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Abstract—To overcome the challenges in high-speed sampling
and processing of real-time spectrum measurement, compres-
sive sensing (CS) theory has been implemented in wideband
spectrum sensing. Moreover, to take full advantage of CS, the
nonconvex lν -norm minimization algorithms are employed to
reconstruct the wideband signals from compressive samples.
However, solving these algorithms usually leads to relatively high
computational complexity and sensing cost, especially when the
dimension of wideband signals is high. Therefore, we propose a
low-complexity compressive spectrum sensing algorithm that is
suitable for large-scale real-time processing problem. The numer-
ical and experimental results demonstrate that the proposed
algorithm achieves the fast convergence speed and keeps the
same accurate signal reconstruction with reduced computational
complexity, from cubic time to linear time.

Index Terms—Compressed sensing, cognitive radio, iterative
algorithms.

I. INTRODUCTION

IN RECENT years, the threat of spectrum scarcity has
encouraged the development of dynamic spectrum access

techniques over many licensed frequency bands which are
underutilized either over time or geography domain, such as
TV white space (TVWS) [1]. To enable these techniques with-
out causing harmful interference to the incumbent systems,
spectrum sensing which aims to provide fast and accurate
detection of the spectrum is introduced. However, for the
received signal over a wide spectrum, scanning the channels in
a sequential manner will require a long sensing period and may
cause interferences or missed opportunities. Therefore, directly
acquiring the wideband signals is an ideal way to capture the
instant spectrum changes. To alleviate the high rate of sam-
pling and processing, compressive sensing (CS) was applied
to implement the wideband spectrum sensing by exploiting
the sparse nature of the underutilized wideband spectrum. CS
theory indicates that the signal can be reconstructed from a
few samples if it has the sparse structure [2].

To find the optimal solution that best matches compres-
sive samples, the wideband signals can be reconstructed
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using certain optimization algorithms based on the l0-norm
minimization [2]. Since the l0-norm minimization is an
NP-hard problem, it is usually replaced by the l1-norm
minimization to find an equivalent solution. To further reduce
the number of samples for signal reconstruction, the weighted
lν-norm (0 < ν < 1) minimization is proposed to replace
the l1-norm minimization in the reconstruction algorithm
since the lν-norm minimization provides a closer approxima-
tion compared to the original l0-norm minimization, which
is nonconvex but could be effectively solved by iteratively
reweighted least squares (IRLS) algorithms [3], [4]. However,
those IRLS based CS algorithms lead to relatively high com-
putational complexity and sensing cost, i.e., many iterations,
to achieve the desired degree of accuracy.

In [5], to reduce the iterations in the lν-norm minimization, a
database-assisted CS algorithm employs the channel historical
power information from geo-location database for the weight
calculation. However, the dynamic change of channel power
information from geo-location database could severely degrade
the reconstruction accuracy. In [6], without the prior channel
information, an adaptively-regularized CS scheme is proposed
to speed up the convergence of the signal reconstruction by
reducing the required iterations of the lν-norm minimization.
The AR-IRLS algorithm in [6] moves the estimated solu-
tions along an exponential-linear path by regularizing weights
with a series of non-increasing penalty terms and provides
high fidelity guarantees to cope with the varying spectrum
status.

The aforementioned research works aim to alleviate the
sensing cost via the reduction in iterations of solving the lν-
norm minimization, where the computational complexity of
each iteration is still high. However, as the increasing of spec-
trum bandwidth and degree of spectrum resolution, solving the
nonconvex lν-norm minimization would be difficult and costly
since each iteration contains an inverse problem of the system
matrix which takes O(N3), where N represents the dimension
of target signals. In this letter, a low-complexity compressive
spectrum sensing algorithm is proposed for large-scale real-
time processing. It could keep the fast convergence speed of
the previous algorithms such as [5] and [6] with reduced com-
putational complexity by exploiting the diagonally dominant
feature in the square of measurement matrix. Furthermore,
the proposed algorithm is validated on both simulated signals
and real-world signals. The numerical and experimental results
indicate that the proposed algorithm can significantly reduce
the computational complexity from cubic time to linear time
in each iteration and maintain high reconstruction accuracy
without the cost of more iterations.
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II. PRELIMINARY SYSTEM MODEL

A typical non-cooperative compressive spectrum sensing
scheme can be formulated as a three-step framework.

1) Compressive signal acquisition: Consider the received
wideband signal x(t) which consists of Nsig uncorrelated pri-

mary signals, such that x(t) = ∑Nsig
i=1 si(t) + n(t), where si(t)

is the i-th primary signal and n(t) refers to additive white
Gaussian noise (AWGN) with zero mean and variance σ 2

n .
Since the wideband spectrum is normally underutilized, the
discrete Fourier transform (DFT) x = {(x1, x2, . . . , xN)T)| x ∈
R

N} of x(t) is a k-sparse vector, i.e., |{xi : xi �= 0}| ≤ k, which
could be recovered from the compressive samples y ∈ R

M ,
where M ∈ Z (with k < M < N) refers to the dimension
of y. The compressive samples acquisition at a single node
can be interpreted as a linear system: y = �x + ξ , where
||x||0 ≤ k, � ∈ R

M×N represents the measurement matrix
to collect samples y from the original signal x, ξ ∈ R

M is
the noise perturbation, whose magnitude is constrained by an
upper bound δ, i.e., ||ξ ||2 < δ and || · ||0 represents the number
of nonzero elements in the vector, which is also treated as the
measure of sparsity.

2) Signal reconstruction: Under certain assumptions includ-
ing the restricted isometry property (RIP) on � and the signal
sparsity bound [2], robust signal reconstruction with respect
to the above linear system can be formulated as the following
unconstrained minimization problem:

x∗ := arg min
x∈RN

1

2
||�x − y||22 + λ||x||0, (1)

where x∗ is the reconstructed signal and constant parameter
λ > 0 is introduced to balance the objective of minimiz-
ing the reconstruction error ||x − x∗||2 and the solution
sparsity ||x||0 according to the Lagrange multiplier theo-
rem. However, problem (1) is NP-hard due to the l0-norm
minimization of x. It was shown in [2] that the result
of l0-norm minimization can be equivalent to the solution
obtained by the l1-norm minimization which can be solved
in polynomial time. Therefore, (1) can be approximated as

x∗ := arg min
x∈RN

1

2
||�x − y||22 + λ||x||1. (2)

However, (2) may not be the optimal solution to problem (1)
since the l1-norm optimization problem usually requires much
more compressive samples [4]. Therefore, this poses chal-
lenges when the signal sparsity level is high. To that end,
we propose to replace the l1-norm in (2) with the lν-norm,
where 0 < ν < 1, which is possible to achieve the exact
reconstruction with the substantially fewer samples [4].

3) Decision making: To obtain the spectrum occupancy
status, spectrum detection should be performed after signal
reconstruction. The energy detection method [7] is adopted
in this letter since it does not require any prior knowledge of
the PUs, i.e., modulation type, with lower implementation and
computational complexity compared with other conventional
spectrum detection technologies.

III. PROPOSED LOW-COMPLEXITY COMPRESSIVE

SPECTRUM SENSING ALGORITHM

Compared with the l1-norm minimization in (2), the lν-norm
minimization with 0 < ν < 1 leads to the better sparsity
approximation performance with the fewer samples since it is
an intermediate problem in the sense of norm minimization
between (1) and (2) [4]. Therefore, we consider to replace
the l1-norm minimization with the lν-norm minimization for
signal reconstruction in this letter. It can be given as

x∗ := arg min
x∈RN

1

2
||�x − y||22 + λ||x||νν, 0 < ν < 1, (3)

where the penalty parameter λ > 0 is introduced to balance
the reconstruction accuracy and the sparsity of minimization
result as discussed in Section II. Since the choice of λ greatly
influences the behavior of the spectrum reconstruction [6], in
this letter, λ is optimized along with the signal reconstruction
process as a function of the target signal, such that the problem
in (3) can be transformed into the following form:

x∗ := arg min
x∈RN

{F(x) = 1

2
||�x − y||22 + λ(x)||x||νν}, (4)

where λ(x) projects the signal x as a positive real number.
Without losing the numerical property of (3), we define the
linear function of the form: F(x) = �λ(x) [8] to preserve the
convexity in each iteration and exhibits only a global mini-
mizer regardless of the value of λ(x), where � is the coefficient
representing the slope of the line and also controls convexity.
It is straightforward to show that this linear form could keep
the numerical property of the original problem unchanged.
We substitute F(x) = �λ(x) to (4) and therefore λ(x) can
be expressed as

λ(x) =
1
2 ||�x − y||22
� − ||x||νν

, 0 < ν < 1. (5)

However, it is general computationally hard and not guaran-
teed to obtain its global minimum due to the nonconvexity of
the lν-norm minimization. It is shown in [4] that under certain
assumptions such as the null space property (NSP) on mea-
surement matrix �, the solution sequence generated by the
IRLS algorithm converges to the local minimum as the spars-
est solution that is also the actual global lν-norm minimizer.
Each iteration of the IRLS algorithm corresponds to a convex
weighted least squares subproblem that can be formulated as

arg min
x∈RN

{1

2
||�x − y||22 + λ(x)

N∑

i=1

wix
2
i }, (6)

where wi > 0 for all i = 1, 2, . . . , N and could be defined as

wi =
((

xi

)2 + �ε

) ν
2 −1

, 0 < ν < 1. (7)

The parameter �ε > 0 could be adopted to regularize the
optimization problem in order to keep stability and ensure
that any zero-valued component in the solution of certain
iteration does not strictly prohibit the nonzero estimate at the
next iteration [3]. To accelerate the convergence of the algo-
rithm and prevent getting trapped into the wrong minimization
results, a relatively large regularizer �ε is proposed to initially
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regularize the weights. Then, the weights are quickly updated
to allow the optimization process go deeper and achieve higher
reconstruction accuracy by exponentially decreasing �ε in the
first few iterations. Moreover, the �ε would descend slowly
in the following iterations to avoid �ε → 0 but keeping �ε

sufficiently small to achieve high reconstruction accuracy.
To simplify the illustration, a generalizing function Gν is

defined as

Gν(x, w,�ε): =
[

1

2
||�x − y||22 + λ(x)

N∑

i=1

wix
2
i

]

, (8)

where x ∈ R
N , weights w: = (w1, . . . , wN) ∈ R

N+, and �ε ∈
R+. From (8), we shall have

λ(x) := Gν(x, w,�ε) − 1
2 ||�x − y||22

∑N
i=1 wix2

i

. (9)

We then substitute the linear form of adaptive penalty param-
eter Gν(x, w,�ε) = � · λ(x) into (9) as discussed before to
obtain

λ(x) =
1
2 ||�x − y||22

� − ∑N
i=1 wix2

i

. (10)

To guarantee that the convexity of the function Gν(x, w,�ε)

is unchanged in each iteration, the value of control parameter
� is determined by the proposed algorithm according to the
samples vector y in practice.

Therefore, the result of iteration l can be defined as

x(l) := arg min Gν(x(l−1), w(l−1), �(l−1)
ε ). (11)

Once x(l) is obtained, we then update the parameters as

�(l)
ε :=

{(
1 + e−2l

h(x(l))k+1

)
h(x(l))k+1, if ||	x(l)|| ≤ εν

100

�
(l)
ε , otherwise,

w(l)
i :=

(
(x(l)

i )2 + �(l)
ε

) ν
2 −1

, i = 1, . . . , N, (12)

where h(x)i is the i-th largest element of the set {|x|i, i =
1, . . . , N}, k refers to the sparsity of the signal, and 	x(l) =
x(l) − x(l−1).

The problem (11) requires solving a weighted least squares
problem that can be expressed in the matrix form:

x(l) =
(
�t� + λ(x(l−1)) ∗ W(l−1)

)−1
�ty, (13)

where W(l) is the N × N diagonal matrix with 1/w(l)
i as the

i-th diagonal element and �t refers to the transpose of the
sensing matrix �. Therefore, the efficiency of the proposed
algorithm is mainly constrained by the inverse of the matrix
H = �t� + λ(x(l−1)) ∗ W(l−1), which takes O(N3) time. It
is difficult and costly to solve H−1 for many cases espe-
cially when the dimension of the original wideband signal
is large. The conventional way to approximate the matrix
inverse is conjugate gradient (CG) descent method. According
to the observation that the matrix H is usually diagonal
dominance due to the square of measurement matrix �t�

is diagonal dominance, we proposed to utilize the precon-
ditioned conjugate gradient (PCG) method which has better

Algorithm 1 Low-Complexity IRLS-Based Compressive
Spectrum Sensing Algorithm

Require: samples vector y ∈ R
N , measurement matrix � ∈

R
M×N , initial value �

(0)
ε , W(0) and λ(x(0)).

Ensure: Practical solution x∗
1: for l = 1, · · · , lmax do
2: Update: H = �t� + λ(x(l−1)) ∗ W(l−1)

3: Update: P−1 = (�t� ∗ I + λ(x(l−1)) ∗ W(l−1))−1

4: Update x(l) with the inverse of preconditioner P−1

5: Regularizer update:
6: if ||	x(l)|| ≤ εν

100 : �
(l)
ε =

(
1 + e−2l

h(x(l))k+1

)
h(x(l))k+1

7: else: �
(l)
ε = �

(l−1)
ε

8: Weights update: w(l) =
(
(x(l)

i )2 + �
(l)
ε

) ν
2 −1

9: Penalty parameter update:
λ(x(l)) = 1

2 ||�x(l) − y||22/[� − ∑N
i=1 w(l)

i (x(l)
i )2]

10: end for
11: return x∗ = x(l+1).

Fig. 1. Experimental setup for real-time processing and live compressive
spectrum sensing testbed on TVWS [6].

performance than CG [9]. To find the best approximation of
H, the preconditioner can be given by

P := arg min
Z∈D

||H − Z||22, (14)

where D is a set of diagonal or ąřpseudo-diagonaląś matrices.
Since λ(x(l−1))∗W(l−1) is a diagonal matrix and �t� is diag-
onal dominance for the measurement matrix utilized in com-
pressive spectrum sensing, e.g., random projection matrix for
analog-to-information converter (AIC), partial Fourier matrix
for multi-coset sampling and etc., H is diagonal dominance
which could be approximated by a diagonal or pseudo-
diagonal matrix P. According to the diagonal dominance
feature, the exact solution of (14) is given as

P = (�t� ∗ I + λ(x(l−1)) ∗ W(l−1)), (15)

where �t� denotes the average of all diagonal values of the
matrix �t�, which can be pre-calculated since � is preset
before the sensing. Therefore, compared with the inverse of
the original matrix H which takes O(N3) time, P−1 = (�t�∗
I + λ(x(l−1)) ∗ W(l−1))−1 only require linear time O(N). The
proposed algorithm is summarized in Algorithm 1.

IV. EXPERIMENTAL RESULTS

Consider the simulated wideband signal x(t) ∈ F = [0, 500]
MHz, whose DFT is denoted as xsim

0 which contains up to k
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Fig. 2. ARF vs. sparsity level between the proposed IC-IRLS algorithm and
AR-IRLS algorithm with simulated signals under different compressive ratios
= 0.2, 0.4, 0.6.

active channels: x(t) = ∑k
i=1

√
EiBisinc(Bi(t−ti))ej2π fit+n(t),

where sinc(x) = sin(πx)/(πx), Ei, ti and fi represent the
energy, the time offset, and the central frequency of the i-
th sub-band and n(t) denotes the noise. The i-th sub-band
covers the frequency range [fi − Bi

2 , fi + Bi
2 ]. To demonstrate

the effectiveness of the proposed algorithm over the wide-
band spectrum with the varying bandwidths and power levels
of primary signals, the bandwidths Bi of i-th primary signal
is varying and the corresponding central frequency fi is ran-
domly located in [ Bi

2 , W − Bi
2 ]. The total sensing time is T ,

and thus the number of samples collected by the Nyquist sam-
pling rate could be calculated as N = T · fNYQ. Rather than
using the Nyquist sampling rate fNYQ ≥ 2W = 1000 MHz,
we adopt the sub-Nyquist sampling rate fs < 2W which is
depended on the maximum sparsity level kmax that can be
estimated by long-term spectral observations. As shown in
Fig. 1, the real-world signal xreal

0 is collected by the real-
time wideband compressive spectrum sensing testbed based
on the RFeye node, which is an intelligent spectrum moni-
toring system that can provide real-time 24/7 monitoring of
the radio spectrum. The frequency of the received real-world
TVWS signal ranges from 470 to 790 MHz and the channel
bandwidth is 8 MHz in Europe. The setting is consistent with
the current bandwidth used in TV broadcasting. Therefore,
the total bandwidth of the real-world signals is 320MHz. To
quantify the reconstruction performance of the proposed algo-
rithm, we calculate the acceptable reconstruction frequencies
(ARF) based on the conventional relative mean square error
(r-MSE): ||x∗ − x0||/||x0||, where x0 = xsim

0 and x0 = xreal
0

for simulated signal and real-world signal respectively, which
is defined as the case with r-MSE ≤ 10−2. We also com-
pare the convergence speed if the proposed algorithm (termed
IC-IRLS) with that of the conventional AR-IRLS algorithm
(termed AR-IRLS) [6] and regularized IRLS algorithm [3]
(termed Reg-IRLS) in terms of iterations.

Firstly, we demonstrate that the reconstruction performance
is not degraded with the reduced computational complexity
of the proposed algorithm by plotting the ARF against the
sparsity level ranging from 0.05 to 0.60 under compressive
ratios = 0.2, 0.4, 0.6 for both the proposed IC-IRLS and AR-
IRLS in Fig. 2. It can be seen that the signal reconstruction of
the proposed IC-IRLS algorithm has high fidelity guarantee as
same as the AR-IRLS algorithm under different compression
ratios. Secondly, to validate the effectiveness of the proposed
algorithm in real-time processing with real-world signals as
well as to prove that the reduced computational complexity

Fig. 3. ARF vs. iterations between the proposed IC-IRLS algorithm and
conventional IRLS algorithms with real-world signals, where the sparsity level
of the received real-world signal is about 0.2 and compressive ratio = 0.52.

in the proposed algorithm from cubic time to linear is not
achieved at the cost of more iterations, we compare the num-
ber of iterations of the proposed algorithm with the AR-IRLS
algorithm and the regularized IRLS algorithm under the com-
pressive ratio = 0.52 in Fig. 3, where the sparsity level of
the received real-world signal is about 0.2. It can be observed
that the proposed algorithm holds fast convergence rate, which
achieves the 100% successful reconstruction of the real-world
signals when the number of iterations is 9 without introducing
any prior information, where the conventional IRLS algorithms
require at least 34 iterations to achieve the same performance.
Therefore, the proposed algorithm keeps the fast convergence
speed with significantly reduced computational complexity.

V. CONCLUSION

In this letter, we have proposed a low-complexity compres-
sive spectrum sensing algorithm which reduces the computa-
tional complexity from cubic time to linear time with high
fidelity guarantee and fast convergence rate. The proposed
algorithm was tested over not only the simulated signals but
also the real-world signals. The numerical and experimental
results have demonstrated that the proposed algorithm can
achieve the fast convergence speed and keep the same accurate
signal reconstruction with reduced computational complexity.
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