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Guest Editorial
Special Issue on Deep Learning for Earth and

Planetary Geosciences

EARTH and planetary geosciences are essential for under-
standing and addressing many societal challenges and

scientific questions. Increased availability of geoscience data
creates an opportunity for deep learning to advance the meth-
ods and scientific understanding for tackling these challenges.
However, the complex characteristics of geoscience problems
and datasets necessitate the development of novel approaches
and frameworks. This Special Issue aims at collecting new
ideas and deep learning formulations to gain new earth and
planetary insights. The contributions cover a wide range of
topics, such as satellite and hyperspectral imaging, land mon-
itoring, geophysical imaging, and subsurface analysis.

I. OVERVIEW OF THE SPECIAL ISSUE

Geosciences study the connection between the hydrological,
biological, atmospheric, and lithospheric characterizations of
the Earth and other planetary bodies. It plays a crucial role in
addressing many pressing societal challenges. These include
managing the risks of climate change and understanding its
effects on hydrological, biological, and atmospheric processes.
Other applications include underground carbon capture, energy
development, and space exploration. Characterizations of these
natural systems have relied traditionally on physical, chemical,
and biological models. In addition to being computation-
ally expensive, the available models are limited to processes
that are well-understood and from which measurements can
be directly acquired. Moreover, they struggle with noise in
the data, due to sensors or [the inherent variability in the
processes], and a potential mismatch between the assumed
model structure and the characteristics of the modeled process.
Machine learning, and deep learning in particular, has made
great progress in managing these difficulties and has an
opportunity to advance geoscience and augment the methods
and models used.

Direct application of deep learning methods in geosciences
is often difficult or has had limited impact, however. That
is due to the complexity of geoscience data and the diffi-
culties in meeting the needs of geoscience problems. The
difficulties include high dimensionality, strong spatiotempo-
ral correlations, and heterogeneity in the data. One usually
also wants deep learning to integrate with available scientific
models where they exist. Furthermore, ground-truth data in
geosciences is scarce because of the high cost or impracticality
of acquiring such data or the inherent rare or sparse nature
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of the elements of interest. This limits the applicability and
robustness of supervised deep-learning methods. Therefore,
resolving geoscience problems requires the development of
new deep learning formulations and methods.

This Special Issue aims to provide a timely reference for
future deep learning research in geosciences. The articles col-
lected herein tackle several of the aforementioned difficulties.
These include the development of physics-guided models, han-
dling high-dimensional imagery, and reducing different forms
of noise. These are then applied to foundational aspects of
geoscience, such as the characterization of ocean temperatures,
the Earth’s subsurface, or land-cover recognition. A summary
of the accepted articles is provided in the following sections.

II. REMOTE SENSING, IMAGING, AND LAND
CHARACTERIZATION

Given the large scale of geoscience processes, the ability to
image the planet’s surface from satellite hyperspectral sensor
measurements accurately and at higher resolutions is crucial.
Toward that end, Vandal and Nemani [A1] propose a deep
learning-based optical flow method for temporal upsampling
of geostationary satellite imagery. While this problem has
similarities to video frame interpolation, they address the high-
dimensionality and varying spatial resolutions and charac-
teristics of different spectral channels. This provides higher
frequency observations needed, for example, for studying
mesoscale weather events and improving weather tracking and
forecasting of several convective events.

Noise in hyperspectral imaging (HSI) limits the useful-
ness of the resulting images and the performance of down-
stream analyses. Guan et al. [A2] handle the issue of
stripe noise in such images. Unlike standard image denois-
ing techniques which assume independent noise, stripe noise
is spatially correlated making it harder to remove. They
propose a recurrent convolutional neural network that uti-
lizes the intrinsic spatial and spectral correlation structure
of hyperspectral images to preserve both while denoising.
Experiments on real data demonstrate the ability of their
method to greatly improve the images compared to previous
approaches.

A novel approach to HSI denoising is also proposed by
Li et al. [A3]. Rather than treat the denoising step as an
independent, separate step, they consider the downstream use
of the images (e.g., classification). They present a framework
for joint denoising and classification of hyperspectral images
which accounts for the high dimensionality and varying noise
statistics across spectral bands. They propose a compound loss
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function which ensures that denoising and classification jointly
optimize the overall result.

Then, a major challenge in remote sensing is finding cor-
respondences between images. Chen et al. [A4] present a
novel neural network to address this issue. The proposed deep
learning architecture learns correspondence by successively
refining the matching of image features and the spatial cor-
relation structure between the matched features. This enables
the registration of images from different perspectives, scales,
and modalities.

Remote sensing images are then frequently analyzed to
understand land cover dynamics. Kaselimi et al. [A5] conduct
such a study and demonstrate how a vision transformer can be
used to monitor deforestation and understand the underlying
factors. They approach the problem from a multilabel image
classification perspective which simultaneously detects the
different labels related to the drivers of deforestation observ-
able on the areas at the edge of forests. This understanding
is crucial for developing the correct forest conversation and
management policies.

Another application of remote sensing is in urban land
analysis. In particular, Liu et al. [A6] tackle the problem of
automatic extraction of traffic roads. Attempts to achieve this
from aerial images directly are fraught with many challenges,
such as occlusions and imaging limitations. To solve this
they propose a multistage cross-modal data fusion architecture
which successively refines and shares information between
modalities across the layers of the architecture. They demon-
strate their approach for road extraction using aerial images
and vehicle crowdsourced trajectories, which can inform future
urban planning and land use development.

Of course, a challenge in training models for land analysis
or classification is the limited availability of labeled data,
which Kalita and Roy [A7] propose addressing by domain
adaptation between datasets. Starting from a network trained
on a dataset, their approach selects target images with high
classification confidence. These are then used with the source
images for learning a common subspace using a Siamese
network. This enables learning a classifier using the source
dataset labels which can also be robustly applied to other
datasets.

The need for surface characterization also arises in plan-
etary geosciences. Xiao et al. [A8] propose a method for
rock detection in a Mars rover. They utilize a kernel-based
methodology to handle the diverse morphology of Martian
rocks from currently limited data and on tight computational
constraints. Since interplanetary vehicles must operate largely
autonomously, approaches such as this are crucial for vehicle
navigation, obstacle avoidance, and determining which rocks
or soil to sample.

III. PHYSICS-GUIDED MODELING

In many geoscience aspects, physics models provide the
best-known characterization of Earth processes but their
numerical computation is slow and expensive. Duffy et al. [A9]
provide a framework to train deep learning-based surrogate
models to approximate high-resolution numerical models.

The framework learns Bayesian deep learning models using
variational Dropout for uncertainty quantification. When
applied in a satellite-based atmospheric correction case study,
they found that deep learning models can reproduce the
predictions of a high-resolution model acceptably but are faster
and able to estimate the predictive uncertainty.

Deep learning models can also be used in conjunction with
physics models to augment the predictions and provide easy
adaptation to new data, as presented by Meng et al. [A10].
They propose to first use the results of a numerical model
of sea subsurface temperature to train a generative adversarial
network (GAN) such that it emulates the spatial continuity
and physical relationships between temperatures at different
depths. The GAN model is then finetuned using remotely
sensed sea surface temperature and sparse sea subsurface mea-
surements, which enable the predictions to adapt to varying
data conditions and limitations in the numerical model. Their
approach enables widespread and frequent monitoring of sea
subsurface temperatures.

IV. SUBSURFACE IMAGING AND CHARACTERIZATION

Many geoscience studies need the ability to monitor the
Earth’s subsurface processes, such as those leading to earth-
quakes. One way to do this is through distributed acoustic
sensing, but the signal is often mixed with many sources of
noise. van den Ende et al. [A11] present a self-supervised
deep learning method that both removes noise and enhances
the signal. They use the fact that the signal of interest
exhibits long-range coherence across the spatially distributed
recording locations whereas the noise aspects do not. This
spatial invariance property is used to self-supervise the training
of a U-net model that infers the denoised, coherent signal
from recordings at other locations. This enables, for example,
monitoring and detection of microseismicity events in noisy
environments, such as in urban settings.

Seismic interferometry can also be used to infer the Earth’s
structure by leveraging the cross-correlation between naturally
occurring acoustic noise sources. In practice, the application
of seismic interferometry is challenging because of correlated
and inhomogeneous noise sources. Sun and Demanet [A12]
propose to learn a neural network that transforms correlograms
and yields the correct Green’s function characterization of the
subsurface. And, unlike previous work, their approach can
determine this from short noise recordings and undistributed
noise sources, enabling real-time monitoring of processes in
the Earth’s subsurface.

Seismic imaging using active sources is also frequently
used, especially in applications requiring higher imaging res-
olution. A common issue is the presence of noise in the
recorded seismic signals, which limits the quality of the sub-
surface imaging result. Iqbal [A13] proposes a noise reduction
framework to filter out both correlated and uncorrelated noise.
The method learns a sparse representation of time–frequency
seismic signal segments using a deep convolutional neural
network, which then uses to reconstruct the denoised signal.

Some forms of noise arise from specific seismic acquisition
approaches. Simultaneous-source seismic acquisition reduces
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the cost of acquisition but causes the blending of seismic
signals (i.e., superposition in time). Wang et al. [A14] tackle
this problem by learning a neural network to minimize a
self-supervised blending loss function. This enables training a
deblending network without ground truth data. Since deblend-
ing is an under-determined problem, they further regularize
the training by randomly masking traces out and ensuring
that the network can recover them, which removes trace-wise
independent blending noise.

Once the subsurface is imaged, the result must be analyzed
to identify underground geologic features of interest, such
as salt bodies. Saad et al. [A15] propose a deep convolu-
tional neural network to automatically segment salt bodies,
avoiding time-consuming manual analysis. The network uses
squeeze-and-excitation blocks to control a self-attention mech-
anism which allows it to more efficiently extract the relevant
information needed to identify salt from its context. They
demonstrate the ability of their method to generalize between
datasets.

Wells provide direct access to subsurface rocks. Still, the
characterization of rock properties, such as porosity and per-
meability, often requires experiments from core samples which
are costly and impractical to perform beyond localized well-
depth intervals. To handle this, Yang et al. [A16] present a deep
learning approach for estimating porosity and permeability
from well logs. A novel aspect of their approach is the com-
bination of convolutions for determining local context across
well logs measurements and a bidirectional long short-term
memory self-attention mechanism to infer relevant information
at other depths.

V. CONCLUDING REMARKS

With this Special Issue, we aimed to bring together geo-
scientists and machine learning researchers to encourage
future work and collaboration on these important topics.
The articles compiled in this Special Issue provide examples
and a timely overview of such methods. As these articles
demonstrate, the machine learning community has a unique
opportunity to help solve many technical issues, answer-
related geoscience questions, and tackle associated societal
challenges.
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