
2606 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 34, NO. 5, MAY 2023

An Efficient Iterative Approach to Explainable
Feature Learning

Dino Vlahek , Member, IEEE, and Domen Mongus, Member, IEEE

Abstract— This article introduces a new iterative approach to
explainable feature learning. During each iteration, new features
are generated, first by applying arithmetic operations on the
input set of features. These are then evaluated in terms of
probability distribution agreements between values of samples
belonging to different classes. Finally, a graph-based approach
for feature selection is proposed, which allows for selecting
high-quality and uncorrelated features to be used in feature
generation during the next iteration. As shown by the results,
the proposed method improved the accuracy of all tested clas-
sifiers, where the best accuracies were achieved using random
forest. In addition, the method turned out to be insensitive to
both of the input parameters, while superior performances in
comparison to the state of the art were demonstrated on nine
out of 15 test sets and achieving comparable results in the others.
Finally, we demonstrate the explainability of the learned feature
representation for knowledge discovery.

Index Terms— Data classification, explainable artificial intelli-
gence, feature learning, knowledge discovery.

I. INTRODUCTION

FEATURE learning, or representation learning, describes
a set of techniques that allow for defining augmented

data representation for improved utilization of classification or
regression models [1]. Today, feature learning replaces conven-
tional feature engineering tasks in many applications, ranging
from speech recognition [2]–[4] and computer vision [5], [6]
to general signal processing [7], [8]. While feature engineering
traditionally consists of user administered feature construction,
feature evaluation, and feature selection steps [9], [10], feature
learning follows these principles in an automated manner.
In general, feature learning methods can be divided into unsu-
pervised and supervised approaches [11]. While the former
learn from unlabelled data, they rely on data transformations
(i.e., feature constructions) and feature selections in order to

Manuscript received 30 October 2020; revised 9 April 2021; accepted
18 August 2021. Date of publication 3 September 2021; date of current
version 3 May 2023. This work was supported in part by the Slovenian
Research Agency under Grant L7-2633 and Grant P2-0041, and in part by
the projects “Wearable Integrated Smart Brace for Rehabilitation Monitoring
and Diagnostic of Disorders in Muscular Functions—WIBRANT” and “Inte-
gration of Indoor and Outdoor Navigation—ION,” which are cofinanced by
the Republic of Slovenia, Ministry of Education, Science and Sport, and the
European Union under the European Regional Development Fund (more info:
www.eu-skladi.si/?set_language=en). (Corresponding author: Dino Vlahek.)

The authors are with the Laboratory for Geospatial Modelling, Multimedia
and Artificial Intelligence, Faculty of Electrical Engineering and Computer
Science, Institute of Computer Science, University of Maribor, 2000 Maribor,
Slovenia (e-mail: dino.vlahek1@um.si).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TNNLS.2021.3107049.

Digital Object Identifier 10.1109/TNNLS.2021.3107049

extract low-dimensional representation that captures the under-
lying structure of the high-dimensional input data. In contrast,
supervised approaches learn features from labeled data. This
allows for computing an error term of the resulting model and,
thus, performing feature validation prior to their selection [9].
Since we focus here on classification tasks, only the latter are
discussed in the continuation.

Supervised feature learning methods can be divided roughly
into feature selection, manifold learning, sparse dictionary
learning, and deep learning. Feature selection is a process that
extracts a subset of relevant features from the original feature
space. On the one hand, this contributes to the computational
efficiency of the learning process, while removing irrelevant
or redundant features may also increase the accuracy of the
resulting predictive model [9]. Nonetheless, the efficiencies of
such approaches are limited, as they are unable to combine
features or introduce new ones [12].

In contrast, manifold learning approaches perform dimen-
sionality reduction by recombination of input features. The
rationale behind these methods is that high-dimensional
learning samples are often distributed close to some
low-dimensional nonlinear manifold [13]. Dimensionality
reduction is, thus, achieved by mapping samples onto it [14],
[15]. As a consequence of changes in the distances between
learning samples achieved in this way, significant distortions
may be introduced to the data [16], while resulting classifi-
cation models are difficult to interpret. In addition, manifold
learning approaches can only reduce the dimensionality of the
feature space but they cannot extend it. Accordingly, they are
unable to increase its informativeness [15], [17].

On the other hand, sparse dictionary learning methods
construct a representation of the input data that are based on
a linear (or nonlinear) combination of an arbitrary number
of basic elements, called atoms [18]. Dictionary learning
is, thus, a multiobjective optimization problem, where the
sparsity of representation is tried to be maximized in addition
to minimization of the representation errors [19]. The
classification of unknown samples can, thus, be achieved,
based on reconstruction error introduced by class-specific
dictionaries [20]. However, with the increasing number
of classes, this can become computationally demanding.
Alternatively, the classification error can be introduced as an
additional optimization criterion during the sparse dictionary
learning [19]. Thus, a shared dictionary is obtained, which
is tuned for the given classifier. It is obvious that this
increases the computational complexity significantly due to

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-3911-8685

VLAHEK AND MONGUS: EFFICIENT ITERATIVE APPROACH TO EXPLAINABLE FEATURE LEARNING 2607

the nonconvex optimization problem and tuning of many
parameters [20], [21]. In addition, while sparse representation
allows for interpretation of a resulting model, it is challenging
to extract useful knowledge in those cases when the dictionary
contains a large number of atoms [21], [22].

Similar drawbacks are also noted when considering deep
learning approaches. These are based on various architectures
of artificial neural networks (ANNs) with multiple hidden
layers of neurons (i.e., nodes) that allow for extracting higher
level features progressively from the raw input [23], [24].
Neurons’ activation functions can be modeled by both linear
and nonlinear functions, thus optimizing feature representation
within the decision function. By increasing the number of
hidden layers (i.e., the ANN’s depth), ANNs can approximate
increasingly complex decision functions and achieve high
classification (or prediction) accuracies. However, due to the
presence of multiple local optima and a large number of
so-called hyperparameters (i.e., dimensions) [24], [25], this
also increases the complexity of the training procedure. Deep
learning approaches are, therefore, difficult to tune, while they
are also considered to be black-box function approximators
that do not allow for knowledge discovery [1], [26]–[28].

The existing feature learning approaches are, thus, either
uninterpretable, or they are limited in their accuracies due to
the restricted capacities of feature recombination. Moreover,
feature learning approaches that allow for the introduction
of new features are computationally complex, as they require
nonconvex optimizations with a large number of hyperparame-
ters that need to be tuned. In order to address these challenges,
a new method is proposed in this article that allows for the
following:

1) achieving improved accuracy in comparison to the cur-
rent state of the art;

2) computationally efficient learning due to the fast con-
vergence of the model toward optimal representation;

3) efficient tuning due to its insensitivity to only two input
parameters;

4) interpretation of the resulting model by feature construc-
tion tracking.

The rest of this article is organized as follows. An overview
of the related work is given in Section II. Section III provides
details of the proposed method. The validation of the proposed
method is presented in Section IV, while Section V concludes
this article.

II. RELATED WORK

While feature learning can be viewed as an optimization
problem where the space of all possible recombinations of
features is searched in order to find an optimal representation
for classification purposes [1], we follow here the traditional
feature construction, evaluation, and selection steps. In the
continuation of this section, the related methods are reviewed,
accordingly, in addition to approaches that allow for the
interpretation of the learned models.

A. Feature Construction

During feature construction, constructive operators are
applied to a set of existing features in order to define

new ones. In addition to dimensionality reduction approaches
(such as the principal components analysis [29], [30] and
nonnegative matrix factorization [18], [19], [31], [32]) that
construct new features implicitly during feature projection or
selection steps, a number of approaches focus on the extraction
of higher level features that increase the informativeness of
the feature space. ANNs, for example, create such features
using hidden neurons within the intermediate layers. Here,
input features are recombined by summing up their weighted
values (i.e., convolution or dot product), transformed by the
activation function, and followed by additional convolutions,
such as pooling layers, fully connected layers, and a nor-
malization layer in the case of deep learning. Depending on
the structure of the hidden layers, the activation function
used, and their tuning (i.e., learning) strategy, this princi-
ple applies to a number of ANN architectures, including
autoencoders [33], [34], deep feedforward networks [35]–[38],
recurrent neural networks [7], [39], and convolutional neural
networks [28], [40].

While projection- and ANN-based methods suffer from
loss of interpretability, constructing a feature in a traceable
manner allows for deriving qualitative understanding between
the input variables and the response and, thus, ensures their
explainability [41]. Early approaches that satisfied this con-
strain focused on decision trees for determining the order
of combining Boolean features by logical operators [42],
[43]. In order to overcome the restriction to deal only with
Boolean-valued features, a preprocessing step that transforms
real-valued features to Boolean-valued ones, while combining
them according to the information gain, was proposed in [44].
Still, the number of constructed features in these methods is
usually fixed or predetermined by the user [45].

On the other hand, evolutionary algorithms allow for recom-
bining features automatically with little to no user interac-
tion. For instance, construction of a single high-level feature
using arithmetic operations was proposed in [46], where four
different metrics were used as fitness functions, including
information gain, Gini-index, Chi-square, and their sum, while
trigonometric operators based on intraclass variance were
considered additionally in [47]. In the following, numerous
attempts to construct a multidimensional feature space were
proposed [48], [49], and the appropriateness of fitness func-
tions for applying arbitrary classifiers was examined in [50].
Despite numerous studies demonstrating the benefits of an
evolutionary algorithm for feature construction [47]–[50], they
are obviously computationally inefficient, while they tend to
produce only near-optimal results, as they rely on a number
of input parameters (e.g., population size and probabilities of
mutation and crossover rates) that need to be fine-tuned [51].

B. Feature Evaluation

Following feature construction, feature evaluation provides
ranking of features in regard to their capacities to separate
samples of different classes. A straightforward approach for
feature evaluation relies on assessing the performances of
classifiers built on each individual feature [12]. Nonetheless,
the choice of a classifier affects the evaluation results highly,

2608 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 34, NO. 5, MAY 2023

while learning is often time-consuming, especially in those
cases of a large number of features [12], [52], [53]. In order to
address this issue, the ratios between distances among samples
of different classes and those of the same class are used to
approximate features’ discriminative powers by discriminant
analysis-based techniques. Examples of these include the
Fisher criterion [54], the maximum margin criterion [55],
and the Laplacian score [56]. Likewise, correlation-based
approaches use Pearson and Spearman correlation coefficients
between feature values and class labels, while techniques
based on information gain rank the features according to
the ratio between the entropy of class labels and conditional
entropy of feature values [57]–[59]. In terms of accuracy,
similar results are also obtained by using the computationally
more efficient Gini impurity estimation [60]–[62]. While there
are many variations of information gain- and Gini-based
methods [61], [63]–[66], their major advantage is their ability
to acknowledge nonlinear relationships between features and
class labels [58], [67]. However, they favor features with a
large number of distinct values, which can result in overfit-
ting [57], [60], [62], [68].

C. Feature Selection

Feature selection is the process of selecting a subset of
relevant features (i.e., variables or predictors) that maximizes
the accuracy of the classification model. Strategies that are
traditionally used to achieve this objective include filtering,
wrapping, and embedded methods [12]. Filtering approaches
are the simplest ones, as they threshold the features according
to their evaluation. Although computationally efficient [12],
[52], [69], [70], these early approaches tend to select redundant
features, as the correlations between them are not consid-
ered [12], [71]. One way to overcome this issue is to base
the ranking criterion on the entropy-based [65], [66], [72]
and discriminant analysis-based metrics [54], [56]. However,
inaccurate calculations of these approximations are introduced
when the number of training samples is small, while they
become computationally costly when using a large number
of samples or datasets with a large number of features. More
importantly, they only take into consideration pairwise feature
dependencies, which results in the selection of suboptimal
feature subsets [73].

Wrapper approaches, on the other hand, overcome these
drawbacks by selecting such a subset of features that max-
imizes the performance of the targeted classifier [12]. This
is essentially a multiobjective optimization problem of max-
imizing the classification performance while minimizing the
number of selected features. Since multiobjective optimiza-
tion is well-known, many optimization techniques exist [12],
[74], including sequential search [75], [76], nature-inspired
algorithms [77]–[79], and binary teaching-learning [80]. While
these approaches do not require explicit feature evaluation,
they still have the capacity to produce (near) optimal results.
However, their performance depends on the targeted classifi-
cation model. In addition, they are extremely computation-
ally demanding [12], and thus, their usage is significantly
limited.

Alternatively, in order to mitigate the time complexity
of wrappers, the embedded methods apply feature selection
during the training process. Thus, they select relevant features
simultaneously while training the classifier using some form
of penalization [12]. For example, decision trees achieve
feature selection based on the estimation of mutual informa-
tion [60], while support vector machines (SVMs) use regres-
sion analysis (such as least absolute shrinkage and selection
operator LASSO with the L1 [81], or ridge regression with
the L2 penalty [82]) in order to rank features during their
training [83]. This reduces the computational demands of both
methods significantly, as it allows for avoiding the repetitive
execution of the learning procedure. However, SVMs are not
interpretable, while they are also difficult to tune due to their
sensitivity to a number of input parameters [12], [84].

D. Interpretability of Machine Learning

The interpretation of the decision-making principles behind
the early machine learning approaches is rather elementary.
Decision trees, for example, can be analyzed by traversing
their nodes straightforwardly and evaluating local and global
misclassification [85], while linear models can be interpreted
by examining their parameters [86]. Nevertheless, due to their
simplicity, these types of models do not represent sufficiently
all the knowledge contained within the data [87] and, thus,
often achieve low classification accuracies [88]. On the other
hand, methods that may be better at extracting the knowledge
and, consequently, achieve higher accuracies (like ANNs,
random forests (RFs), and SVMs) are often considered to be
black-box approaches due to their nonlinearities. Neverthe-
less, several attempts toward the interpretation of black-box
approaches have been made recently [41], [89]–[92]. These are
traditionally achieved either by learning interpretable models
locally around a given sample [41] or by estimating the
importance of each individual feature on the output classifica-
tion [93], [94]. The latter is based on Shapely values that show
how an individual feature contributes to the model’s behavior
by observing the difference between the probabilities of the
expected and the actual classifications when that feature is
ignored [93].

Although the described techniques are equally applicable
across linear, nonlinear, and deep models, they are sensitive to
high correlation among features [94]. Moreover, by observing
only the input features, they do not consider the learned ones
and are unable to support the interpretation of the dependences
between them [92], [94], [95]. While the former has already
been examined in [96], addressing the interpretability of
codependencies between features turned out to be significantly
more challenging. When considering ANNs and CNNs, one
possible way to achieve this is by visualization of the decision-
making process. This is usually done by generating heatmaps
from the input samples, highlighting those that maximize the
observed neurons’ activations [89], [91], [97]–[100]. As this,
in fact, allows for the interpretation of learned features,
the visualized heatmaps are often contraintuitive [101], while
the approach itself is limited to the CNNs [90]. Recently,
an interpretable ANN was proposed, which identifies features

VLAHEK AND MONGUS: EFFICIENT ITERATIVE APPROACH TO EXPLAINABLE FEATURE LEARNING 2609

Fig. 1. Flowchart of the proposed method feature learning approach.

with high interclass variances from input data and combines
them with those of low intraclass variances in order to improve
the understanding of the model’s predictions [102]. Although
this allows for studying the principles of decision-making
behind ANNs and examining the impacts of the input features
on the final classification, the learned intermediate features
may still be highly abstract and not meaningful for knowledge
discovery.

III. PROPOSED METHOD

This section introduces a new iterative method for feature
learning that allows for exploiting nonlinear codependencies
between features in order to improve the classification per-
formance of an arbitrary classifier while also providing a
meaningful feature representation for knowledge discovery.
As shown in Fig. 1, the proposed method relies on two input
parameters, while each iteration consists of the following three
steps:

1) feature construction that generates the new feature space
F M ⊆ RM from the initial one F N ⊆ RN ;

2) feature evaluation that assesses the quality of the indi-
vidual feature;

3) feature selection used to select the high-quality dissim-
ilar features.

In the continuation, each step is discussed in detail.

A. Feature Construction

Within the mathematical framework as set out in this
section, discrete functions and sets are denoted with capital
letters, while variables and indexes are denoted with lowercase

letters. Accordingly, an input feature space at the itth iteration
is denoted as F N

it and is defined by a set of features F N
it =

� f n
it �. A feature f n

it , referred to by an index n ∈ [1, N], is given
as a mapping function f n

it : Z → R. On the other hand,
an index i ∈ [1, I] refers to a sample, i.e., a feature vector
�xi defined as �xi = � f n

it [i]�. Accordingly, a set of samples
X is given by X = {�xi}. A newly generated feature space
at the itth iteration is denoted as F M

it , where m ∈ [1, M]
denotes an index of a distinct new feature. Thus, a new feature
space F M

it = � f m
it � is defined as a set of mapping functions

f m
it : Z → R, each given by

f m
it [i] = f n

it [i] ⊕ f n	
it [i] (1)

where ⊕ is an arbitrary operator applied on feature samples
of features n and n	, such that n
= n	, respectively. Finally,
a concatenated feature space is defined as

F M+N
it = F N

it ∪ F M
it . (2)

For the purposes of this study, a set of used operators
was defined as ⊕ ∈ {+,−,÷,×}. Note that, as division and
subtraction are not commutative, they depend on the order of
the operands. Thus, the number of newly generated features
using summation and multiplication is equal to N(N − 1),
while subtraction and division generate 2N(N − 1) new
features. The number of newly generated features during each
iteration is, thus, defined as

M = 3N ∗ (N − 1). (3)

Accordingly, the number of features in the concatenated
feature space F M+N

it is equal to 3N2 − 2N .

B. Feature Evaluation

The objective of this step is to evaluate each feature accord-
ing to its suitability for classification [9], [10]. By considering
classification as a distance metric learning problem, features
with low intraclass [103] and high interclass variances [104]
are generally considered to be of high quality [105]. Thus,
it can be used instead of assessing feature quality by compu-
tationally intensive learning of classifiers. Nevertheless, when
estimating intraclass and high interclass variances, samples of
different classes may appear within the overlapping clusters,
and therefore, straightforward estimation of variances does not
ensure sufficient results [106]–[108]. In order to address this
issue, we propose a new feature quality measure that assesses
the probability distributions agreement between values of
samples belonging to different classes.

Probability distributions agreement is a measure of the
common area under two probability density curves [109].
Consequently, the low value of probability distributions agree-
ment corresponds to a high separability between classes and
improves the tradeoff between interclass and intraclass vari-
ances of clusters of learning samples. As shown by Sun and
Wang [110], the overlap area also corresponds directly to
the expected proportions of classification errors. In a discrete
space, the probability distribution agreement can be estimated
straightforwardly by the overlap between class histograms,
as shown in Fig. 2.

2610 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 34, NO. 5, MAY 2023

Fig. 2. Probability distributions agreement of classes c0 and c1.

Let a classification function C, acting on a set of samples
�xi = � f n

it [i]�, be given by a mapping C : X → [1, C]. A set
of samples Xc ⊆ X of a given class c is then defined by

Xc = {�xi ∈ X; C(�xi) = c}. (4)

In order to estimate the probability distributions, per-class
histograms of features are estimated by categorizing (binning)
samples �xi ∈ Xc according to their corresponding feature
values f n

it [i]. A set of samples Xn,[a,b)
c , belonging to the

category [a, b) according the feature f n
it , is defined as

Xn,[a,b)
c = {�xi ∈ Xc; a � f n

it [i] < b
}

(5)

where [a, b) denotes the binning range. Thus, probability
H n,[a,b)

c of a category [a, b) of a class c, estimated based on
the histogram of a feature f n

it , is defined as

H n,[a,b)
c =

∣∣Xn,[a,b)
c

∣∣
|Xn | . (6)

Such representation of the probability distribution of feature
values of a class c allows for a straightforward estimation
of the feature quality �(F N). This is given by the mapping
function � : F N

it → [0, 1] that estimates an overlap between
the probability distributions of samples belonging to different
classes. Formally,

�
(
F N

it

) =
∑
[a,b)

(∑
c

H n,[a,b)
c − argmax

c

(
H n,[a,b)

c

))
. (7)

The result of (7) is an estimation of potentially incorrectly
classified values of the nth feature. A graphic example of
an overlap between two histograms and the corresponding
probability functions of classes c1 and c2 is shown in Fig. 2.
The red graph and the blue graph represent histograms and
corresponding probability functions of classes c0 and c1,
accordingly, while the violet area shows the overlap between
them, which corresponds to possible misclassified samples.

C. Feature Selection

As an alternative to the existing feature selection approaches
that are either computationally expensive or unable to deal
with correlated features (as explained in Section II-C), we pro-
posed in this section a new graph cut-based filtering technique
that allows for extracting a subset of high-quality dissimilar
features F N

it+1 ⊆ F N+M
it from the concatenated input feature

space F N+M
it . For this purpose, graph vertices are used to

represent features, with associated weights that define their
quality (as described in Section II-B), while graph edge
weights define similarities between them. Here, an overlap and
the correlation threshold, denoted as T� and Tp accordingly,
are used for graph definition. The former defines the necessary
level of features’ quality (i.e., maximal allowed class overlap)
to be included into the output feature space, and the latter
determines the minimal level of dissimilarity between them.
Accordingly, an undirected graph used for feature selection
is defined as G = (F N

it , E), where a set of vertices F N is
defined as F N

it = { f n
it ∈ F N+M ; �(f n

it) ≤ T�}, while an
unordered set of edges E = {en,n	 ; P(en,n) ≥ Tp} is given
by en,n	 = (f n

it , f n	
it) for all f n

it , f n	
it ∈ F N such that n
= n	.

A vertex-weighting function is given by �(f n
it), as defined in

(7), and the edge-weighting function is, in our case, given by
the absolute Pearson correlation coefficient P : E → [0, 1].
Formally,

P(en,n) =
∣∣∣∣∣
∑

i=0

(
f n
it [i] − μn

)(
f n	
it [i] − μn	

)
σnσn	

∣∣∣∣∣ (8)

where μn denotes mean, while standard deviation σn of feature
values is defined as σn = ((1/I)

∑
i=0(f n

it [i] − μn))
1/2.

According to the theoretical framework set out in [111],
we used the following definitions of elementary properties.

1) Vertices f n
it ∈ F N

it and f n	
it ∈ F N

it are adjacent in a graph
G if there exists an edge en,n	 ∈ E linking them.

2) A path from f n0 to f nN is an ordered sequence of
adjacent vertices

∏
n0,nN

= � f n0
it , f n1

it , . . . , f nN
it �.

3) A graph G is connected if, ∀ f n
it , f n	

it ∈ F N
it , there exists

a path
∏

n,n	 between them.
4) A graph G 	 = (F 	N

it , E) is subgraph of G if F 	N
it ⊆ F N

it
and E 	 ⊆ E ,

5) A neighborhood Z(f n
it) of a vertex f n

it in graph G is the
subset of vertices F N

it , defined by all the adjacent vertices
of f n

it , namely Z(f n
it) = f n	

it ∈ F N
it ; ∃en,n	 , where n
= n	.

6) A subgraph CC(G)n , addressed by a feature f n
it , is a

connected component of G if it is connected and it is
maximal for this property.

Accordingly, we say that a set of vertices CU T (F N) ⊆ F N
it

is a vertex-cut if its removal separates graph G into at least two
nonempty and pairwise disconnected connected components.
It is obvious that Z(f n

it) is a graph-cut, as it separates a
singleton { f n

it } (i.e., an individual vertex) from the rest of the
graph, thus creating a subgraph G 	 = (F 	N

it , E), whose vertex
and edge sets are given formally by

F 	N
it = F N

it /
(
Z
(

f n
it

) ∪ {
f n
it

})
E 	 = {

e	
n,n	 ∈ E; f n

it , f n
it ∈ F 	N

it and n
= n	}. (9)

VLAHEK AND MONGUS: EFFICIENT ITERATIVE APPROACH TO EXPLAINABLE FEATURE LEARNING 2611

Fig. 3. Vertex cut-based feature selection on (a) Graph G , where (b) feature of the highest quality is selected (red vertex) and (c) its neighborhood (blue
vertices) is removed. The same procedure is repeated on the remaining graphs (d) G 	 and (e) G 		 in order obtain the output features (red vertices).

Consider the example in Fig. 3(a) that shows an undirected
graph G = {F N

it , E}, constructed over a set of features
F N+M

it = { f 1
it , f 2

it , . . . , f 8
it }, with thresholds T� = 0.6 and

Tp = 0.8 applied on the associated vertex- and edge-weighting
functions � and P , accordingly. In order to ensure the
preservation of the overall informativeness of selected fea-
tures, a feature of the highest quality is selected f̂ n

it =
arg min f m

it ∈G �(f m
it)ni first by a vertex-cut of its neighborhood

Z(f̂ n
it). Thus, all of its highly correlated adjacent features

are removed from G [see Fig. 3(b), where f̂ n
it = f 1 is

marked by red and Z(f̂ n
it) = { f 2, f 5, f 6} is marked by

blue vertices]. This results in G 	, as defined by (9), and
a disconnected singleton { f 1} [see Fig. 3(c), where G 	 is
marked by white vertices]. As shown in Fig. 3(d), the same
process is then repeated on G 	, separating the feature of the
highest quality, namely, f 3, from the remaining graph G 		
by removal of Z(f 3) = { f 4, f 7}. Finally, the output sub-
set of high-quality dissimilar features, namely, { f 1, f 3, f 8},
is obtained by a vertex-cut of Z(f 8) ⊂ G 		, as shown
in Fig. 3(e).

As vertex-cut of graph G is a well-known problem, it is not
discussed further here. Its efficient implementation is described
in [112]–[114].

IV. RESULTS AND DISCUSSION

A. Validation Procedure

The proposed method was implemented using C# on the
Microsoft Windows 10 operating system, while all conducted
experiments were done on a workstation with Intel Core
i5 CPU and 16 GB of the main memory. In order to ensure the
reproducibility of the experiments, the proposed method relied
on Open CV version 2.4.13 implementation of classifiers with
the following settings.

1) The K-nearest neighbor (KNN) classifier was assessed
using default settings, where K ∈ {2, 3, . . . , 8} were
tested.

2) The naive Bayes classifier (NBC) was used with the
default settings.

3) ANN was of the back propagation type with symmetrical
sigmoid activation function,

4) RF was of maximal depth from the range
{2, 4, 8, 16, 20}, while the maximal number of iterations
was from {5, 10, 15, 20, 25, 30}.

5) SVM used a radial basis function as the kernel function,
with cost parameter C ∈ {2−4, 2−3, . . . , 211} and kernel
parameter γ ∈ {2−11, . . . , 23, 24}.

2612 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 34, NO. 5, MAY 2023

TABLE I

DESCRIPTION OF TEST DATASETS

In all cases, all combinations of parameter values were
tested, and the highest measured results are reported in the
continuation. All tests were conducted by tenfold cross vali-
dation [115], using average accuracy acc as the indicator of
the method’s efficiency. Based on the confusion matrix [59],
accuracy was defined as

acc = TP + TN

TP + FP + TN + FN
. (10)

Accuracy assessment was conducted on 15 well-known
benchmark datasets, available at the UCI machine learn-
ing [116] and KEEL dataset [117] repositories. Table I summa-
rizes the characteristics of individual datasets, including their
name, the number of features, the number of classes, and the
number of contained samples. On this basis, the validation
protocol consisted of the following steps.

1) Sensitivity analysis of the method, where the overall
optimal parameters were identified and the best perform-
ing classifier was selected.

2) The comparison with the state of the art was performed
next, in order to validate the efficiency of the proposed
method.

3) The interpretation of the resulting classification model
for knowledge discovery was assessed finally.

B. Sensitivity Analysis

In addition to the termination criteria (in our case defined
by the convergence of features, achieved when no new fea-
tures are introduced during the last iteration), the proposed
method relies on two user-defined parameters that affect the
learned feature representation, namely, the correlation Tp and
the overlap T� thresholds. In order to assess the method’s
sensitivity and estimate their optimal values, feature learning
was achieved using all possible combinations of values from
the sets Tp ∈ {0.0, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8} and
T� ∈ {0.0, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6}. An overview
of the accuracies achieved by five classifiers (described in

Fig. 4. Measured accuracies of tested classifier when applied on the learned
feature representation using Tp ∈ {0.0, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8} and
T� ∈ {0.0, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6}, where each box plot displays
the minimum and the maximum, the first and third quartiles, and the median
accuracy.

Section IV-A) on the obtained feature representations is shown
in Fig. 4.

Notably, RF achieved the best results, with the highest
median accuracy of 81.23%. In addition, it demonstrated the
highest robustness, as it achieved the lowest interquartile and
the smallest overall range of the measured accuracies among
all tested classifiers. Accordingly, the method’s sensitivity
was analyzed by closer inspection of its results. For this
purpose, a so-called “one-factor-at-a-time” assessment [118]
was conducted by averaging the measured accuracies when
changing the values of one threshold while keeping the other
one fixed. The obtained average accuracies and the associated
standard deviations are reported in Table II.

As follows from the results, the averaged standard deviation
of the classification accuracy in regard to Tp and T� was
lower than 2%, indicating the method’s insensitivity to both
input parameter values. Still, best performances were observed
in the cases of Tp = 0.7 and T� = 0.5, as lower Tp and
T� values restricted the informativeness of the feature space
by selecting only a small number of highly uncorrelated and
high-quality features, respectively. On the other hand, high
Tp values allowed for the inclusion of redundant features,
while features with � above 0.5 decreased the accuracy
by increasing the overall intraclass variance. Note that the
original feature representation was obtained when choosing
Tp = 0.0 or T� = 0.0. Thus, the proposed method allowed for
improving overall average classification accuracy from 82.86
achieved on the original data representation to 87.66 achieved
on the learned representation.

In addition, the values Tp and T� affect the method’s
execution time directly, as it depends on the number of
introduced features during each interaction. Namely, as the
number of newly generated features is square-dependent on the
number of input features [see (3)], execution times decrease
significantly using strict thresholds, while loose thresholds
may turn out to be computationally demanding. Nevertheless,

VLAHEK AND MONGUS: EFFICIENT ITERATIVE APPROACH TO EXPLAINABLE FEATURE LEARNING 2613

TABLE II

CLASSIFICATION ACCURACIES ACHIEVED BY RF ON THE LEARNED FEATURE REPRESENTATION WITH THE RESPECT
TO THE INPUT VALUES (a) Tp AND (b) T�

TABLE III

AVERAGE EXECUTION TIMES OF THE PROPOSED METHOD WITH RESPECT TO THE INPUT VALUES (a) Tp AND (b) T�

as shown in Table III, the average feature learning time
was less than an hour in all the test cases. Furthermore,
the execution times were more affected by threshold values
when considering those datasets with a lower number of
features and low computational demands (i.e., Ds1, Ds4,
Ds9, Ds12, and Ds15), while execution times were dou-
bled at most in those cases of computationally demanding
datasets (e.g., Ds10). In general, however, T� showed a
stronger impact on the computational times than Tp. Finally,
as the learned feature space was composed of relatively
straightforwardly structured features (see examples in Fig. 5),
the execution time of sample classification remained relatively
unaffected.

C. Comparison With the State of the Art

In order to prove the proposed method’s efficiency, RF was
applied on the learned feature representation under the input
thresholds Tp = 0.7 and T� = 0.5, while the measured accura-
cies were compared to six different state-of-the-art approaches,
including the following:

1) floating-centroid method (FCM) [36];
2) nearest-neighbor partitioning (NNP) [37];
3) versatile elliptic basis function neural network

(NNP) [35];
4) oblique elliptical basis function network (OEBFN) [38];
5) data augmentation (DA) [119];

2614 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 34, NO. 5, MAY 2023

TABLE IV

COMPARISON OF THE ACCURACIES ACHIEVED BY THE PROPOSED
METHOD USING RF WITH THE CURRENT STATE OF THE ART (BEST

RESULTS PER DATASET ARE HIGHLIGHTED)

6) depth-width-scaling multiple kernel learning (DWS-
MKL) [120].

While FCM, NNP, NNP, and OEBFN are all fit for neural
networks, DA and DWS-MKL learn features independently,
and thus, different results may be obtained when applying
different classifiers. Note, however, that, in the continuation,
only the highest achieved accuracies are reported, regardless
of the actual classifier being used.

As follows from the results shown in Table IV, the proposed
method outperformed the compared methods in nine out
of 15 test cases while achieving comparable results on the
others. The only exception was Ds3, where OEBFN achieved
over 4% improvements over the proposed method. As OEBFN
is based on a neural network that was tuned individually for
each of the given test datasets, one possible reason for this lies
in the definition of the used classifier. Note that, in contrast,
the proposed method was tested using only the default parame-
ters of the applied classifiers (as reported in Section IV-A) in
order to allow for straightforward repeatability of the reported
results. However, by tuning the parameters of RF to Ds3,
the classification accuracy improved from 86.29% to 88.89%,
supporting this point. In addition, by tuning the parameters of
the proposed method itself, improved feature representation
was also achieved in test datasets Ds5, Ds6, Ds11, Ds12,
and Ds14. As shown in Table V, the proposed method, thus,
outperformed all the compared methods in these cases.

D. Interpretation of Learned Feature Representation

Finally, we discuss the interpretation of the resulting feature
representation. Due to the extensive background research that
allowed us to examine the correctness of the learned feature
representation, the Wine Quality Dataset Red (WQDSR) was
examined for this purpose [116]. It consisted of 1599 samples
of red wines, classified into low- (c0), medium- (c1), and
high-quality (c2) classes in accordance with the measured
physiochemical characteristics, as given in Table VI. While

TABLE V

IMPROVED FEATURE REPRESENTATION ON TEST SETS Ds5, Ds6, Ds11,
Ds12, AND Ds14, ACHIEVED BY TUNING THE INPUT PARAMETERS Tp

AND T�

the classification accuracy on the original data representa-
tion was equal to 80.5%, in this case, 86.3% accuracy was
measured under the same settings when using the learned
feature representation. Accordingly, knowledge discovery was
carried out by examining the achieved information enrich-
ment. For this purpose, we examined the contributions of the
learned features on the output classification using the so-called
Shapley Additive Explanations (SHAP) framework [94]. Note
that the proposed feature learning removed highly correlated
features by itself, while the construction of the features was
traceable; thus, such interpretation was not affected by any of
its drawbacks, as reported in Section II.

Fig. 5 shows SHAP summary plots of learned features’
contributions to low-, medium-, and high-quality classes of
wines, which are ordered by their estimated qualities (as
described in Section III-B). The X-axis of each plot shows the
estimated Shapley values, defined by the difference between
the expected probabilities of samples belonging to a specific
class and the estimated probabilities of belonging to the same
class when a given feature was ignored. The Y -axis gives a
histogram of samples associated with the estimated Shapley
values, while colors encode the samples’ learned features’
values, with a gradient ranging from blue (lowest feature
value) to red (highest feature value).

When considering red wines, their density f 8
0 is, in general,

considered as an indicator of quality, as dense wines contain
more fixed compounds of salts, mineral compounds, organic
acids (malic, tartaric, and lactic), phenolic substances (antho-
cyanin, flavonols, tannins, and hydroxybenzoic and hydrox-
ycinnamic acids), and reducing sugars (arabinose, rhamnose,
and xylose), which contributes to a better overall mouthfeel
experience [121]. In our case, however, the measured levels
of salt f 5

0 , subtracted from the measured wine’s density f 8
0 ,

proved to be the most informative feature, with the quality
assessment equal to �(f 8

0 − f 5
0) = 0.1645. According to

the related SHAP summary plot, low levels of density in
combination with high saltiness (i.e., low f 8

0 − f 5
0 values)

were characteristic for low-quality wines, while medium- and
high-quality wines were recognized by higher densities and
lower levels of salt (i.e., high f 8

0 − f 5
0 values). As salinity

is generally understood as an unwanted characteristic of red
wine [122], [123], while it still contributes to its density,
the learned difference between both is arguably a better
indicator of the wine’s actual quality. Still, as indicated by
the relatively low dispersion of SHAP values, the learned

VLAHEK AND MONGUS: EFFICIENT ITERATIVE APPROACH TO EXPLAINABLE FEATURE LEARNING 2615

Fig. 5. SHAP summary plots for (a) low-quality wines c0, (b) medium-quality wines c1, and (c) high-quality wines c2.

TABLE VI

INPUT FEATURES OF WQDSR

feature did not show a significant impact on the classification
due to the fact that f 5

0 was itself included in the learned
representation.

In contrast, concentration of alcohol f 11
0 had a notably

larger impact on the classification, with estimated �(f 11
0) =

0.1721 as an individual feature, and �((f 11
0 / f 9

0)) = 0.1678
in its relation to the level of acidity f 9

0 . On the one hand,
f 11
0 decreased the likelihood of low-quality classes while

increasing the likelihood of medium- and high-quality classes.
Numerous studies support this observation, as wines with
higher alcohol content are associated with more complex
flavor and aroma, as well as an increased sense of bitterness,
sweetness, and hotness [124], [125]. On the other hand, wines
with higher pH levels can be less stable, as they can turn
red wines brown, increase their oxidative potential, affect
their ability to age well, or cause premature aging [126].
It is, therefore, obvious that red wines with lower pH levels
and higher alcohol concentrations are traditional of higher
quality. While extensive studies of red wines have already
confirmed the importance of this relation [125], [127], [128],
the proposed method also managed to extract this knowledge
from the learning data. As shown in Fig. 5(a)–(c), high values
of (f 11

0 / f 9
0) showed a highly positive impact on c2 while

decreasing the likelihood of classes c1 and, even strongly, c0.
On the contrary to the pH levels, acetic acid contributes to
the smell and taste of vinegar, while its high concentration
typically indicates bacterial spoilage [129], [130]. Aligned
with these studies, a large positive impact on the classification

of low-quality wines was observed in our study at high
levels of acetic acid f 2

0 , while low values of f 2
0 showed

a significantly positive impact on medium- and high-quality
wines.

Finally, SO2 protects wine from oxidation, as well as
microbial contamination during aging, and thus, it is the most
commonly used preservative additive in wine production [131].
In the learned representation, the number of bounded SO2

estimated by f 7
0 − f 6

0 showed to be more informative than
the input level of the free (f 6

0) and the total number of
SO2 molecules (f 7

0). With a measured overlap of �(f 7
0 −

f 6
0) = 0.1716, a considerable impact on the differentiation

between medium- and high-quality wines was noted, where a
higher concentration of bound SO2 molecules had a substantial
negative impact on the latter and positive on the former.
This is also consistent with numerous studies in the field of
Oenology [131], [132], where it has been shown that a high
concentration of bound SO2 indicates oxidation or microbial
spoilage as a consequence of an improper aging of wine,
decreasing wine quality and imparting unpleasant flavors and
aromas.

V. CONCLUSION

A new iterative approach to explainable feature learning is
introduced in this article. During each iteration, new features
are generated by arithmetic combinations of the input ones,
while their quality is assessed in terms of probability distri-
bution agreements between values of samples belonging to

2616 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 34, NO. 5, MAY 2023

different classes. Finally, dissimilar features of high quality
are selected using vertex-cuts on a graph with edge weights
defined by the correlation between them. Due to the fast
convergence of the model toward the local optimum, computa-
tionally efficient learning was achieved in this way. By being
insensitive to both of the input parameters, namely, feature
quality and correlation thresholds, the proposed method also
provided significantly better performance than the compared
methods in ten of 15 commonly used test sets while achieving
comparable results in the others. Finally, we demonstrated the
correctness of the learned data representation, thus proving
the method’s potentials for knowledge discovery. Nevertheless,
it should be noted that only one dataset was examined as
a proof of concept, while the method’s meaningfulness on
different datasets should be examined further.

In addition to the systematic analysis of its correctness
for knowledge discovery, the method’s potentials for image
processing will be considered in our future work. While the
latter requires the application of image processing operators,
such as morphological and convolution filters, instead of
arithmetic ones, different feature selection strategies will also
be considered for this purpose.

REFERENCES

[1] Y. Bengio, A. Courville, and P. Vincent, “Representation learning:
A review and new perspectives,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 35, no. 8, pp. 1798–1828, Aug. 2013.

[2] P. Sharma, V. Abrol, and A. K. Sao, “Deep-sparse-representation-based
features for speech recognition,” IEEE/ACM Trans. Audio, Speech,
Language Process., vol. 25, no. 11, pp. 2162–2175, Nov. 2017.

[3] H. Yu, Z.-H. Tan, Z. Ma, R. Martin, and J. Guo, “Spoofing detection
in automatic speaker verification systems using DNN classifiers and
dynamic acoustic features,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 29, no. 10, pp. 4633–4644, Oct. 2018.

[4] W. Pei, H. Dibeklioglu, D. M. J. Tax, and L. van der Maaten, “Multi-
variate time-series classification using the hidden-unit logistic model,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 4, pp. 920–931,
Apr. 2018.

[5] Z. Li, Z. Lai, Y. Xu, J. Yang, and D. Zhang, “A locality-constrained and
label embedding dictionary learning algorithm for image classification,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 28, no. 2, pp. 278–293,
Feb. 2017.

[6] W. Luo, J. Li, J. Yang, W. Xu, and J. Zhang, “Convolutional sparse
autoencoders for image classification,” IEEE Trans. Neural Netw.
Learn. Syst., vol. 29, no. 7, pp. 3289–3294, Jul. 2018.

[7] X. Li and X. Wu, “Constructing long short-term memory based deep
recurrent neural networks for large vocabulary speech recognition,”
in Proc. IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP),
Apr. 2015, pp. 4520–4524.

[8] S. Sakhavi, C. Guan, and S. Yan, “Learning temporal information for
brain-computer interface using convolutional neural networks,” IEEE
Trans. Neural Netw. Learn. Syst., vol. 29, no. 11, pp. 5619–5629,
Nov. 2018.

[9] H. Liu and H. Motoda, Feature Extraction, Construction and Selection:
A Data Mining Perspective. Norwell, MA, USA: Kluwer, 1998.

[10] G. Dong and H. Liu, Feature Engineering for Machine Learning and
Data Analytics. Boca Raton, FL, USA: CRC Press, 2018.

[11] G. Zhong, L.-N. Wang, X. Ling, and J. Dong, “An overview on data
representation learning: From traditional feature learning to recent deep
learning,” J. Finance Data Sci., vol. 2, no. 4, pp. 265–278, Dec. 2016.

[12] I. Guyon and A. Elisseeff, “An introduction to variable and feature
selection,” J. Mach. Learn. Res., vol. 3, pp. 1157–1182, Mar. 2003.

[13] Y. Ma and Y. Fu, Manifold Learning Theory and Applications, 1st ed.
Boca Raton, FL, USA: CRC Press, 2011.

[14] D. Lunga, S. Prasad, M. M. Crawford, and O. Ersoy, “Manifold-
learning-based feature extraction for classification of hyperspectral
data: A review of advances in manifold learning,” IEEE Signal Process.
Mag., vol. 31, no. 1, pp. 55–66, Jan. 2014.

[15] H. Qiao, P. Zhang, D. Wang, and B. Zhang, “An explicit nonlinear
mapping for manifold learning,” IEEE Trans. Cybern., vol. 43, no. 1,
pp. 51–63, Feb. 2013.

[16] M. Aupetit, “Visualizing distortions and recovering topology in con-
tinuous projection techniques,” Neurocomputing, vol. 70, nos. 7–9,
pp. 1304–1330, Mar. 2007.

[17] S.-Q. Zhang, “Enhanced supervised locally linear embedding,” Pattern
Recognit. Lett., vol. 30, no. 13, pp. 1208–1218, 2009.

[18] R. Rubinstein, A. M. Bruckstein, and M. Elad, “Dictionaries for sparse
representation modeling,” Proc. IEEE, vol. 98, no. 6, pp. 1045–1057,
Jun. 2010.

[19] Y. Suo, M. Dao, U. Srinivas, V. Monga, and T. D. Tran, “Structured
dictionary learning for classification,” 2014, arXiv:1406.1943. [Online].
Available: http://arxiv.org/abs/1406.1943

[20] W. Tang, A. Panahi, H. Krim, and L. Dai, “Analysis dictionary learning
based classification: Structure for robustness,” IEEE Trans. Image
Process., vol. 28, no. 12, pp. 6035–6046, Dec. 2019.

[21] M. J. Gangeh, A. K. Farahat, A. Ghodsi, and M. S. Kamel, “Super-
vised dictionary learning and sparse representation—A review,” CoRR,
vol. abs/1502.05928, pp. 1–60, Feb. 2015.

[22] J. Mairal, J. Ponce, G. Sapiro, A. Zisserman, and F. R. Bach, “Super-
vised dictionary learning,” in Proc. 21st Int. Conf. Neural Inf. Process.
Syst., 2009, pp. 1033–1040.

[23] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning.
Cambridge, MA, USA: MIT Press, 2016.

[24] M. A. Nielsen, Neural Networks and Deep Learning. San Francisco,
CA, USA: Determination Press, 2018.

[25] M. Bianchini and F. Scarselli, “On the complexity of neural network
classifiers: A comparison between shallow and deep architectures,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 25, no. 8, pp. 1553–1565,
Aug. 2014.

[26] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
pp. 436–444, May 2015.

[27] L. Miralles-Pechuán, D. Rosso, F. Jiménez, and J. M. García,
“A methodology based on deep learning for advert value calculation
in CPM, CPC and CPA networks,” Soft Comput., vol. 21, no. 3,
pp. 651–665, Feb. 2017.

[28] J. Gu et al., “Recent advances in convolutional neural networks,”
Pattern Recognit., vol. 77, pp. 354–377, May 2018.

[29] H. Hotelling, “Analysis of a complex of statistical variables into
principal components,” J. Educ. Psychol., vol. 24, no. 6, pp. 417–441,
1933.

[30] H. Yu and J. Yang, “A direct LDA algorithm for high-dimensional
data—With application to face recognition,” Pattern Recognit., vol. 34,
no. 10, pp. 2067–2070, Oct. 2001.

[31] S. Sra and I. S. Dhillon, “Generalized nonnegative matrix approx-
imations with Bregman divergences,” in Advances in Neural Infor-
mation Processing Systems, vol. 18, Y. Weiss, B. Schölkopf, and
J. C. Platt, Eds. Cambridge, MA, USA: MIT Press, 2006, pp. 283–290.

[32] M. Aharon, M. Elad, and A. Bruckstein, “K-SVD: An algorithm for
designing overcomplete dictionaries for sparse representation,” IEEE
Trans. Signal Process., vol. 54, no. 11, pp. 4311–4322, Nov. 2006.

[33] L. Le, A. Patterson, and M. White, “Supervised autoencoders: Improv-
ing generalization performance with unsupervised regularizers,” in
Proc. 32nd Int. Conf. Neural Inf. Process. Syst. (NIPS). Red Hook,
NY, USA: Curran Associates, 2018, pp. 107–117.

[34] Y. Sun, B. Xue, G. G. Yen, and M. Zhang, “A particle swarm
optimization-based flexible convolutional autoencoder for image clas-
sification,” IEEE Trans. Neural Netw. Learn. Syst., vol. 30, no. 8,
pp. 2295–2309, Aug. 2019.

[35] S. Jaiyen, C. Lursinsap, and S. Phimoltares, “A very fast neural learning
for classification using only new incoming datum,” IEEE Trans. Neural
Netw., vol. 21, no. 3, pp. 381–392, Mar. 2010.

[36] L. Wang et al., “Improvement of neural network classifier using floating
centroids,” Knowl. Inf. Syst., vol. 31, no. 3, pp. 433–454, 2012.

[37] L. Wang, B. Yang, Y. Chen, X. Zhang, and J. Orchard, “Improving
neural-network classifiers using nearest neighbor partitioning,” IEEE
Trans. Neural Netw. Learn. Syst., vol. 28, no. 10, pp. 2255–2267,
Oct. 2017.

[38] H.-W. Peng, S.-J. Lee, and C.-H. Lee, “An oblique elliptical basis
function network approach for supervised learning applications,” Appl.
Soft Comput., vol. 60, pp. 552–563, Nov. 2017.

[39] A. Dong, Z. Du, and Z. Yan, “Round trip time prediction using
recurrent neural networks with minimal gated unit,” IEEE Commun.
Lett., vol. 23, no. 4, pp. 584–587, Apr. 2019.

VLAHEK AND MONGUS: EFFICIENT ITERATIVE APPROACH TO EXPLAINABLE FEATURE LEARNING 2617

[40] H. Han, Y. Li, and X. Zhu, “Convolutional neural network learning for
generic data classification,” Inf. Sci., vol. 477, pp. 448–465, Mar. 2019.

[41] M. T. Ribeiro, S. Singh, and C. Guestrin, “‘Why should I trust
you?’: Explaining the predictions of any classifier,” in Proc. 22nd
ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, Aug. 2016,
pp. 1135–1144.

[42] G. Pagallo, “Learning DNF by decision trees,” in Proc. 11th Int. Joint
Conf. Artif. Intell., vol. 1, 1989, pp. 639–644.

[43] C. J. Matheus and L. A. Rendell, “Constructive induction on decision
trees,” in Proc. 11th Int. Joint Conf. Artif. Intell., vol. 1, 1989,
pp. 645–650.

[44] Y.-J. Hu and D. Kibler, “Generation of attributes for
learning algorithms,” in Proc. AAAI/IAAI, vol. 1, Jan. 1996,
pp. 806–811.

[45] S. Markovitch and D. Rosenstein, “Feature generation using gen-
eral constructor functions,” Mach. Learn., vol. 49, pp. 59–98,
Oct. 2002.

[46] M. Muharram and G. D. Smith, “Evolutionary constructive induction,”
IEEE Trans. Knowl. Data Eng., vol. 17, no. 11, pp. 1518–1528,
Nov. 2005.

[47] H. Guo and A. K. Nandi, “Breast cancer diagnosis using genetic
programming generated feature,” in Proc. IEEE Workshop Mach.
Learn. Signal Process., Sep. 2005, pp. 215–220.

[48] H. Vafaie and K. De Jong, “Genetic algorithms as a tool for restructur-
ing feature space representations,” in Proc. 7th IEEE Int. Conf. Tools
Artif. Intell., Nov. 1995, pp. 8–11.

[49] K. Krawiec, “Genetic programming-based construction of features for
machine learning and knowledge discovery tasks,” Genet. Program.
Evolvable Mach., vol. 3, pp. 329–343, Dec. 2002.

[50] M. Smith and L. Bull, “Improving the human readability of features
constructed by genetic programming,” in Proc. Genet. Evol. Comput.
(GECCO), Jan. 2007, pp. 1694–1701.

[51] M. Affenzeller, S. Winkler, S. Wagner, and A. Beham, Genetic Algo-
rithms and Genetic Programming: Modern Concepts and Practical
Applications. Boca Raton, FL, USA: CRC Press, Jan. 2009.

[52] G. Forman, “An extensive empirical study of feature selection metrics
for text classification,” J. Mach. Learn. Res., vol. 3, pp. 1289–1305,
Mar. 2003.

[53] S. Fakhraei, H. Soltanian-Zadeh, and F. Fotouhi, “Bias and stability
of single variable classifiers for feature ranking and selection,” Expert
Syst. Appl., vol. 41, no. 15, pp. 6945–6958, Nov. 2014.

[54] Q. Gu, Z. Li, and J. Han, “Generalized Fisher score for feature
selection,” in Proc. 27th Conf. Uncertainty Artif. Intell. (UAI), 2011,
pp. 266–273.

[55] H. R. Li, T. Jiang, and K. Zhang, “Efficient and robust feature extraction
by maximum margin criterion,” IEEE Trans. Neural Netw., vol. 17,
no. 1, pp. 157–165, Jan. 2006.

[56] X. He, D. Cai, and P. Niyogi, “Laplacian score for feature selection,”
in Proc. 18th Int. Conf. Neural Inf. Process. Syst., 2005, pp. 507–514.

[57] T. M. Cover and J. A. Thomas, Elements of Information Theory.
Hoboken, NJ, USA: Wiley, 2006.

[58] M. Verleysen, F. Rossi, and D. François, “Advances in feature selec-
tion with mutual information,” in Similarity-Based Clustering. Berlin,
Germany: Springer, 2009, pp. 52–69.

[59] J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and Techniques,
3rd ed. San Francisco, CA, USA: Morgan Kaufmann, 2011.

[60] L. Breiman, J. Friedman, C. Stone, and R. Olshen, Classification
and Regression Trees. The Wadsworth and Brooks-Cole Statistics-
Probability Series. New York, NY, USA: Taylor & Francis, 1984.

[61] C. Strobl, A.-L. Boulesteix, and T. Augustin, “Unbiased split selection
for classification trees based on the Gini index,” Comput. Statist. Data
Anal., vol. 52, no. 1, pp. 483–501, 2007.

[62] L. E. Raileanu and K. Stoffel, “Theoretical comparison between the
Gini index and information gain criteria,” Ann. Math. Artif. Intell.,
vol. 41, no. 1, pp. 77–93, May 2004.

[63] L. Yu and H. Liu, “Feature selection for high-dimensional data: A fast
correlation-based filter solution,” in Proc. 20th Int. Conf. Mach. Learn.,
2003, pp. 856–863.

[64] X. Wang and O. Gotoh, “A robust gene selection method for
microarray-based cancer classification,” Cancer Informat., vol. 9,
pp. 15–30, Feb. 2010.

[65] J. Dai and Q. Xu, “Attribute selection based on information gain ratio in
fuzzy rough set theory with application to tumor classification,” Appl.
Soft Comput., vol. 13, no. 1, pp. 211–221, 2013.

[66] D. R. Wijaya, R. Sarno, and E. Zulaika, “Information quality ratio as
a novel metric for mother wavelet selection,” Chemometric Intell. Lab.
Syst., vol. 160, pp. 59–71, Jan. 2017.

[67] O. Krakovska, G. Christie, A. Sixsmith, M. Ester, and S. Moreno,
“Performance comparison of linear and non-linear feature selection
methods for the analysis of large survey datasets,” PLoS ONE, vol. 14,
no. 3, pp. 1–17, Mar. 2019.

[68] I. Kononenko, “On biases in estimating multi-valued attributes,” in
Proc. 14th Int. Joint Conf. Artif. Intell. (IJCAI), vol. 2. San Francisco,
CA, USA: Morgan Kaufmann, 1995, pp. 1034–1040.

[69] D. A. Bell and H. Wang, “A formalism for relevance and its application
in feature subset selection,” Mach. Learn., vol. 41, no. 2, pp. 175–195,
Nov. 2000.

[70] J. Biesiada and W. Duch, “Feature selection for high-dimensional
data—A Pearson redundancy based filter,” in Computer Recognition
Systems 2, vol. 45. Oct. 2007, pp. 242–249.

[71] H. Liu and H. Motoda, Computational Methods of Feature Selection.
Boca Raton, FL, USA: CRC Press, 2007.

[72] H. Peng, F. Long, and C. Ding, “Feature selection based on mutual
information criteria of max-dependency, max-relevance, and min-
redundancy,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 8,
pp. 1226–1238, Aug. 2005.

[73] J. Wang, J.-M. Wei, Z. Yang, and S.-Q. Wang, “Feature selection
by maximizing independent classification information,” IEEE Trans.
Knowl. Data Eng., vol. 29, no. 4, pp. 828–841, Apr. 2017.

[74] L. Wang, N. Zhou, and F. Chu, “A general wrapper approach to
selection of class-dependent features,” IEEE Trans. Neural Netw.,
vol. 19, no. 7, pp. 1267–1278, Jul. 2008.

[75] P. Somol, P. Pudil, J. Novovičová, and P. Paclík, “Adaptive floating
search methods in feature selection,” Pattern Recognit. Lett., vol. 20,
nos. 11–13, pp. 1157–1163, Nov. 1999.

[76] P. Pudil, J. Novovičová, and J. Kittler, “Floating search methods in fea-
ture selection,” Pattern Recognit. Lett., vol. 15, no. 11, pp. 1119–1125,
1994.

[77] L. S. Oliveira, R. Sabourin, F. Bortolozzi, and C. Y. Suen, “A method-
ology for feature selection using multiobjective genetic algorithms for
handwritten digit string recognition,” Int. J. Pattern Recognit. Artif.
Intell., vol. 17, no. 6, pp. 903–929, Sep. 2003.

[78] D. Jesenko, M. Mernik, B. Žalik, and D. Mongus, “Two-level evolu-
tionary algorithm for discovering relations between nodes’ features in
a complex network,” Appl. Soft Comput., vol. 56, pp. 82–93, Jul. 2017.

[79] L.-Y. Chuang, H.-W. Chang, C.-J. Tu, and C.-H. Yang, “Improved
binary PSO for feature selection using gene expression data,” Comput.
Biol. Chem., vol. 32, no. 1, pp. 29–38, 2008.

[80] M. Allam and M. Nandhini, “Optimal feature selection using binary
teaching learning based optimization algorithm,” J. King Saud Univ.-
Comput. Inf. Sci., vol. 32, no. 10, pp. 1–13, Dec. 2020.

[81] P. Zhao and B. Yu, “On model selection consistency of lasso,” J. Mach.
Learn. Res., vol. 7, pp. 2541–2563, Nov. 2006.

[82] P. Buteneers, K. Caluwaerts, J. Dambre, D. Verstraeten, and
B. Schrauwen, “Optimized parameter search for large datasets of the
regularization parameter and feature selection for ridge regression,”
Neural Process. Lett., vol. 38, no. 3, pp. 403–416, Dec. 2013.

[83] S. Perkins, K. Lacker, and J. Theiler, “Grafting: Fast, incremental
feature selection by gradient descent in function space,” J. Mach. Learn.
Res., vol. 3, pp. 1333–1356, Mar. 2003.

[84] J. C. Ang, A. Mirzal, H. Haron, and H. N. A. Hamed, “Supervised,
unsupervised, and semi-supervised feature selection: A review on gene
selection,” IEEE/ACM Trans. Comput. Biol. Bioinf., vol. 13, no. 5,
pp. 971–989, Sep. 2016.

[85] M. Azad, I. Chikalov, and M. Moshkov, “Representation of knowledge
by decision trees for decision tables with multiple decisions,” Procedia
Comput. Sci., vol. 176, pp. 653–659, Jan. 2020.

[86] R. E. Chandler, “On the use of generalized linear models for interpret-
ing climate variability,” Environmetrics, vol. 16, no. 7, pp. 699–715,
2005.

[87] C. C. Aggarwal, Data Mining: The Textbook. Heidelberg, Germany:
Springer, 2015.

[88] D. V. Carvalho, E. M. Pereira, and J. S. Cardoso, “Machine learning
interpretability: A survey on methods and metrics,” Electronics, vol. 8,
no. 8, p. 832, Jul. 2019.

[89] A. Mahendran and A. Vedaldi, “Understanding deep image represen-
tations by inverting them,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., Jun. 2015, pp. 5188–5196.

[90] D. Bau, B. Zhou, A. Khosla, A. Oliva, and A. Torralba, “Network
dissection: Quantifying interpretability of deep visual representations,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jul. 2017,
pp. 3319–3327.

2618 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 34, NO. 5, MAY 2023

[91] Q.-S. Zhang and S.-C. Zhu, “Visual interpretability for deep learning:
A survey,” Frontiers Inf. Technol. Electron. Eng., vol. 19, no. 1,
pp. 27–39, Feb. 2018.

[92] P. V. Johnsen et al., “A new method for exploring gene–gene and gene–
environment interactions in GWAS with tree ensemble methods and
SHAP values,” BMC Bioinf., vol. 22, pp. 1–29, May 2021.

[93] E. Štrumbelj and I. Kononenko, “Explaining prediction models and
individual predictions with feature contributions,” Knowl. Inf. Syst.,
vol. 41, no. 3, pp. 647–665, Dec. 2014.

[94] S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting
model predictions,” in Advances in Neural Information Processing
Systems, vol. 30. Red Hook, NY, USA: Curran Associates, 2017,
pp. 4765–4774.

[95] D. Slack, S. Hilgard, E. Jia, S. Singh, and H. Lakkaraju, “Fooling LIME
and SHAP: Adversarial attacks on post hoc explanation methods,” in
Proc. AAAI/ACM Conf. AI, Ethics, Soc., Feb. 2020, pp. 180–186.

[96] A. Shrikumar, P. Greenside, and A. Kundaje, “Learning important
features through propagating activation differences,” in Proc. ICML,
2017, pp. 3145–3153.

[97] M. Aubry and B. Russell, “Understanding deep features with computer-
generated imagery,” in Proc. IEEE Int. Conf. Comput. Vis., Dec. 2015,
pp. 2875–2883.

[98] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolu-
tional networks,” in Computer Vision—ECCV 2014, D. Fleet, T. Pajdla,
B. Schiele, and T. Tuytelaars, Eds. Cham, Switzerland: Springer, 2014,
pp. 818–833.

[99] P. E. Rauber, S. G. Fadel, A. X. Falcão, and A. C. Telea, “Visualizing
the hidden activity of artificial neural networks,” IEEE Trans. Vis.
Comput. Graphics, vol. 23, no. 1, pp. 101–110, Jan. 2017.

[100] G. Montavon, W. Samek, and K.-R. Müller, “Methods for interpreting
and understanding deep neural networks,” Digit. Signal Process.,
vol. 73, pp. 1–15, Feb. 2018.

[101] W. Samek, A. Binder, G. Montavon, S. Lapuschkin, and K.-R. Müller,
“Evaluating the visualization of what a deep neural network has
learned,” IEEE Trans. Neural Netw. Learn. Syst., vol. 28, no. 11,
pp. 2660–2673, Nov. 2017.

[102] D. Jung, J. Lee, J. Yi, and S. Yoon, “iCaps: An interpretable classi-
fier via disentangled capsule networks,” in Computer Vision—ECCV
2020 (Lecture Notes in Computer Science), vol. 12364, A. Vedaldi,
H. Bischof, T. Brox, and J.-M. Frahm, Eds. Glasgow, U.K.: Springer,
Aug. 2020, pp. 314–330.

[103] A. Donner and J. J. Koval, “The estimation of intraclass correlation
in the analysis of family data,” Biometrics, vol. 36, no. 1, pp. 19–25,
1980.

[104] K. O. McGraw and S. Wong, “Forming inferences about some
intraclass correlation coefficients,” Psychol. Methods, vol. 1, no. 1,
pp. 30–46, Mar. 1996.

[105] N. Otsu, “A threshold selection method from gray-level histograms,”
IEEE Trans. Syst., Man, Cybern., vol. SMC-9, no. 1, pp. 62–66,
Jan. 1979.

[106] R. Xu and D. Wunsch, “Survey of clustering algorithms,” IEEE Trans.
Neural Netw., vol. 16, no. 3, pp. 645–678, May 2005.

[107] L. Wang, Data Mining With Computational Intelligence. Berlin,
Germany: Springer-Verlag, 2009.

[108] R. J. Urbanowicz, M. Meeker, W. L. Cava, R. S. Olson, and
J. H. Moore, “Relief-based feature selection: Introduction and review,”
J. Biomed. Inform., vol. 85, pp. 189–203, Sep. 2018.

[109] H. F. Inman and E. L. Bradley, Jr., “The overlapping coefficient as
a measure of agreement between probability distributions and point
estimation of the overlap of two normal densities,” Commun. Statist.,
Theory Methods, vol. 18, no. 10, pp. 3851–3874, Jan. 1989.

[110] H. Sun and S. Wang, “Measuring the component overlapping in the
Gaussian mixture model,” Data Mining Knowl. Discovery, vol. 23,
no. 3, pp. 479–502, 2011.

[111] D. Mongus and B. Žalik, “An efficient approach to 3D single tree-
crown delineation in LiDAR data,” ISPRS J. Photogramm. Remote
Sens., vol. 108, pp. 219–233, Oct. 2015.

[112] D. Cornaz, F. Furini, M. Lacroix, E. Malaguti, A. R. Mahjoub,
and S. Martin, “The vertex k-cut problem,” Discrete Optim., vol. 31,
pp. 8–28, Feb. 2019.

[113] A. Berger, A. Grigoriev, and R. van der Zwaan, “Complexity and
approximability of the k-way vertex cut,” Networks, vol. 63, no. 2,
pp. 170–178, Mar. 2014.

[114] M. D. Biha and M.-J. Meurs, “An exact algorithm for solving the vertex
separator problem,” J. Global Optim., vol. 49, no. 3, pp. 425–434,
Mar. 2011.

[115] E. Alpaydin, Introduction to Machine Learning. Cambridge, MA, USA:
MIT Press, 2010.

[116] D. Dua and C. Graff, “UCI machine learning repository,” School
Inf. Comput. Sci., Univ. California, Irvine, Irvine, CA, USA,
Tech. Rep., 2017.

[117] J. Alcalá-Fdez, A. Fernández, J. Luengo, J. Derrac, and S. García,
“KEEL data-mining software tool: Data set repository, integration of
algorithms and experimental analysis framework,” J. Multiple-Valued
Logic Soft Comput., vol. 17, nos. 2–3, pp. 255–287, Jan. 2011.

[118] V. Czitrom, “One-factor-at-a-time versus designed experiments,” Amer.
Statist., vol. 53, no. 2, pp. 126–131, May 1999.

[119] F. J. Moreno-Barea, J. M. Jerez, and L. Franco, “Improving classifi-
cation accuracy using data augmentation on small data sets,” Expert
Syst. Appl., vol. 161, Dec. 2020, Art. no. 113696.

[120] T. Wang, H. Su, and J. Li, “DWS-MKL: Depth-width-scaling multiple
kernel learning for data classification,” Neurocomputing, vol. 411,
pp. 455–467, Oct. 2020.

[121] P. Ribéreau-gayon, D. Dubourdieu, B. Donéche, and A. Lonvaud-Funel,
Dry Extract and Minerals. Hoboken, NJ, USA: Wiley, 2006, ch. 4,
pp. 91–108.

[122] M. S. Coli, A. G. P. Rangel, E. S. Souza, M. F. Oliveira, and
A. C. N. Chiaradia, “Chloride concentration in red wines: Influence of
terroir and grape type,” Food Sci. Technol., Campinas, vol. 35, no. 1,
pp. 95–99, Mar. 2015.

[123] R. Walker et al., “Salinity effects on vines and wines,” Bull. de l’OIV,
vol. 76, pp. 200–227, Jan. 2003.

[124] R. D. Mattes and D. DiMeglio, “Ethanol perception and ingestion,”
Physiol. Behav., vol. 72, nos. 1–2, pp. 217–229, Jan. 2001.

[125] M. C. Goldner, M. C. Zamora, P. D. L. Lira, H. Gianninoto, and
A. Bandoni, “Effect of ethanol level in the perception of aroma
attributes and the detection of volatile compounds in red wine,”
J. Sensory Stud., vol. 24, no. 2, pp. 243–257, Apr. 2009.

[126] J. Fischer, The Evaluation of Wine: A Comprehensive Guide to the Art
of Wine Tasting, 1st ed. Bloomington, IN, USA: iUniverse, 2001.

[127] G. Pickering and G. J. Pickering, “The influence of ethanol and pH
on the taste and mouth-feel sensations elicited by red wine,” J. Food
Agricult. Environ., vol. 6, pp. 143–150, Jul. 2008.

[128] R. Gawel, P. A. Smith, S. Cicerale, and R. Keast, “The mouthfeel
of white wine,” Crit. Rev. Food Sci. Nutrition, vol. 58, no. 17,
pp. 2939–2956, Nov. 2018.

[129] R. Boulton, V. Singleton, L. Bisson, and R. Kunkee, Principles and
Practices of Winemaking, 3rd ed. New York, NY, USA: Springer, 1998.

[130] M. V. Moreno-Arribas and M. C. Polo, “Winemaking biochemistry and
microbiology: Current knowledge and future trends,” Crit. Rev. Food
Sci. Nutrition, vol. 45, no. 4, pp. 265–286, Jun. 2005.

[131] T. M. Monro et al., “Sensing free sulfur dioxide in wine,” Sensors,
vol. 12, no. 8, pp. 10759–10773, Aug. 2012.

[132] R. F. Guerrero and E. Cantos-Villar, “Demonstrating the efficiency of
sulphur dioxide replacements in wine: A parameter review,” Trends
Food Sci. Technol., vol. 42, no. 1, pp. 27–43, Mar. 2015.

Dino Vlahek (Member, IEEE) is currently pur-
suing the Ph.D. degree in computer science with
the Faculty of Electrical Engineering and Computer
Science, Institute of Computer Science, University
of Maribor, Maribor, Slovenia.

He is currently a Researcher with the Laboratory
for Geospatial Modelling, Multimedia, and Artificial
Intelligence, University of Maribor. His research
interests are feature learning, data analytics, and
model interpretation.

Domen Mongus (Member, IEEE) is currently an
Associate Professor with the Faculty of Electrical
Engineering and Computer Science, University of
Maribor, Maribor, Slovenia. His research interests
include environmental intelligence, data fusion, fea-
ture learning, and remote sensing data processing.

Dr. Mongus was a Long-Time Member of the
Executive Committee of the European Umbrella
Organization for Geographic Information and the
Vice-President of the Program Board of Strategic
Research and Innovation Partnership in Smart Cities.

He is also a member of the Executive Committee of Geographical Information
Systems International Group (GISIG). For his extensive research work in the
respected fields, he was, among others, named Young Scientist of Danube
Region and received the highest institutional academic award for exceptional
contributions to the scientific and pedagogical reputation and excellence of
the University of Maribor.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

