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Abstract—We investigate the deep reinforcement learning
(DRL) framework for uplink power control in a cell-free massive
multiple-input, multiple-output (MIMO) network. Although DRL
does not require prior sets of training data as opposed to super-
vised or unsupervised machine learning approaches, existing
methods suffer from substantial convergence time, which is pro-
hibitive in a highly dynamic or large-scale mobile environment.
To address this crucial issue, we propose a DRL framework
that capitalizes on prioritized sampling to speed up the learning
process, thereby enabling rapid adaptation to the variations of the
wireless environment. The proposed method is not only tailored
to user mobility, but also to network variations due to device
activation and deactivation. Numerical results demonstrate the
effectiveness of our proposed algorithm, as it exhibits near-
optimal performance, outperforming the benchmark schemes in
terms of the guaranteed rate and total power consumption, with
much faster convergence.

Index Terms—Deep reinforcement learning, prioritized sam-
pling, cell-free massive MIMO, power control.

I. INTRODUCTION

CELL-FREE massive multiple-input, multiple-output
(MIMO) combines the benefits of massive MIMO and

distributed systems [1], and is therefore considered a key
enabler for 6G [2]. It consists of a large number of distributed
access points (APs) or antennas jointly serving a smaller
number of user equipments (UEs) using the same time-
frequency resources. All APs are controlled by a centralized
processing unit (CPU) for coordination and synchronization.

Power control in cell-free massive MIMO has been widely
studied, as interference can severely degrade the network
performance. However, most of the existing works, such
as [1], [3], [4], utilize traditional optimization techniques that
require the channel state information (CSI), which may
be challenging to obtain in practice. Machine learning has
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recently gained popularity with its ability to solve various
resource allocation problems with much lower computational
complexity while achieving good performance [5], [6]. In
particular, deep reinforcement learning (DRL) has garnered
much interests, as it does not require any prior knowledge
in terms of training datasets that are not always available,
since it relies on reward feedbacks that are usually inherent in
target wireless systems [7]. In [8], it was employed for power
assignment in uplink cell-free massive MIMO considering
both sum rate and user fairness. A DRL-based algorithm for
downlink power allocation was presented in [9] assuming
different optimization objectives, shown to outperform deep
learning and conventional optimization techniques. However,
these works only considered a static scenario that is rather
unrealistic and does not take advantage of the full potential
of DRL. In [10], DRL was utilized for uplink power control
to maximize the network sum rate while satisfying individual
user rate constraints. While both static and mobile users
were considered, it did not tackle one of the challenges of
DRL, which is convergence speed. Specifically, the DRL
system must be re-trained whenever the wireless environment
changes. A slow convergence implies that by the time this re-
training is finished, the environment is likely to have changed
again, making decisions to be outdated. To speed up the
training process, prioritized sampling was used in [11], where,
in contrast to uniform sampling, certain experiences that are
regarded as more important are selected more often. This tech-
nique was utilized in [12] to solve a power allocation problem
for balancing SINR maximization and power minimization.
However, their investigation only considered a fully static,
point-to-point scenario.

In this letter, we design a DRL-based framework for uplink
power control in cell-free massive MIMO, which, unlike
previous studies, not only considers both static and mobile
users, but also another layer of dynamicity pertaining to the
activation and deactivation of devices fluctuating over time,
allowing us to integrate more realistic scenarios. For instance,
Internet of Things (IoT) devices have limited battery power,
and thus, go into a sleep mode to prolong their battery life.
However, existing algorithms require precisely knowing the
UEs’ ON/OFF patterns that are difficult to predict, as they
depend on the battery state of the individual devices. This
motivates us to design a method that is capable of learning
such dynamic behaviors on the go. Our proposed model-
free DRL method is specially crafted such that the power
control decision is solely based on the user rate feedback,
hence neither the CSI nor the device activation pattern is
required to be known in advance. Additionally, we augment
the vanilla deep deterministic policy gradient (DDPG) DRL
algorithm [13] with prioritized sampling to ensure that the
system is able to quickly adapt to the changes in the wireless
environment, as in the case of a live network. The prioritization
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is dictated by the temporal-difference (TD) error [7], which is
automatically calculated when updating DDPG. Therefore, it
does not incur additional computational complexity. Our main
contributions are summarized as follows.

1) We first provide the mathematical formulation of the
target uplink power control problem, aiming at maxi-
mizing the guaranteed rate of a cell-free massive MIMO
network.

2) We describe the proposed DDPG-based method, which,
unlike existing schemes, is specifically designed to adapt
to various dynamics of the wireless environment in an
online fashion, such as user mobility and variations of
UE activation patterns over time. This is realized by
capitalizing on TD-error-based prioritized sampling.

3) The effectiveness of the proposed method is shown
through simulation results under different scenarios,
where it outperforms the benchmark schemes in terms
of convergence speed, guaranteed rate and power
consumption.

II. SYSTEM MODEL

We consider an uplink cell-free massive MIMO network
with M single-antenna APs and K single-antenna UEs, such
that M � K. The set of all APs is denoted by M =
{1, . . . ,M }, and the set of all UEs by K = {1, . . . ,K}.
The channel between AP m and UE k is given by hk ,m =√
gk ,m˜hk ,m . Large-scale fading coefficient gk ,m follows

a distance-dependent path loss model with lognormally-
distributed shadow fading, and small-scale fading coefficient
˜hk ,m ∼ CN (0, 1) is independent and identically distributed
(i.i.d.). We consider the block-fading channel model. Each
coherence block contains τc = τp+τu+τd samples, of which
τp are for uplink training, τu are for uplink data, and τd are
for downlink data transmission.

All UEs first transmit their pilot sequences simultaneously.
The pilot sequence of UE k is denoted by φk ∈ C

τp×1. The
received (τp × 1)-pilot signal at AP m is,

ym =
∑

k∈K

√
τpρphk ,mφk + nm , (1)

where ρp is the pilot transmit power, and nm is the noise vec-
tor with i.i.d. elements following CN (0, σ2n ). AP m estimates
the channel by projecting the received pilot signal onto φH

k ,

ŷk ,m = φH
k ym =

∑

k ′∈Vk

√
τpρphk ′,m + φH

k nm , (2)

where Vk denotes the set of users utilizing the same pilot
sequence φk . The minimum mean-squared error (MMSE)
channel estimate is then [1], [10],

ĥk ,m =

√
τpρpgk ,m

∑

k ′∈Vk
τpρpgk ′,m + σ2n

ŷk ,m = ck ,m ŷk ,m , (3)

with ĥk ,m ∼ CN (0,Vk ,m ), Vk ,m =
τpρpg2k,m∑

k′∈Vk
τpρpgk′,m+σ2

n
.

During uplink data transmission, all UEs transmit their data
simultaneously. UE k sends its symbol xk , with E{|xk |2} = 1.
The received signal at AP m is,

y
(u)
m =

∑

k∈K
hk ,m

√
ρkxk + n

(u)
m , (4)

where ρk is the uplink transmit power of UE k, and n
(u)
m is

the noise at AP m. Each AP utilizes its local channel estimate
ĥk ,m to get ĥ∗k ,my

(u)
m , which is then sent to the CPU for data

detection. The received signal at the CPU is,

z
(u)
k =

∑

m∈M
ĥ∗
k,mhk,m

√
ρkxk

︸ ︷︷ ︸
desired signal

+
∑

m∈M

∑

k′∈K
k′ �=k

ĥ∗
k,mhk′,m

√
ρk′xk′

︸ ︷︷ ︸
inter-user interference

+
∑

m∈M
ĥ∗
k,mn

(u)
m

︸ ︷︷ ︸
noise

. (5)

The signal-to-interference-plus-noise ratio (SINR) of UE k
in (6), shown at the bottom of the page, is obtained through
the power of the three terms in (5), as in [1], [10]. The rate
of UE k in bits per second (bps) is,

uk = B

(

1− τp
τc

)

log2(1 + SINRk ), (7)

where B is the system bandwidth in Hertz (Hz).

III. PROBLEM FORMULATION

We hereby focus on determining the uplink transmit power
for all UEs, with the goal of maximizing the minimum
user rate over the cell-free massive MIMO network. The
optimization problem is formulated as,

max
{ρk}

min
k∈K

uk (8a)

subject to 0 ≤ ρk ≤ ρmax, ∀k ∈ K, (8b)

where (8a) represents our objective, and (8b) defines the valid
range for the power values, with ρmax being the maximum
transmit power. The problem is equivalent to maximizing
the minimum user SINR, which, in principle, can be solved
using conventional optimization algorithms, including those
described in [1], [14]. However, as argued in Section I,
such approaches require the exact knowledge of active and
deactivated devices, which is impractical in the case of
IoT applications, especially if these changes occur rapidly.
Therefore, we next design a DRL scheme that only relies on
the user performance.

IV. PROPOSED DRL-BASED UPLINK POWER CONTROL
WITH PRIORITIZED SAMPLING

In this section, we present our proposed DRL framework for
uplink power control, designed to cope with device activation
and deactivation, and to accelerate convergence. The CPU
serves as the DRL agent, and the environment consists of the
users and APs, as depicted in Fig. 1.

SINRk =
ρk

(
∑

m∈MVk ,m

)2
+
∑

m∈M ρkVk ,mgk ,m

τp
∑

k ′∈Vk
ρk ′ρp

(
∑

m∈M ck ,mgk ′,m
)2

+
∑

k ′∈K
k ′ �=k

ρk ′
∑

m∈M gk ′,mVk ,m +
∑

m∈MVk ,mσ2n
(6)
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Fig. 1. Agent-environment scenario of the DDPG-based framework with
prioritized sampling.

A. DRL Components

1) State: The actual ON/OFF state of UE k at time t is
denoted by d

(t)
k ∈ {0, 1}. The UEs may switch from active

to inactive mode (and vice versa), which we refer to as UE
toggling, with parameters Ttog and Ktog. The UE toggling
period Ttog specifies the number of episodes over which the
ON/OFF state of the UEs is assumed to be constant. The
number of UEs that switch every Ttog is indicated by Ktog.
The activation pattern is, however, unknown at the CPU. It
estimates this information based on whether the APs have
received any signal from a specific device. It considers the UE
inactive if no associated signal, such as UE rate feedback, has
been detected. This is reflected in the state vector describing
the environment,

s(t) =
[

b
(t)
1 , . . . , b

(t)
K , u

(t−1)
1 , . . . , u

(t−1)
K

]

, (9)

where b
(t)
k ∈ {0, 1} indicates whether UE k is estimated to be

active or not at time t, such that b(t)k = d̂
(t)
k , and u

(t−1)
k is

the rate of UE k at time t−1.
2) Action: Based on the current state observation, the agent

decides the uplink transmit power of all K UEs denoted by,

a(t) =
[

ρ
(t)
1 , . . . , ρ

(t)
K

]

. (10)

It assigns zero power to UEs estimated to be inactive, while
allocating non-zero power within range ξ ≤ ρ

(t)
k ≤ ρmax to

the active users, with 0 < ξ � 1.
3) Reward: The agent receives a corresponding reward,

r (t+1) = min
k ′∈K(t)

ON

u
(t)
k ′ , (11)

where K(t)
ON = {k ∈ K|b(t)k = 1} is the set of active UEs.

B. Proposed Algorithm

Algorithm 1 outlines the procedure of the proposed method,
which we detail below. We leverage the uniform sampling-
based DDPG DRL algorithm in [13], as it was shown to best
handle the continuous state and action spaces at stake.

Step 1: We first initialize the four deep neural networks
(DNNs) of DDPG: primary actor (θμ), primary critic (θQ ),
target actor (θμ

′
), and target critic (θQ

′
). We also initialize

the prioritized sampling parameters, and the noise for action
exploration (Lines 1 to 4).

Step 2: The CPU observes the current ON/OFF UE states
and user performance. It decides the uplink transmit powers,

Algorithm 1 DDPG with pER for Power Control

1: Initialize the primary actor μ(s|θμ) and critic Q(s, a|θQ ) with
weights θμ and θQ . Initialize the target networks μ′ and Q ′ with
weights θμ

′ ← θμ and θQ
′ ← θQ .

2: Initialize the pER parameters β ← βstart and pmax ← 0.
3: for episode = 0, . . . ,E − 1 do
4: Initialize a random process N for action exploration.
5: Initialize state s(0).
6: for timestep t = 0, . . . ,T − 1 do
7: Observe the current state s(t).
8: Select and apply action a(t) ← μ(s(t)|θμ) +N (t).
9: Observe the reward r(t+1) and next state s(t+1).

10: Store experience (s(t), a(t), r(t+1), s(t+1), pmax) in B.
11: Compute the probabilities (12) of the experiences.
12: Compute their weights (13).
13: Sample a random mini-batch of X experiences from B based

on the calculated probabilities.
14: Update the critic by minimizing the loss (14).
15: Update the priorities (15) of the samples.
16: Update pmax ← maxj∈{0,...,len(B)} pj .
17: Update the actor by maximizing the gradient (16).
18: Update the target networks using Polyak averaging: θμ

′ ←
τpolθ

μ+(1−τpol)θμ
′

and θQ
′ ← τpolθ

Q+(1−τpol)θQ
′
,

with τpol ∈ (0, 1).
19: Update β as in (17).
20: end for
21: end for

and consequently, obtains a reward that is the guaranteed
rate that we aim to maximize. It then estimates the latest
activation state of the UEs for the next time step, as described
in Section IV-A. If UE k ′ is estimated to be inactive, the
corresponding elements b

(t+1)
k ′ and u

(t)
k ′ in s(t+1) would be 0

(Lines 5 to 9).
Step 3: Unlike the vanilla DDPG algorithm that uniformly

samples the experiences used to update its DNN parameters,
we propose to augment it with prioritized sampling or pri-
oritized experience replay (pER) [11]. When the agent saves
its new experience i in its replay buffer B, we attach a
priority information pi , forming the modified experience tuple
(si , ai , ri , s

′
i , pi ). A new experience is always assigned the

current maximum priority pmax for it to be sampled at least
once (Line 10).

Step 4: The priority values are converted to probabilities
P(i) ∈ [0, 1] as,

P(i) =
pαi

∑len(B)−1
j=0 pαj

, (12)

where len(B) denotes the current length of the buffer
(Line 11). The prioritization factor α ∈ [0, 1] controls how
much we rely on the prioritization, with α = 0 for uniform
sampling.

Step 5: The pER mechanism introduces a distribution bias,
which we correct by assigning importance-sampling weights
to the samples,

wi = (len(B) · P(i))−β . (13)

We define a correction parameter β ∈ [0, 1], such that β = 0
corresponds to the case where no correction is made. The
experiences with high priority are likely to be oversampled
by pER. We counter this by assigning them lower weights to
lessen their impact (Line 12).
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Step 6: We sample a mini-batch of X experiences based on
the calculated probabilities. For each sample, we compute the
TD error δi = yTarg,i − Q(si , ai |θQ ). The target networks

are used to calculate the updated Q-value y
(t)
Targ = r (t+1) +

γQ ′(s(t+1), μ′(s(t+1)|θμ′
)|θQ ′

) based on the Bellman equa-
tion [7]. The primary critic network is updated by minimizing
the weighted loss between the updated and current Q-values,

LpER =
1

X

X−1
∑

i=0

wi

(

yTarg,i −Q(si , ai |θQ )
)2

, (14)

over the X sampled experiences using gradient descent (Lines
13 to 14).

Step 7: The priorities are calculated based on the TD
errors as,

pi = |δi |+ ε, (15)

where ε > 0 is a small number to avoid dividing by 0 in (12).
Experiences with larger δi are assigned a higher priority, so
that they are more likely to be sampled, resulting to more
chances of minimizing the TD error. Based on the newly
calculated TD errors, we update the priorities of the sampled
experiences, and, subsequently, the current pmax (Lines 15
to 16).

Step 8: The primary actor network is updated by taking the
following derivative and applying gradient ascent [13],

∇θµQ ≈
1

X

X−1∑

i=0

∇aQ
(
s, a|θQ

)
|s=si,a=μ(si)

∇θµμ
(
s|θμ)|s=si .

(16)

The target networks are updated using Polyak averaging (Lines
17 to 18).

Step 9: We anneal β during training as,

β(t+1) = β(t) + (βend − βstart)Nts
−1. (17)

We initialize β to βstart, and increase its value until it reaches
βend over Nts time steps (Line 19).

V. NUMERICAL EVALUATIONS

A. Simulation Scenario

We consider an uplink cell-free massive MIMO network
with M = 30 single-antenna APs and K = 10 single-
antenna UEs, all of which are uniformly distributed over a
500 × 500 m2 area. The simulation parameters are listed in
Table I. For both the actor and critic networks, we employ
a fully connected DNN with two hidden layers having 64
neurons each. We use three benchmark schemes to evaluate the
performance of our proposed framework: (a) Uniform DDPG
– vanilla DDPG algorithm utilizing uniform sampling, (b) Full
power – each UE transmits with ρmax, and (c) Max-min –
Problem (8) is solved as in [1]. Moreover, we test our system
considering different mobility scenarios, where we combine
static and mobile users with dynamic UE activation patterns.
In the latter case, the users randomly select a direction (left,
right, up, or down) and a speed from 0 to 1 m/s uniformly at
each time step. For our proposed framework, DDPG + pER,
we experimented with different prioritization factor α values
to determine the most appropriate one for our problem. We
achieved the best performance for α = 0.5, and thus, we use
this value in the sequel.

TABLE I
SIMULATION PARAMETERS

Fig. 2. Performance comparison for the fully static scenario.

B. Fully Static / No UE Toggling

We first consider a fully static scenario, where the ON/OFF
states of the non-mobile users stay constant throughout the
learning process. Fig. 2(a) shows the evolution of the mini-
mum user rate. The proposed scheme converges to 15 Mbps,
while Uniform DDPG achieves the same rate 300 episodes
later. Compared to Max-min that provides the upper bound, our
framework behaves close to optimal, with a difference of only
0.9 Mbps or 5.66%. Note that Max-min requires the UE acti-
vation pattern to be known in advance for solving Problem (8)
with traditional optimization techniques. However, in practice,
this information is not available to the CPU, and is also hard
to predict. We highlight that, by estimating the ON/OFF states
and relying solely on the UE rate feedback, our system is
able to adapt to the current state of the environment without
this knowledge, as shown in Fig. 2. The Full power baseline
performs worst due to the increased inter-user interference.

The total transmit power consumption is depicted in
Fig. 2(b). For both sampling configurations, we observe that
power consumption reduces as training progresses. This sug-
gests that the agent is able to recognize the ON/OFF patterns
of UEs, allowing it to select better actions or power values
as it further interacts with the environment. It is worth
noting that power reduction is implicitly accounted for in the
reward definition, as maximizing the guaranteed rate requires
minimizing inter-user interference. With prioritized sampling,
power consumption noticeably reaches that of Max-min faster
compared to Uniform DDPG. The Full power benchmark
consumes the most power.

C. Static Users With UE Toggling

We next consider the case of non-mobile UEs that switch
from active to inactive mode (and vice versa) with Ttog =
500 and Ktog = 0.1K . The UE toggling then happens at
episode 500, which explains the sudden “activity” around this
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Fig. 3. Performance comparison for the static, Ttog = 500, Ktog = 0.1K
scenario.

Fig. 4. Performance comparison for the static, Ttog = 350, Ktog = 0.1K
scenario.

Fig. 5. Performance comparison for the mobile, Ttog = 500, Ktog = 0.1K
scenario.

area in Fig. 3. After which, we observe that the prioritization
helps the DRL system to recover from the environment change
faster, with the agent already finding a solution at episode 600
in Fig. 3(a). In contrast, Uniform DDPG is only able to do
so 200 episodes later. Compared to the fully static scenario,
we achieve not only accelerated convergence, but also better
performance (7.4% rate increase) with prioritized sampling.
Similarly, our framework consumes less power than Uniform
DDPG in Fig. 3(b), while performing close to Max-min.

We now allow the UE toggling to happen more frequently
by setting Ttog to 350 in Fig. 4. When the first toggle happens
at episode 350, the proposed scheme is able to quickly reach
its newly converged value of 14.5 Mbps at episode 450 in
Fig. 4(a). On the other hand, Uniform DDPG settles for a
rate 11.72% lower only 100 episodes later. The second toggle
occurs at episode 700, in which case the minimum user rate
is expected to increase as indicated by the Max-min and
Full power baselines. With prioritization, the agent is able
to adapt to this environment change, characterized by the
corresponding increase in the guaranteed rate. In contrast,
Uniform DDPG likely needs more time to do so.

D. Mobile Users With UE Toggling

We now consider the case of mobile UEs with Ttog =
500 and Ktog = 0.1K in Fig. 5. After the toggle at episode
500, we observe that it now takes more time for both DDPG-
based systems to reach convergence. Specifically, compared to

the static scenario in Section V-C, this happens 100 episodes
later for our proposed scheme, while Uniform DDPG has
yet to do so even at episode 1000. In this case, the agent
has to deal with the additional user mobility that impacts
the power or action selection, on top of having to detect the
environment change caused by the UE toggling. Nevertheless,
we still benefit from the prioritized sampling that achieves
significant performance gain in terms of convergence speed,
rate and power consumption, while approaching the optimal
performance of Max-min.

VI. CONCLUSION

We have proposed a novel DRL framework for power
control in uplink cell-free massive MIMO, designed to handle
device activation and deactivation combined with user mobil-
ity, without requiring any prior knowledge at the CPU. To
ensure that the system can quickly adapt to the dynamics of
a practical wireless environment, we have exploited a TD-
error-based prioritization that accelerates the learning process.
Numerical results have shown that the proposed algorithm
achieves faster convergence and enhanced performance com-
pared to the baseline schemes. As future work, we aim at
investigating different variants of prioritized sampling, and
extending the proposed framework towards a multi-agent
system for distributed learning.
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