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Optimizing Energy Efficiency in UAV-Assisted Networks
Using Deep Reinforcement Learning

Babatunji Omoniwa , Boris Galkin , and Ivana Dusparic

Abstract—In this letter, we study the energy efficiency (EE)
optimization of unmanned aerial vehicles (UAVs) providing
wireless coverage to static and mobile ground users. Recent multi-
agent reinforcement learning approaches optimise the system’s
EE using a 2D trajectory design, neglecting interference from
nearby UAV cells. We aim to maximize the system’s EE by jointly
optimizing each UAV’s 3D trajectory, number of connected users,
and the energy consumed, while accounting for interference.
Thus, we propose a cooperative Multi-Agent Decentralized
Double Deep Q-Network (MAD-DDQN) approach. Our approach
outperforms existing baselines in terms of EE by as much as
55 – 80%.

Index Terms—Energy efficiency, UAV base stations, deep
reinforcement learning, multi-agent system.

I. INTRODUCTION

THE DEPLOYMENT of unmanned aerial vehicles (UAVs)
to provide wireless coverage to ground users has received

significant research attention [1]–[7]. UAVs can play a vital
role in supporting the Internet of Things (IoT) networks
by providing connectivity to a large number of devices,
static or mobile [1]. More importantly, UAVs have numerous
real-world applications, ranging from assisted-communication
in disaster-affected areas to surveillance, search and rescue
operations [8], [9]. Specifically, UAVs can be deployed in cir-
cumstances of network congestion or downtime of existing
terrestrial infrastructure. Nevertheless, to provide ubiquitous
services to dynamic ground users, UAVs require robust strate-
gies to optimise their flight trajectory while providing cover-
age. As energy-constrained UAVs operate in the sky, they may
be faced with the challenge of interference from nearby UAV
cells or other access points sharing the same frequency band,
thereby impacting the system’s energy efficiency (EE) [7].

There has been significant research effort on optimizing EE
in multi-UAV networks [1]–[5]. The authors in [2] proposed
an iterative algorithm to minimize the energy consumption of
UAVs serving as aerial base stations to static ground users.
In [4], a game-theoretic approach was proposed to maximize
the system’s EE while maximizing the ground area covered
by the UAVs irrespective of the presence of ground users.
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Fig. 1. System model for UAVs serving static and mobile ground users.

However, these works rely on a central ground controller for
UAVs’ decision making, thereby making it impractical to be
deployed for emergencies due to the significant amount of
exchanged information between the UAVs and the controller.
Moreover, it may be difficult to track user locations in such
a scenario. Machine learning is increasingly being used to
address complex multi-UAV deployment problems. In partic-
ular, multi-agent reinforcement learning (MARL) approaches
have been deployed in several works to optimise the system’s
EE. A distributed Q-learning approach [1] focused on opti-
mizing the energy utilisation of UAVs without considering the
system’s EE. To address this challenge, a deep reinforcement
learning (DRL) approach [7] could be adopted. In our prior
work [10], a DRL-based approach was proposed to optimise
the EE of fixed-winged UAVs that move in circular orbits
and are typically incapable of hovering like the rotary-winged
UAVs. Moreover, the focus was on UAVs providing cover-
age to static ground users. The distributed DRL work in [3]
was an improvement on the centralised approach in [5], where
all UAVs are controlled by a single autonomous agent. The
authors in [3], [5] proposed a deep deterministic policy gra-
dient (DDPG) approach to improve the system’s EE as UAVs
hover at fixed altitudes while providing coverage to static
ground users in an interference-free network environment.
Although the approaches in [3] and [5] promise performance
gains in terms of coverage score, they focus on the 2D tra-
jectory optimization of the UAVs serving static ground users.
Motivated by the research gaps above, we focus on maximiz-
ing the system’s EE by optimizing the 3D trajectory of each
UAV over a series of time-steps, while taking into account the
impact of interference from nearby UAV cells and the cov-
erage of both static and mobile ground users. We propose
a cooperative Multi-Agent Decentralized Double Deep Q-
Network (MAD-DDQN) approach, where each agent’s reward
reflects the coverage performance in its neighbourhood. The
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MAD-DDQN approach maximizes the system’s EE without
hampering performance gains in the network.

II. SYSTEM MODEL

We consider a set of static and mobile ground users ξ
located in a given area, as shown in Figure 1. Each user i ∈ ξ
at time t is located in the coordinate (x ti , y

t
i ). We assume ser-

vice unavailability from the existing terrestrial infrastructure
due to disasters or increased network load. As such, a set N of
quadrotor UAVs are deployed within the area to provide wire-
less coverage to the ground users. A serving UAV j ∈ N at
time t is located in the coordinate (x tj , y

t
j , h

t
j ). Without loss of

generality, we assume a guaranteed line-of-sight (LOS) chan-
nel condition [11], due to the aerial positions of the UAVs.
Signal-to-interference-plus-noise-ratio (SINR) is a measure of
the signal quality. It can be defined as the ratio of the power of
a certain signal of interest and the interference power from all
the other interfering signals plus the noise power. Each user
i ∈ ξ in time t can be connected to a single UAV j ∈ N
which provides the strongest downlink SINR. Thus, the SINR
at time t is expressed as [1],

γti ,j =
βP(d ti ,j )

−α

Σz∈χintβP(d ti ,z )
−α + σ2

, (1)

where β and α are the attenuation factor and path loss expo-
nent that characterises the wireless channel, respectively. σ2 is
the power of the additive white Gaussian noise at the receiver,
d ti ,j is the distance between the i and j at time t. χint ∈ N
is the set of interfering UAVs. z is the index of an interfering
UAV in the set χint . P is the transmit power of the UAVs. We
model the mobility of mobile users using the Gauss Markov
Mobility (GMM) model [12], which allows users to dynami-
cally change their positions. UAVs must optimise their flight
trajectory to provide ubiquitous connectivity to users. Given
a channel bandwidth Bw , the receiving data rate of a ground
user can be expressed using Shannon’s equation [7],

R
t
i ,j = Bw log2(1 + γti ,j ). (2)

In our interference-limited system, coverage is affected by the
SINR. Hence, we compute the connectivity score of a UAV
j ∈ N at time t as [3],

C t
j =

∑

∀i∈ξ
w t
j (i), (3)

where w t
j (i) ∈ [0, 1] denotes whether user i is connected

to UAV j at time t. w t
j (i) = 1 if γti = γti ,j > γth , other-

wise w t
j (i) = 0, where γth is the SINR predefined threshold.

Likewise R
t
i ,j = 0 if user i is not connected to UAV j.

During flight operations, a UAV j ∈ N at time t expends
energy etj . A UAVs’ total energy consumption eT is expressed
as the sum in propulsion eP and communication eC energies,
eT = eP +eC . Since eC is practically much smaller than eP ,
i.e., eC � eP [1], we ignore eC . A closed-form analytical
propulsion power consumption model for a rotary-wing UAV
at time t is given as [13],

P(t) = κ0

(
1 +

3V 2

U 2
tip

)
+ κi

(√
1 +

V 4

4v4
0

+
V 2

2v2
0

) 1
2

+
ρ

2
νsAV 3,

(4)

where κ0 and κi are the UAVs’ flight constants (e.g., rotor
radius or weight), Utip is the rotor blade’s tip speed, v0 is
the mean hovering velocity, ν is the drag ratio, s is the rotor
solidity, A is the rotor disc area, V is the UAVs’ speed at time t
and ρ is the air density. In particular, we take into account the
basic operations of the UAV, such as hovering and acceleration.
Therefore, we can derive the average propulsion power over
all time-steps as 1

T

∑T
t=1 P(t), and the total energy consumed

by UAV j at time t is given as [1],

etj = δt · P(t), (5)

where δt is the duration of each time-step. The EE of UAV j
can be expressed as the ratio of the data throughput and the
energy consumed in time-step t, expressed as,

ηtj =

∑
i∈ξ Rt

i ,j

etj
. (6)

III. MULTI-AGENT REINFORCEMENT LEARNING

APPROACH FOR ENERGY EFFICIENCY OPTIMIZATION

In this section, we formulate the problem and propose a
MAD-DDQN algorithm to improve the trajectory of each UAV
in a manner that maximizes the total system’s EE.

A. Problem Formulation

Our objective is to maximize the total system’s EE by jointly
optimizing its 3D trajectory, number of connected users, and
the energy consumed by the UAVs serving ground users under
a strict energy budget. Maximizing the number of connected
users C t

j will maximize the total amount of data
∑
i∈ξ

R
t
i ,j the

UAV j will deliver in time-step t which, for a given amount
of consumed energy etj , will also maximize the total EE ηtot .
Therefore, the optimization problem can be formulated as,

max
∀j∈N : xtj , y

t
j , h

t
j , e

t
j , C

t
j

ηtot =

T∑
t=1

∑
j∈N

∑
i∈ξ

R
t
i ,j

T∑
t=1

∑
j∈N

etj

(7a)

s.t. γti ,j ≥ γth , ∀w t
j (i) ∈ [0, 1], i , j , t , (7b)

etj ≤ emax, ∀j , t , (7c)

xmin ≤ x tj ≤ xmax, ∀j , t , (7d)

ymin ≤ y tj ≤ ymax, ∀j , t , (7e)

hmin ≤ htj ≤ hmax, ∀j , t , (7f)

where emax is the maximum UAV energy level, xmin ,
ymin , hmin and xmax , ymax , hmax are the minimum and
maximum 3D coordinates of x, y and h, respectively. As
multiple wireless transmitters sharing the same frequency
band are in close proximity to one another the possibility
of interference is significantly increased. The computational
complexity of problem (7a) is known to be NP-complete [6].
The problem (7a) is non-convex, thus having multiple local
optimum. For this reason, solving (7a) with conventional
optimization approaches is challenging [1], [6]. Specifically,
the problem (7a) will become more complex as more UAVs
are deployed in a shared wireless environment, hence it is chal-
lenging to find the optimal cooperative strategies to improve
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Algorithm 1 Double Deep Q-Network (DDQN) for Agent j
1: Input: UAV3Dposition, ConnectivityScore,

InstantaneousEnergyConsumed ∈ S and Output: Q-values corre-
sponding to each possible action (+xs , 0, 0), (−xs , 0, 0), (0,+ys , 0),
(0,−ys , 0), (0, 0,+zs ), (0, 0,−zs ), (0, 0, 0) ∈ Aj .

2: D – empty replay memory, θ – initial network parameters,
θ− – copy of θ, Nr – maximum size of replay memory,
Nb – batch size, N− – target replacement frequency.

3: s ← initial state, maxStep ← maximum number of steps in the episode
4: while goal not Reached and Agent alive and maxStep not reached do
5: s ← MapLocalObservationToState(Env)
6: 	 Execute ε-greedy method based on πj
7: a ← DeepQnetwork.SelectAction(s)
8: 	 Agent executes action in state s
9: a.execute(Env)

10: if a.execute(Env) is True then
11: 	 Map sensed observations to new state s′
12: Env.UAV3Dposition [6]
13: Env.ConnectivityScore (3)
14: Env.InstantaneousEnergyConsumed (5)
15: r ← Env.RewardWithCooperativeNeighbourFactor (8)
16: 	 Execute UpdateDDQNprocedure()
17: Sample a minibatch of Nb tuples (s, a, r , s′) ∼ Unif (D)
18: Construct target values, one for each of the Nb tuples:
19: Define amax (s′; θ) = argmaxa′ Q(s′, a′; θ)
20: if s′ is Terminal then
21: yj = r
22: else
23: yj = r + γQ(s′, amax ((s′; θ); θ−)

24: Apply a gradient descent step with loss ‖ yj −Q(s, a; θ) ‖2
25: Replace target parameters θ− ← θ every N− step
26: endwhile

the system’s EE while completing the coverage tasks under
dynamic settings. This is often because UAVs may become
selfish and pursue the goal of improving their individual EE
while minimizing the communication outage and energy con-
sumption, rather than the collective goal of maximizing the
system’s EE. In such cases, cooperative MARL approaches
may be suitable when individual and collective interests of
UAVs conflict. Deep RL has been shown to perform well in
decision-making tasks in such a dynamic environment [14].
Hence, we adopt a cooperative deep MARL approach to solve
the system’s EE optimization problem.

B. Cooperative Multi-Agent Decentralized Double Deep
Q-Network (MAD-DDQN)

We propose a cooperative MAD-DDQN approach, where
each agent’s reward reflects the coverage performance in its
neighbourhood. Here, each UAV is controlled by a Double
Deep Q-Network (DDQN) agent that aims to maximize the
system’s EE by jointly optimizing its 3D trajectory, number
of connected users, and the energy consumed. We assume
the agents interact with each other in a shared and dynamic
environment, which may lead to learning instabilities due to
conflicting policies from other agents. From Algorithm 1,
Agent j follows an ε–greedy policy by executing an action
a, transiting from state s to a new state s ′ and receiving
a reward reflecting the coverage performance in its neigh-
bourhood in (8), after which DDQN procedure described
on line 17–25 optimises the agent’s decisions. We explicitly
define the states, actions, and reward as follows:
• State Space: We consider the three-dimensional (3D)

position of each UAV [6], the connectivity score and the
UAV’s instantaneous energy level at time t, expressed as

a tuple, 〈x t : {0, 1, . . . , xmax}, y t : {0, 1, . . . , ymax},
ht : {hmin , . . . , hmax}, Ct , et 〉.

• Action Space: At each time-step t ∈ T , each UAV
takes an action by changing its direction along the
3D coordinates. Unlike our closest related work and
the evaluation baseline [3], we discretize the agent’s
actions following the design from [1] and [6], as fol-
lows: (+xs , 0, 0), (−xs , 0, 0), (0,+ys , 0), (0,−ys , 0),
(0, 0,+zs ), (0, 0,−zs ) and (0, 0, 0). Our rationale to dis-
cretize the action space was to ensure quick adaptability
and convergence of the agents.

• Reward: The agent’s goal is to learn a policy that implic-
itly maximizes the system’s EE by jointly minimizing the
ground users outage and total UAVs energy consump-
tion. Hence, we introduce a shared cooperative factor �

to shape the reward formulation of each agent j in each
time-step t ∈ T given as,

Rt
j =

⎧
⎪⎨

⎪⎩

�+ ω + 1, if C t
j > C t−1

j

�+ ω, if C t
j = C t−1

j
�+ ω − 1, otherwise,

(8)

where C t
j and C t−1

j are the connectivity score in present

and previous time-step, respectively. ω =
et−1
j −etj

etj + et−1
j

,

where etj and et−1j are the instantaneous energy con-
sumed by agent j in present and previous time-step,
respectively. To enhance cooperation, we assign each
agent a ‘+1’ incentive from its neighbourhood via a func-
tion � only when the overall connectivity score, which
is the total number of connected users by UAVs in its
locality in the present time-step C o

t exceeds that in the
previous time-step C o

t−1, otherwise the agent receives a
‘−1’ incentive. We compute � as,

� =

{
+1, if C o

t > C o
t−1

−1, otherwise.
(9)

C. DDQN Implementation

The neural network (NN) architecture of Agent j’s DDQN
shown in Figure 2 comprises of a 5-dimensional state space
input vector, densely connected to 2 layers with 128 and 64
nodes, with each using a rectified linear unit (ReLU) activa-
tion function, leading to an output layer with 7 dimensions.
Our decentralized approach assume agents to be indepen-
dent learners. Following the analysis presented in [15], the
computational complexity of the NN architecture used in the
MAD-DDQN is approximately O(DsKW ) with an average
response time of 5.6 ms, while that of our closest related work
and the evaluation baseline [3] (MADDPG) is approximately
O(DsKW ) + O((Da + Ds)KW ) with an average response
time of 7.4 ms, where Ds is the dimension of the state space,
Da is the dimension of the action space, K is the number of
layers, and W is the number nodes in each hidden layer.
In the training phase, given the state information as input,
Agent j trains the main network to make better decisions by
yielding Q-values corresponding to each possible action as out-
put. The maximum Q-value obtained determines the action the
agent executes. At each time-step Agent j observes its present
state s and updates it’s trajectory by selecting an action a in
accordance with its policy. Following its action in time-step t,
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Fig. 2. Multi-agent decentralized double deep Q-network framework where each UAV j equipped with a DDQN agent interacts with its environment. The
environment shows the simulation snapshot of UAVs providing wireless coverage to 200 static (blue) and 200 mobile (red) ground users with flight trajectories.
On the left shows the broadcast range of UAV j in a multi-UAV scenario, where UAVs broadcast their telemetry information to nearest neighbours.

Agent j observes a reward r which is defined in (8), and transits
to a new state s ′. The information (s , a, r , s ′) is inputted in the
replay memory as shown in Figure 2. Agent j then samples the
random mini-batch from the replay memory and uses the mini-
batch to obtain yj . The optimization is performed with L(θ)
and θ updated accordingly. In every 100th time-step, the target
Q-network updates the parameters θ− with the same parame-
ters θ of the main network. For the training, the memory size
was set to 10,000, and the mini-batch size was set to 1024. The
optimization is performed using a variant of the stochastic gra-
dient descent called RMSprop to minimize the loss following
the methodology described in [16, Ch. 4]. The learning rate
and discount factor were set to 0.0001 and 0.95, respectively.
We train the Q-networks by running multiple episodes, and at
each training step the ε-greedy policy is used to have a balance
between exploration and exploitation [16]. In the ε-greedy pol-
icy, the action is randomly selected with ε probability, whereas
the action with the largest action value is selected with a prob-
ability of 1− ε. The initial value of ε was set to 1 and linearly
decreased to 0.01.

IV. EVALUATION AND RESULTS

In this section, we verify the effectiveness of the proposed
MAD-DDQN approach against the following baselines: (i) the
random policy and (ii) the MADDPG [3] approach that consid-
ers a 2D trajectory optimization while neglecting interference
from nearby UAV cells. Simulation parameters are presented
in Table I. We simulate a varying number of UAVs rang-
ing from 2 to 12 to serve both static and mobile ground
users in a 1000 × 1000 m2 area as shown in Figure 2.
We perform 2000 runs of Monte-Carlo (MC) trials over
trained episodes. In Figure 3, we compare the MAD-DDQN
approach with baselines to evaluate the impact of different
number of deployed UAVs on the EE, ground users outage
and total energy consumption. Due to baseline MADDPG
approach taking significantly longer to converge (learn suit-
able behaviors), to achieve a fair comparison, Figure 3
compares the performance after training the MAD-DDQN
approach for 250 episodes and the MADDPG approach for
2000 episodes.

Since we focus on comparing the EE values rather than
showing their absolute values, we normalise the EE values
with respect to the mean values of the proposed MAD-DDQN
approach. From Figure 3(a), we observe that the MAD-
DDQN approach consistently outperforms the random policy
and MADDPG approaches across the entire range of UAVs
deployment by approximately 80% and 55%, respectively.

TABLE I
SIMULATION PARAMETERS

Interestingly, we see a marginally better performance by
the MADDPG approach over the MAD-DDQN approach in
minimizing the outages experienced by ground users by about
2%, as shown in Figure 3(b). However, the slight performance
gain by the MADDPG comes at a huge computational train-
ing cost which is 8 times higher than the MAD-DDQN
approach. Intuitively, the MAD-DDQN approach hides redun-
dant information about the environment through discretization
of the agent’s action space, which makes the MAD-DDQN
approach require less experience to successfully learn a pol-
icy than the MADDPG approach. On the other hand, the
random policy performed worst among the approaches in
reducing connection outages, emphasizing the relevance of
strategic decision making in MARL problems. Figure 3(c)
clearly shows that the proposed approach significantly min-
imizes the total energy consumed by all UAVs as compared
to the baselines. Although the MADDPG approach performs
slightly better at reducing outages than our approach, our
MAD-DDQN approach is significantly more energy efficient,
thereby implying the MADDPG approach trades energy con-
sumption for improved coverage of ground users. In Figure 4,
we show the plot of the EE versus the learning episodes while
varying the number of agents to demonstrate the convergence
behavior of the MAD-DDQN approach. We observe a steady
decrease in the converged values of the EE while increasing the
number of UAVs because the system becomes more unstable
with more UAVs, thereby decreasing the system throughput as
interference increases. Overall, the cooperative MAD-DDQN
approach shows convergence in the system’s EE irrespective
of the number of UAVs deployed in the network.
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Fig. 3. Impact of number of deployed UAVs on the UAVs’ EE, ground users outage and total energy consumption under dynamic network conditions with
400 ground users deployed in a 1 km2 area, with results from 2000 runs of MC trials.

Fig. 4. Energy efficiency η vs. learning episodes showing the convergence
of MAD-DDQN while varying the number of agents.

V. CONCLUSION

In this letter, we propose a MAD-DDQN approach to
optimise the EE of a fleet of UAVs serving static and
mobile ground users in an interference-limited environment.
The MAD-DDQN approach guarantees quick adaptability and
convergence, thereby allowing agents to learn policies that
maximize the total system’s EE by jointly optimizing its 3D
trajectory, number of connected users, and the energy con-
sumed by the UAVs serving ground users under a strict energy
budget. Extensive simulation results have demonstrated that
the MAD-DDQN approach significantly outperforms the ran-
dom policy and a state-of-the-art decentralized MARL solution
in terms of EE without degrading coverage performance in the
network.
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