error (SE) and color scheme
is the same as part (a).

fractions, while TARNET and derivatives suffer in RR esti-
mation in smaller datasets. Lastly, across experiments in this
work, while Fig. 3 demonstrates that MEM is more important
in observational settings with more samples (full dataset),
Fig. 4 shows that CV-TMLE provides greater utility in obser-
vational settings with limited samples. Implemented simulta-
neously (i.e., the T-BEHRT model), both components ensure
robust estimates across various sample sizes.

As a trend, we saw as dataset size increases, SAE across
models began to converge in Fig. 4. Theoretically, as the
number of samples increases, we would be slowly mitigating
the finite-sample bias, and thus, the performance of TARNET
and derivatives should be similar to those of models assisted
by propensity modeling also noted by Shi et al. [3].

We applied our model on the routine clinical data study
of effect of ACEIs on incident cancer with respect to other
antihypertensive drug classes and show the results in Fig. 5.
Across all four drug class comparisons, while the empirical
RR often tended away from null implying a preventive or
harmful effect, we showed that our model’s 95% CI for RR
covered the null hypothesis (1.0 RR) across almost all drug
class comparisons with exception of CCBs.

IV. DISCUSSION

In this article, by utilizing large-scale comprehensive EHR
and deep learning methods, we have developed a model for
observational causal inference. We have validated our model
against benchmarks across six semi-synthetic and a finite-
sample estimation experiment and found T-BEHRT to demon-
strate more accurate RR estimation. Finally, we applied our
model to a routine clinical data observational study.

Our work has contributions to the field of EHR-based deep
learning research. First, the T-BEHRT model consolidates
multiple static and temporal data embeddings into a unified
embedding structure, thus allowing adjustment over multiple
EHR datatypes. Second, our model conducts novel MEM
unsupervised learning using MLM and VAE-based represen-
tation learning in tandem with the causal inference objective.
We demonstrated the benefits of unsupervised learning in the

Fig. 5. Application of T-BEHRT on routine clinical data. Effect of ACEI
on incident cancer with respect to BBs, CCBs, diuretics, and ARBs. This
forest plot has four parts; one for each comparison to other antihypertensive
drug classes. We demonstrate CV-TMLE risk ratio (RR) estimates with 95%
confidence intervals (CIs) on our T-BEHRT model. In addition, we show
empirical RR in the observational cohort selected for these experiments. The
ground truth is assumed to be 1.0 (null) for all four associations validated by
meta-analysis of RCTs. BBs: beta blockers; CCBs: calcium channel blockers;
ACEIs: angiotensin-converting-enzyme inhibitors; ARBs: angiotensin receptor
blockers; RR: risk ratio.

context of average RR estimation in multiple experiments
as well. In our assessment, this is the first work conducting
causal inference incorporating unsupervised learning on mul-
tiple EHR data types. Third, we utilized CV-TMLE estimation
correction for less biased RR estimation for deep learning
causal models on EHR data. While the utility of propensity
modeling and CV-TMLE is as effective as MEM modeling
for RR estimation in larger dataset sizes, we found that in
our finite-sample estimation experiments, CV-TMLE is critical
for accurate RR estimation. Finally, we show that our model
can be easily applied to test a clinical hypothesis regarding
treatment effect in an observational setting.

Our work has some limitations and scope for future devel-
opment. First and most fundamentally, we note that even
comprehensive EHR might not completely capture confound-
ing variables and, hence, limit our model to provide a fully
unbiased result. A variety of variables affecting outcome may
be unadjusted (explicitly or through latent representation mod-
eling) and further modality inclusion is necessary in future
work to help mitigate residual confounding. Latent confound-
ing adjustment can be parallelly investigated in future works
with latent variable modeling techniques [4] to enrich EHR.
Furthermore, we note that we have included the data modal-
ities of diagnoses, medications, smoking, sex, and systolic
BP; however, better confounding adjustment might manifest
with fuller utilization of the modalities that rich databases like
CPRD entail. In addition, in terms of data curation, we have
allocated patients into an exposure group based on first pre-
scription of class of antihypertensives. Subgroup investigations
stratified by intensity and duration of drug class should be
additionally pursued in future studies. In terms of applying
our model to a case study, T-BEHRT estimated null in most
drug comparisons in the routine clinical data study, but we note
that our model finds the comparison to CCBs to deviate from
the null (although quite close with <1.1 RR). While findings
from the RCTs generally demonstrate that antihypertensives
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have null effect on cancer, the evidence regarding CCBs is
still conflicting and further research is required [14].

In contrast, it must be noted that over-adjustment may
also result in biased estimation. Although found to be an
uncommon manifestation, M-structure bias variables, a special
case of collider variables, might be a source of bias if included
in adjustment [57]; although in general, empirical research has
shown conditioning on all pretreatment variables is still the
optimal course of action [58]. However, more research must
be conducted on the effect of these variables specifically in the
context of propensity-score modeling and the administrative
EHR observational setting.

V. CONCLUSION

To conclude, we have developed a deep learning model for
EHR data for more accurate estimation of RR. T-BEHRT has
performed optimally in semi-synthetic data experiments with
both persistent and transient confounding and can be applied
to an observational study on routine clinical data. Thus, in the
future, this model should be further tested and applied to
investigate other causal hypotheses questions using routine
EHR.

APPENDIX

A. Supplementary Methods: Semi-Synthetic Data Simulation

Data generation of sequential, temporal variables is a dif-
ficult task, and currently, there is no medically validated
method of generating realistic EHR medical history, exposure
assignment, and outcome. Thus, in gist, we utilize routine
clinical data components: 1) medical history with balanced
exposure groups and 2) known exposure status data generation
of factual/counterfactual outcomes. With generated potential
outcomes, we can calculate ground truth RR and compare the
deviation of model estimated RR from ground truth.

In order to create this semi-synthetic dataset, we first form
the dataset for the investigation: effect of antihypertensives
on incident cancer allowing us to access the components
(1) and (2). Since confounding often manifests partly due
to imbalanced variables between exposure groups, we find
an imbalanced variable, Zi in (1), routine medical history.
We then force this imbalanced variable, Zi , to be a confounder
and generate conditional outcome from a sampling function

Y Ti
i = Bernoulli(σ (aTi + mβ(λi + c))).

λi represents P(Ti | Zi), Ti ∈ {0, 1} is the exposure for
patient i , Y Ti

i is the outcome for patient i given exposure Ti , σ
is the sigmoid function, and β is the intensity of confounding.
Variables a, m, and c are coefficients terms to weighting their
importance in the function.

Intuitively, we first model the association between a variable
Zi and exposure (P(Ti | Zi)) with λi . Next, we generate Y Ti

i
with two variables: the variable Zi and Ti . In this way,
we form an association between Zi and exposure and Zi and
the outcome; with association to both exposure and outcome,
Zi becomes a confounder in this data generating process.
This process synthesizes controlled confounded observational

TABLE II

ICD-10TH REVISION CODES FOR CANCER

data; by generating the outcome with this function, we con-
trol confounding with a confounder Zi . Thus, in this way,
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TABLE III

HYPERPARAMETERS FOR T-BEHRT

we can generate factual/counterfactual outcomes and conse-
quently ground truth RR. Lastly, we can modify β value to
vary the degree of confounding in the data generation process.

B. Supplementary Methods: CV-TMLE

After using T-BEHRT to compute initial estimates, we use
CV-TMLE [6] for the correction of these estimates. We refer
readers to the source material for theory behind TMLE and
the cross-validated form: CV-TMLE [5], [25]. In brief, the
original formulation of the CV-TMLE algorithm requires k
targeting steps for each of the k folds for each of the iterations
predefined in the iterative version of TMLE. However, Levy
forms a simpler construction of the CV-TMLE which is less
computationally cumbersome; the advised method is to pool
all the initial estimates across folds and compute corrected
estimates vis-à-vis a standard TMLE update step [6]. Albeit
procedurally different, the original formulation and Levy’s
more recent formulation of CV-TMLE are identical mathe-
matically and in function. According to our research, this is
the first work utilizing CV-TMLE paired with deep learning
methods.

CV-TMLE provides a host of benefits to obser-
vational causal inference. As recommended by
Chernozhukov et al. [23], with validation in k-fold framework,
CV-TMLE is a form of TMLE which is robust to issues
of fold-wise overfitting whilst conducting k-fold cross
validation [6]. Furthermore, previous works show that the
CV-TMLE estimator provides more robustness than other
cross-validated estimators (e.g., CV-AIPTW) in the case of
violations of the assumption of overlap [59].

C. Supplementary Methods: Statistical Model Development

In statistics models, we used RR for estimation of
causal effect. The covariates adjusted for were: baseline
age (continuous variable: [0,1]), sex (male/female), region,
smoking status (smoker/nonsmoker), chronic kidney disease
(yes/no), human immunodeficiency virus/acquired immune
deficiency syndrome (yes/no), ischemic heart disease (yes/no),
cardiac arrhythmia (yes/no), stroke (yes/no), heart failure
(yes/no), anemia (yes/no), diabetes mellitus (yes/no), hyper-
tension (yes/no), osteoporosis (yes/no), arthritis (yes/no), con-
nective tissue disorder (yes/no), gout (yes/no), rheumatoid

TABLE IV

RISK RATIO ESTIMATES ACROSS SEMI-SYNTHETIC DATA EXPERIMENTS

arthritis (yes/no), peptic ulcer disease (yes/no), liver dis-
ease (yes/no), asthma (yes/no), peripheral arterial disease
(yes/no), chronic obstructive pulmonary disorder (yes/no),
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TABLE IV

(Continued.) RISK RATIO ESTIMATES ACROSS

SEMI-SYNTHETIC DATA EXPERIMENTS

hemiplegia (yes/no), epilepsy (yes/no), dementia (yes/no),
learning disorder (yes/no), eating disorder (yes/no), adjust-
ment (yes/no), anxiety (yes/no), affective disorder (yes/no),
depression (yes/no), bipolar disorder (yes/no), psychoses
(yes/no), schizophrenia (yes/no), hyperlipidemia (yes/no),
obesity (yes/no), substance abuse (yes/no), anticholinergics
(yes/no), drugs that cause gastrointestinal bleedings (yes/no),
statins (yes/no), and drugs for diabetes (yes/no). The exposure
variable was antihypertensive medications (class 1/class 2).
The outcome was defined as the synthetic outcome/cancer
(yes/no). The models were fit and tested using fivefold vali-
dation. The naïve RR estimates were calculated on the testing
dataset in each fold and mean RR estimate and 95% CIs for
estimates were derived.

The TMLE was developed using two LR models—one for
outcome prediction and the other for exposure prediction.
The outcome prediction model adjusted for covariates and
exposure variable listed above, and the exposure prediction
model used just the covariates. The TMLE algorithm was fit
and tested using five-fold validation. The TMLE RR estimates
were calculated on the testing dataset in each fold and mean
RR estimate and 95% (CI) for estimates were derived.

D. Supplementary Methods: Codes for Cancer

Provided in Table II, we have ICD-10th revision codes for
cancer stratified by type.

E. Supplementary Methods: Hyperparameters for Deep
Learning Models

Provided in Table III, we have hyperparameters used for the
BEHRT architecture models.

F. Supplementary Results: Results for Semi-Synthetic Data
Experiments

Provided in Table IV, we have the raw RR estimates across
the semi-synthetic data experiments.
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