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Deep Learning-Based Channel Estimation for Beamspace
mmWave Massive MIMO Systems

Hengtao He , Chao-Kai Wen , Shi Jin , and Geoffrey Ye Li

Abstract—Channel estimation is very challenging when the
receiver is equipped with a limited number of radio-frequency
(RF) chains in beamspace millimeter-wave massive multiple-
input and multiple-output systems. To solve this problem, we
exploit a learned denoising-based approximate message pass-
ing (LDAMP) network. This neural network can learn channel
structure and estimate channel from a large number of training
data. Furthermore, we provide an analytical framework on the
asymptotic performance of the channel estimator. Based on our
analysis and simulation results, the LDAMP neural network sig-
nificantly outperforms state-of-the-art compressed sensing-based
algorithms even when the receiver is equipped with a small
number of RF chains.

Index Terms—Millimeter wave, beamspace MIMO, channel
estimation, deep learning, neural network.

I. INTRODUCTION

M ILLIMETER-WAVE (mmWave) massive multiple-input
and multiple-output (MIMO) enables the use of multi-

gigahertz bandwidth and large antenna arrays to offer high
data rates, which is regarded as an important technique in
future wireless communications [1]. However, the high costs
of hardware and power consumption become unaffordable
when a dedicated radio-frequency (RF) chain is used for each
antenna. In [2], the beamspace channel model and the lens
antenna array-based architecture have been proposed to reduce
the number of RF chains. However, channel estimation for
this beamspace mmWave massive MIMO system is extremely
challenging, especially when the antenna array is large and the
number of RF chains is limited.

The lens antenna array exhibits energy-focusing capability
and the received signal matrix from the lens antenna array
can be characterized by sparsity and concentration. Therefore,
a reliable support detection (SD)-based channel estimation
scheme has been proposed in [3], which decomposes the
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total beamspace channel estimation problem into a series of
sub-problems. In [4], the channel matrix is first regarded as
a 2-dimensional (2D) natural image and then the cosparse
analysis approximate message passing (SCAMPI) algorithm,
derived from the image recovery field, has been provided. The
SCAMPI algorithm models the channel as a sparse generic
L-term Gaussian mixture (GM) probability distribution and
uses the expectation-maximization (EM) algorithm to learn
the GM parameters from current estimated data.

In this letter, we present our initial results in deep learning
for beamspace mmWave massive MIMO systems. We regard
the channel matrix as a 2D natural image and apply the learned
denoising-based approximate message passing (LDAMP) neu-
ral network [5], which incorporates the denoising convolu-
tional neural network (DnCNN) [6] into the iterative sparse
signal recovery algorithm for channel estimation. To the best
of our knowledge, this letter is the first to use deep learning
technology for beamspace channel estimation. The LDAMP
network utilizes the large number of channel matrices as
training data and can be applied to a variety of selection
networks. Furthermore, we provide an analytical framework
on the asymptotic performance of LDAMP in channel estima-
tion. From the analytical and simulated results, the LDAMP
network outperforms the state-of-the-art compressed sensing
(CS)-based algorithms and can achieve excellent performance
even with a small number of RF chains.

The remaining part of this letter is organized as fol-
lows. Section II outlines the system model and formulates
channel estimation as a signal recovery problem. Next, The
LDAMP network and an analytical framework are provided
in Section III. Then, Numerical results are presented in
Section IV. Finally, Section V concludes this letter.

II. SYSTEM MODEL

In this section, we introduce the beamspace mmWave mas-
sive MIMO system and formulate the channel estimation as a
signal recovery problem.

Fig. 1 illustrates a typical mmWave massive MIMO system
where the base station (BS) has one EM 3D lens equipped
with an M × N antenna array, and the MN antennas are con-
nected to K RF chains through the K × MN selection network.
In order to save the cost of power consumption of RF chains,
K � MN is considered usually. In Fig. 1, the selection network
is denoted by matrix W ∈ R

K×MN , with each entry being ±1.
That is, fully-connected 1-bit phase shifters are used and nor-
malized by dividing

√
MN . We assume the mmWave system

with one user with a single antenna for convenience even if it
can be easily extended to multiple users as long as the pilot
signals for different users are orthogonal in time.

We adopt the widely used Saleh-Valenzuela channel model
for mmWave communications [3]. The beamspace channel
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Fig. 1. Millimeter-Wave receiver with an EM lens and an M × N antenna
array placed on the focal plane of the lens.

matrix can be expressed as

H =

√
MN

P + 1

P∑
i=0

α(i)A
(
φ(i), θ(i)

)
, (1)

where H ∈ R
M×N denotes beamspace channel matrix,1

P + 1 is the number of paths, α(i) denotes the gain of
the i-th path, φ(i) and θ(i) represent the azimuth and ele-
vation AoAs of the incident plane wave, respectively; and
A(φ(i), θ(i)) refers to the antenna array response matrix,
which is determined by its geometry.

The beamspace MIMO channel estimation can be regarded
as a typical signal recovery problem. First, we obtain the
beamspace channel vector h ∈ R

MN×1 by vectorizing H for
convenience. In the uplink training phase, the user sends the
training symbol s to the BS, and the received signal vector
y ∈ R

MN×1 at the BS is given by

y = hs + n, (2)

where n ∼ N (0, σ2nI) represents a Gaussian noise vector.
Given a selection network W at the receiver, the received
signal r from the RF chain can be expressed as

r = Wy = Wh+ n̄, (3)

where n̄ = Wn is the equivalent noise after the selection
network at the receiver, which is assumed to follow N (0, σ2nI)
as each entry in matrix W is normalized by dividing

√
MN .

Furthermore, we set s = 1 for convenience as pilot signal is
known at the receiver side.

From (1), the elements of the beamspace channel vector are
not independent. They are correlated through the antenna array
response matrix. This characteristic is highly similar to a 2D
natural image; that is, the channel is sparse, and the changes
between adjacent elements are subtle. Therefore, the LDAMP
network, originated from image recovery, can be applied to
exploit the correlation in beamspace channel estimation.

III. LDAMP-BASED CHANNEL ESTIMATION

In this section, we present the LDAMP-based method to
estimate the beamspace channel vector h from the received
signal r and the given selection network W in (3). Besides,
an asymptotic performance of the LDAMP network is inves-
tigated based on state evolution (SE) analysis.

1In this letter, we consider simplified real-valued model as neural network
always performed in real-valued domain, and is easily extended to complex
channel matrix by projecting complex-valued H into a real-valued matrix.

Fig. 2. The l-th layer architecture of the LDAMP network.

A. LDAMP Network

Deep learning has been recently applied to solve compres-
sive image recovery [5] and wireless communications [7], [8].
Inspired by [5], we propose a deep learning-based channel
estimation method, named LDAMP network.

The LDAMP neural network consists of L layers connected
by cascade way. Each layer has the same structure. As illus-
trated in Fig. 2, each layer of the LDAMP network contains the
same denoiser Dσ̂l (·), a divergence estimator divDσ̂l (·), and
tied weights. The denoiser Dσ̂l (·) performed by the DnCNN
is used to update h.

Before introducing the DnCNN denoiser, we provide a brief
description for the LDAMP network. For the l-th layer of the
LDAMP neural network, channel is estimated as follows

zl+1 = r−Wĥl+1 +
1

K
zldivDσ̂l

(
ĥl +WT zl

)
, (4)

ĥl+1 = Dσ̂l

(
ĥl +WT zl

)
, (5)

where ĥl is the l-th layer input of the channel, zl rep-
resents the l-th layer input of the residual vector, and σ̂l

denotes a parameter of the denoiser, which is defined as
σ̂l = ‖zl‖2/

√
K .

If we regard the input of the denoiser, xl = ĥl +WT zl as
a noisy channel vector

xl = h+ n̂l , (6)

then the equivalent noise n̂l = ĥl−h+WT zl ∼ N (0, (σ̂l )2I).
The function of denoiser Dσ̂l (·) is to estimate the channel
h from noisy channel xl by removing equivalent noise n̂l .
The equivalent noise variance (σ̂l )2 depends on the esti-
mated residual vector zl . With increasing the number of
layers, equivalent noise variance (σ̂l )2 decreases and finally
converges to a limit. Furthermore, the Onsager correction
term [10] zldivDσ̂l (hl + WT zl )/K , removes the bias from
the intermediate solutions, such that the equivalent noise n̂l

follows the additive white Gaussian noise (AWGN) model
expected by typical image denoisers and is uncorrelated to
the channel ĥl .

As a precise expression for divDσ̂l (·) is generally diffi-
cult to obtain, we use following Monte-Carlo approximation to
compute the divergence divDσ̂l (·). Given a denoiser Dσ̂l (·),
and using an independent and identically distributed (i.i.d.)
random vector b ∼ N (0, I), we can estimate the divergence
with

divDσ̂l = lim
ε→0

Eb

⎧⎨
⎩bT

⎛
⎝Dσ̂l

(
xl + εb

)
−Dσ̂l

(
xl
)

ε

⎞
⎠
⎫⎬
⎭

(7)



854 IEEE WIRELESS COMMUNICATIONS LETTERS, VOL. 7, NO. 5, OCTOBER 2018

Fig. 3. Network architecture of the DnCNN denoiser.

≈ 1

ε
bT

(
Dσ̂l

(
xl + εb

)
−Dσ̂l

(
xl
))

, (8)

where ε is an extremely small number, which we set
ε = ‖xl‖∞/1000.

The denoiser used in the LDAMP network plays a key
role in channel estimation. We consider recently developed
DnCNN denoiser. The DnCNN denoiser can handle Gaussian
denoising problem with an unknown noise level, which is
more accurate and faster than competing techniques. Fig. 3
illustrates the network architecture of the DnCNN denoiser.
It consists of 20 convolutional layers. The first convolutional
layer uses 64 different 3 × 3 × 1 filters and is followed
by a rectified linear unit (ReLU). Each of the succeeding
18 convolutional layers uses 64 different 3 × 3 × 64 filters,
each followed by batch-normalization and a ReLU. The final
convolutional layer uses one separate 3 × 3 × 64 filters to
reconstruct the signal. Instead of learning a mapping directly
from a noisy image to a denoised image, learning the residual
noise is beneficial. We plot three pseudo-color images of noisy
channel, residual noise, and estimated channel in Fig. 3. The
network is given the noisy channel h + σz as an input and
produces residual noise ẑ, rather than an estimated channel
ĥ, as an output. This method, known as residual learning [9],
renders the network to remove the highly structured natural
image rather than the unstructured noise. Consequently, resid-
ual learning improves both the training times and accuracy of
a network.

B. SE Analysis

In this section, we provide an analytical framework on the
performance of the LDAMP neural network. It consists of a
series of SE equations that predict the performance of the
network over each layer with a large-system limit (M,N → ∞),
which is given by

θl+1
(
ho , δ, σ

2
n

)
=

1

MN
E‖Dσl

(
ho + σleε

)
− ho‖22, (9)

(
σle

)2
=

1

δ
θl
(
ho , δ, σ

2
n

)
+ σ2n , (10)

where ho is a deterministic realization of channel h, δ
represents the measurement ratio that is defined by K/MN,
θl (ho , δ, σ

2
n ) is the average mean-square error (MSE) of the

denoiser output in the l-th layer network, and σ2n denotes the
noise variance. The SE equations in (9) and (10) are derived
from [10], which provides similar method on the performance
of the D-AMP algorithms with different denoisers.

In a large-system, the SE equations can be explained from
the LDAMP network itself. The explanation mainly depends
on the equivalent AWGN model in (6), in which the aver-
age MSE of the denoiser output is computed by the Monte
Carlo method in (9). The expectation in (9) only concerns
ε ∼ N (0, I) and the equivalent noise variance (σle)

2 is com-
puted by (10), which is derived from (4). We can obtain
analytical average MSE performance of the LDAMP network
by recursively updating the two equations in (9) and (10).

IV. SIMULATION RESULTS

In this section, we provide simulated and analytical results
of the LDAMP network. We assume that there is one user with
a four-path mmWave channel, as described in (1). The length
and height of the 3D lens are both 64, that is, M = N = 64.
The number of layers for the LDAMP network is set to be 10.

A. Implementation Details

In our simulation, the LDAMP neural network is imple-
mented with MatCovNet, which is a toolbox for MATLAB.
The training, validation, and testing sets contain 16640, 6400,
and 10000 samples, respectively, and are obtained from the
Saleh-Valenzuela channel model in (1). Furthermore, we scale
the data to the [0,1] range for training the network. The
LDAMP network is trained using the stochastic gradient
descent method and Adam optimizer. The training rate is set
to be 0.001 initially, and then dropped to 0.0001 and 0.00001
when the validation error stop improving.

B. Comparison With Other Methods

We compare the LDAMP network with the SD algo-
rithm [3], the SCAMPI algorithm [4] and the D-AMP algo-
rithms [10].2 The performance metric is NMSE, defined as

NMSE = E

{∥∥∥ĥ− h
∥∥∥2
2
/
∥∥∥ĥ

∥∥∥2
2

}
(11)

Fig. 4 compares the performance of different channel esti-
mation methods. From the figure, the D-AMP algorithms and
the LDAMP network outperform the SD and SCAMPI algo-
rithms because of the power of the denoisers. Furthermore,
the LDAMP network outperforms the start-of-the-art D-AMP
algorithms even if BM3D-AMP is regarded as the most accu-
rate algorithm for compressive signal recovery [10]. The

2D-AMP contains many algorithms depends on different denoisers, includ-
ing Gauss-AMP, bilateral-AMP, NLM-AMP and BM3D-AMP.
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Fig. 4. Comparison of NMSE performance between the LDAMP network
and other methods with δ = 0.1.

Fig. 5. SE analysis of LDAMP network for different measurement ratios
with SNR = 10 dB.

excellent performance of the LDAMP network is attributed
to the utilization of a large number of training data, which
results in the superiority of deep learning technology.

C. Analytical Performance

The analytical framework on the performance of the
LDAMP network for channel estimation in Section III-B is
validated in Fig. 5. From the figure, the SE equations can
precisely evaluate the performance of the LDAMP network.
Therefore, instead of performing time-consuming Monte Carlo
simulation to obtain NMSE, we can accurately and quickly
predict the behavior by using this analytical framework.
Furthermore, from Fig. 5, the LDAMP network converges
within five layers, which demonstrates its simplicity and
practicality.

D. Impact of Measurement Ratio

As previously indicated, the measurement ratio, i.e., the
number of RF chains influences the performance of LDAMP
for channel estimation. Fig. 6 illustrates NMSE with differ-
ent measurement ratios. From the figure, the performance of
the LDAMP network can be improved with the increase of
the measurement ratio. Interestingly, LDAMP still achieves
superior performance even when measurement ratio δ = 0.05,
thereby indicating that only a small number of RF chains are
required at the receiver for channel estimation. Thus, hardware
cost and power consumption will be significantly decreased.

Fig. 6. NMSE performance of LDAMP network with different measurement
ratios.

V. CONCLUSION

We have developed a novel deep-learning-based channel
estimation method for beamspace mmWave massive MIMO
systems. This network inherits the superiority of iterative sig-
nal recovery algorithms and deep learning technology, and
thus presents excellent performance. The LDAMP network
is easy to train and can be applied to a variety of selec-
tion networks. Furthermore, the LDAMP network can achieve
excellent performance even with a small number of RF chains
at the receiver, which validates its practicality and applica-
bility. We have also provided an analytical framework on the
performance of the LDAMP network in a large system regime,
which can accurately predict performance within a short time.
Our initial results have shown the potential of the deep learning
method for mmWave channel estimation.
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