
1144 IEEE WIRELESS COMMUNICATIONS LETTERS, VOL. 12, NO. 7, JULY 2023

Performance Analysis of ML-Based MTC Traffic Pattern Predictors
David E. Ruíz-Guirola , Student Member, IEEE, Onel L. A. López , Member, IEEE,

Samuel Montejo-Sánchez , Senior Member, IEEE, Richard Demo Souza , Senior Member, IEEE,
and Mehdi Bennis , Fellow, IEEE

Abstract—Prolonging the lifetime of massive machine-type
communication (MTC) networks is key to realizing a sustain-
able digitized society. Great energy savings can be achieved by
accurately predicting MTC traffic followed by properly designed
resource allocation mechanisms. However, selecting the proper
MTC traffic predictor is not straightforward and depends on
accuracy/complexity trade-offs and the specific MTC applications
and network characteristics. Remarkably, the related state-of-
the-art literature still lacks such debates. Herein, we assess
the performance of several machine learning (ML) methods to
predict Poisson and quasi-periodic MTC traffic in terms of accu-
racy and computational cost. Results show that the temporal
convolutional network (TCN) outperforms the long-short term
memory (LSTM), the gated recurrent units (GRU), and the recur-
rent neural network (RNN), in that order. For Poisson traffic, the
accuracy gap between the predictors is larger than under quasi-
periodic traffic. Finally, we show that running a TCN predictor
is around three times more costly than other methods, while the
training/inference time is the greatest/least.

Index Terms—LSTM, machine learning, MTC traffic, TCN.

I. INTRODUCTION

THE INTERNET of Things (IoT) promises to interconnect
everything towards a data-driven society [1]. A key

enabler of IoT is machine-type communication (MTC), where
devices exchange information without human intervention [2].
MTC devices (MTDs) facilitate a wide range of appli-
cations such as intelligent surveillance, smart agriculture,
and autonomous driving [3], by delivering data through
bandwidth-constrained networks to more specialized devices
for further processing. The MTDs are usually deployed
in large-scale areas and might use limited-capacity batter-
ies that cannot be recharged or replaced. Energy-efficient
techniques are necessary for prolonging the network lifetime

Manuscript received 21 February 2023; revised 27 March 2023; accepted
27 March 2023. Date of publication 3 April 2023; date of current version
11 July 2023. This work supported in part by ANID FONDECYT Iniciación,
Chile, under Grant 11200659; in part by FONDEQUIP-EQM180180, Brazil,
through CNPq under Grant 402378/2021-0 and Grant 305021/2021-4; in part
by Print CAPES-UFSC “Automation 4.0;” in part by RNP/MCTIC under
Grant 01245.010604/2020-14; in part by 6Genesis Flagship, Finland, under
Grant 318927; and in part by Tekniikan Edistämissäätiön. The associate editor
coordinating the review of this article and approving it for publication was
C.-K. Wen. (Corresponding author: David E. Ruiz-Guirola.)

David E. Ruíz-Guirola, Onel L. A. López, and Mehdi Bennis are with
the Centre for Wireless Communications, University of Oulu, 90014 Oulu,
Finland (e-mail: David.RuizGuirola@oulu.fi; Onel.AlcarazLopez@oulu.fi;
Mehdi.Bennisoulu.fi).

Samuel Montejo-Sánchez is with the Programa Institucional de Fomento
a la Investigación, Desarrollo e Innovación, Universidad Tecnológica
Metropolitana, 8940577 Santiago, Chile (e-mail: smontejo@utem.cl).

Richard Demo Souza is with the Department of Electrical Engineering,
Federal University of Santa Catarina, Florianópolis 88034500, Brazil
(e-mail: richard.demo@ufsc.br).

Digital Object Identifier 10.1109/LWC.2023.3264273

and avoiding frequent battery replacement for a massive
number of MTDs [4].

Traffic prediction can enable efficient network resource
scheduling and avoid the potential energy waste resulting from
idle listening and channel access contention in dense MTC
networks [4]. However, the instant in which an alarm event
triggers information exchange by MTDs is generally unknown
and has to be estimated by continuous observations, draining
the MTDs’ battery. Understanding the MTC traffic character-
istics and designing proper traffic predictors is key to realizing
energy-efficient MTC networks. In this regard, machine learn-
ing (ML) algorithms are very appealing [5]. In general,
ML-based techniques allow the system to learn from data
and thus optimize its overall operation in real-time, increasing
resource utilization and energy savings [6].

In this line, authors in [7] propose a supervised ML model to
predict bursty MTC traffic arrivals, and thus avoid collisions
and long latency. Long-short-term memory (LSTM) mecha-
nisms are proposed in [8], [9], [10], [11], [12]. Specifically,
the approaches in [8] aim to predict bursty MTC traffic and
congestion, while event-driven traffic is considered in [9], [10].
In the case of [10], the prediction is used to properly tune
wake-up parameters to avoid frequent page monitoring occa-
sions in idle states and promote energy savings. Meanwhile,
the proposal in [11] seeks to effectively predict the peak traffic
flow to ultimately reduce both latency and the packet loss rate,
while the authors in [12] develop a fast uplink grant for mas-
sive MTC (mMTC) by predicting which devices are active at
each time instant and then classifying their priorities. Finally,
authors in [13] propose a neural network (NN) algorithm that
exploits device traffic correlations for enhanced prediction.

Despite recent advances, adequate performance comparisons
between different ML predictors for MTC traffic, especially
in terms of accuracy and complexity, still do not exist. This
makes it difficult the selection of appropriate ML models,
especially in applications demanding energy efficiency [14].
Herein, we take initial steps to fill this gap. For that sake, we
overview different approaches such as recurrent NN (RNN),
gated recurrent units (GRU), LSTM, and temporal convolu-
tional network (TCN) to identify and predict Poisson and
quasi-periodic MTC traffic patterns. We analyze and discuss
their performance trade-offs in terms of accuracy, memory, and
response time. The results evince that the TCN-based predic-
tor provides the best accuracy, although the computational cost
is higher compared to other models. Moreover, our approach
provides a unified framework for assessing the performance
of RNN, GRU, LSTM, and TCN under different traffic
models.

II. SYSTEM MODEL

We consider a single coordinator/base station, which serves
as the gateway of short-range MTDs as depicted in Fig. 1.
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Fig. 1. Illustration of an MTC network in which a coordinator controls
and collects information from the MTDs. The influence of events on the
surrounding MTDs is modeled by a probability function that depends on the
distance from the event epicenter to the MTDs.

The MTDs send packets to the coordinator, which controls all
the information exchange within its cell. Each MTD can be
idle (I), waiting for a triggering event, or active (A), exchang-
ing information with the coordinator. The transition from state
I to A occurs when information exchange between the MTD
and coordinator is triggered due to the detection of an event.
When the MTD goes to state A, it stays there for the duration
of the event. Assume that time is slotted in transmission time
intervals (TTI). In time slot k and state A the MTDs generate
traffic with rate R. In state I the MTDs do not generate traffic.

To model the position of MTDs and event epicenters, we
use Poisson point processes (PPPs) as nodes and events can
be assumed to be stochastically deployed in the Euclidean
plane [10]. The MTDs are deployed according to a 2D homo-
geneous PPP ΦM with density λM . The event epicenters are
represented by a 2D homogeneous PPP ΦE with density λE .
The processes ΦM and ΦE are assumed to be independent,
while the coordinator is at the origin, as in Fig. 1.

A. Influence of an Event Epicenter

To capture the effect of a given event on a sensing MTD,
we define a function p(di ,j ) as the probability that an event
in the i th epicenter (i ∈ ΦE ) triggers an MTD j at a loca-
tion j ∈ ΦM , where di ,j is the distance between them in the
Euclidean plane �2 [15]. Moreover, p(di ,j ) : [0,∞) → [0, 1],
is non-increasing to mimic a decaying influence of events as
the distance di ,j increases [10]. Fig. 1 depicts the influence of
an event epicenter on the surrounding MTDs.

III. MTC TRAFFIC MODELS

The MTC traffic is usually uplink-dominated and char-
acterized by short transmissions combining real-time and
non real-time traffic from multiple sources. According to its
applications, MTC has three elementary traffic patterns [16]:
(i) periodic update (PU), under which devices transmit status
reports regularly, e.g., smart meter reading (gas, electricity,
water); (ii) event-driven (ED), which describes non-periodic
traffic due to a specific random trigger at an unknown time,
e.g., alarms; and (iii) payload exchange (PE), which consists
of bursty traffic that usually comes after PU or ED traffic.

The MTC traffic is often a combination of the aforemen-
tioned types [10]. For instance, an MTD may enter the power
saving mode and trigger a PU pattern at regular intervals, while
an alarm or critical event may activate the MTD and originate
ED followed by PE traffic. Hence, using the three elementary
classes above enables building traffic models with an arbitrary
degree of computational complexity and accuracy [12].

A. Generation of Events

The events are generated over time according to:
1) Poisson Model: The time between the occurrence of

events follows a Poisson distribution with density λT . Then,
each MTD goes to state A with probability

PA = 1− exp

(
−2πλT

∫ ∞

0
p(d)∂d

)
. (1)

2) Quasi-Periodic Traffic: This pattern is typical in indus-
trial IoT [17]. Here, we consider MTC traffic characterized by
homogeneous asynchronous periodicity. The transfer intervals
Tj for the j th MTD, the number of time slots between con-
secutive transmissions, are independent and quasi-identically
distributed [17]. The coordinator receives the MTDs’ signals
at independent start times (κj ). The activation probability
and transmission duration for each MTD are denoted by
PAj

∈ [0, 1] and δj respectively. The latter denotes the number
of time slots required for each transmission. Finally, packets
from a single MTD are transmitted with start time tj such that

tj = (κj + (m − 1)Tj )Bj , m = 1, 2, . . . , (2)

where Bj is a Bernoulli random variable with parameter PAj
,

and m denotes the transmission opportunity.

B. Payload Exchange

The PE patterns, whose durations are quantified by δj , are
modeled through the geometric distribution. The parameter q
of the geometric distribution tunes the burstiness of the traffic
generated by an event. Specifically, once in state A, the MTD
remains there for a number k of TTIs with probability

Gk (q) = (1− q)qk , k = 0, 1, . . . (3)

We assume Tj to be large enough so that the probability that
two transmission opportunities overlap due to a relatively large
δj (k TTIs) is almost zero. Note that parameter q allows tun-
ing the temporal correlation of the individual rate processes
of the MTDs and that of the total rate process, mimicking
various MTC applications. For instance, in the case of small
q, the traffic behaves similarly as a Bernoulli process (mem-
oryless) [10]. As q increases, so does the memory since the
total rate at a given time k is correlated with many past val-
ues. Then, once state A is entered, one stays there longer [10].
The traffic exchanged between the coordinator and the MTDs,
when following a Poisson model, may be modeled using an
ergodic Markov chain [10] with two states, I and A.

Fig. 2 shows extracts from the MTDs traffic. Due to unequal
activation probabilities, some MTDs have periodic traffic
patterns, while others are rarely active. Specifically, the val-
ues in the y-axis represent 30 randomly selected MTDs,
while the x-axis is a given time frame of 103 ms extracted
from the traffic. Moreover, the dots represent the time slot in
which the corresponding MTD in the y-axis generates data
packets. The bottom figure shows the quasi-periodic behavior
of the traffic pattern, while the top figure shows a Poisson-like
behavior. These models fit accurately real MTC traffic, such
as the traffic associated with the measurements of tempera-
ture, light, CO2, sound, and humidity from the Smart Campus
network at the University of Oulu [18].1

1Specifically, the models characterize the real data with an estimation error
of less than 9% and a root mean square error (RMSE) of 0.947 for event-driven
traffic and 0.982 for quasi-periodic traffic.
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Fig. 2. Extract of a) Poisson (top), and b) quasi-periodic (bottom) traffic. The
dots represent the time slots (x-axis) where a given MTD (y-axis) is Active.

IV. TRAFFIC PREDICTORS

Herein, we overview the ML predictors used in this letter.
Such ML mechanisms are deployed at the coordinator side to
keep the MTDs simple and energy-efficient. The timestamp of
the traffic data received by the coordinator is used as input for
the ML mechanisms to train the forecasting model, which is
then used to optimize the network performance.2 The MTDs
produce explosively large amounts of data. However, what is
critical to the ML servers is the characteristics of the data
rather than the data itself [19]. Precisely, to predict the arrival
time of the next packet, the coordinator only needs the trained
model and the history of the previous packet timestamps.

A. Recurrent Neural Network (RNN)

NNs are flexible nonlinear models compounded of units
(neurons) that learn patterns from data. Given an appropri-
ate number of nonlinear processing units, NNs can learn from
experience and estimate any complex functional relationship
with high accuracy [20]. Moreover, RNNs constitute powerful
NN dynamic systems for modeling long-term dependencies
in sequential data [20]. The RNN takes one element in the
sequence at each time step and merges the current input with
information from the past time steps to learn inherent patterns.
Traditional RNNs suffer from the gradient vanishing problem
during training due to recurrent operations. The difficulties
in training traditional RNNs are addressed by modern RNN
variants, such as LSTM and GRUs.

1) LSTM is a type of RNN where predictions are made based
on long sequences of previous input values rather than on a
single value [21]. LSTM-based techniques can improve signif-
icantly the learning speed, especially in problems with large
state/action spaces. An LSTM cell is made up of three gates:
the input, the output, and a forget gate. These gates determine
if the information is read (input gate), if it is not relevant and
is disregarded (forget gate), or if it is saved, impacting the
current time step (output gate).

2Although we assume the learning occurs in the coordinator, the model
can be trained offline, while retraining just in case of prediction deviation.
Moreover, the training can be performed using cloud computing and just
updating the trained model at the coordinator in scenarios where both the
MTD and the coordinator should be kept simple and energy efficient.

2) GRU comprises only two gates, namely, an update and
a reset gate. GRU is similar to LSTM, but saving one gating
signal and the associated parameters for training [22].

In this letter, we build up a traditional RNN, an LSTM, and
a GRU architecture with h hidden layers with n1,n2, . . . , and
nh neurons, initial learning rate (ε), root mean square error
(RMSE) loss function, maximum number of epochs (nep),
and using the Adam optimizer [23]. RNN’s learning algorithm
is local in space and time; while its computational complex-
ity per time step and weight is O(1) [24], thus, leading to a
computation complexity O(2× n1 × n2 × · · · × nh).

B. Temporal Convolutional Network (TCN)

A TCN architecture uses a causal convolutional layer to
ensure there is no information leakage from future to past
and to capture complex dependencies in sequential data. This
layer allows the network to operate on a larger scale than a
regular convolutional NN [20]. We build up a TCN architecture
with l convolutional layers, dropout regularization for reducing
overfitting (nodes dropout factor ρ), number of filters (ω),
neurons per layer that connect to the same region (receptive
field, r), convolutional filter (f ) of size 1 × z, exponential
dilation (Λ) equal to 2i for layer i, initial learning rate (ε),
using the Adam optimizer [23]. The complexity is O(f ×ω×r).

The causal convolution ensures that given a series input
x0, x1, . . . , xN , the output at a time t depends only on the
inputs at t and earlier, i.e., xt , xt−1, . . . , xt−r+1 for a given
r. Meanwhile, the dilated causal convolution, i.e., D(t) =∑z−1

i=0 f (i)xt−Λi , enables reaching a large r with few layers
since (Λ) increases exponentially with every layer. However,
the local connection among adjacent time steps is not fully
extracted at higher layers due to the dilated causal convolu-
tion [20]. One disadvantage of TCNs compared to RNNs is
the large memory footprint during inference since the entire
sequence must be computed in the next time step.

V. PERFORMANCE EVALUATION AND DISCUSSIONS

The traffic models in Section II are used to simulate
several traffic traces at the coordinator. In each trace, the
MTDs and the event epicenters are randomly deployed in the
Euclidean plane according to ΦM and ΦE , respectively. The
events are independent, while we assume a negative expo-
nential function to model the influence of events on each
MTD traffic as p(d) = exp (−d). Then,

∫∞
0 p(d) = 1 and

PA = 1− exp (−2πλT ).
Two traffic models are used: Poisson (Section III-A1) with

λT ∈ [1, 50], and quasi-periodic (Section III-A2). In the case
of the latter, the transfer intervals for each MTD are in the
range of 50 − 1000 ms (with variation upper bounded by ±
5% and ± 10%) and the time required for transmission follows
a geometric distribution as in Section III-B. The traffic data are
then used to train the forecasting algorithms. Out of 9.8×104

data samples, 70% are used to perform training, 15% for the
validation set, and the remaining 15% for testing. The MTDs
are deployed with density λM = 10−1(MTDs/m2), and the
TTI is assumed equal to 1 ms. All MTDs are at the state I
at the beginning, and R = 1 packet/TTI. These parameters,
summarized in Table I, are used for all simulations.

The performance of each predictor is the result of 150
Monte Carlo runs, where the position of the MTDs and
the events’ epicenter are randomly distributed in each run.
As a comparison baseline, we use autoregressive integrated
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TABLE I
SIMULATION PARAMETERS

TABLE II
PERFORMANCE COMPARISON OF THE TRAFFIC PREDICTORS FOR

POISSON (GRAY) AND QUASI-PERIODIC (WHITE) TRAFFIC PATTERNS

moving average (ARIMA), a well-known linear statistical
model proposed by Box et al. [25] for time series prediction.
For fairness purposes, the configuration of the predictors was
conceived so that all share the same big-O complexity.

A. Numerical Results

Table II compares the predictors in terms of recall (R),
true positive rate (TPR), true negative rate (TNR), and
accuracy. Specifically, R is an absolute measure of the
ability to perform accurate predictions and is given by
R = (1− 1

M

∑M
i=1 (1− ĝi/gi)

2)1/2, where ĝi and gi are the
estimated and actual inter-arrival values and M represents the
sample size. The higher R metric, the better the data fits.
TPR, computed as true positive/(true positive + false nega-
tive), gives a measure of the false alarm probability.3 TNR,
computed as true negative/(true negative + false positive), mea-
sures the miss-detected information. Meanwhile, the accuracy
metric constitutes a mix of TPR and TNR and is calculated as
(number of correct predictions)/(total number of predictions).
TCN mostly outperforms the other, while ARIMA performs
worst. Moreover, while the gap from TCN to the others is not
significant for quasi-periodic traffic, for Poisson traffic LSTM
is the only one that comes close to TCN.

Fig. 3 illustrates the receiver operating characteristic (ROC)
curves for both traffic models. Notice that TCN outperforms
the other predictors, although not significantly with respect to
LSTM. Observe that the false alarm probability (1 − TPR)
is around 1% for LSTM and TCN, while for the others it is
up to 7.4%. This metric is relevant when modeling scenarios
sensitive to delay and packet loss. Fig. 3 shows the robustness
of the predictors to data distribution changes, where TCN and
LSTM are the most adaptable against variations in the traffic
pattern. Note that LSTM with quasi-periodic traffic variations
of 10% outperforms RNN with 5%, and TCN with 10% out-
performs GRU with 5% traffic variations. For Poisson traffic,

3A higher TPR (lower false alarm probability) implies a better energy
efficiency, as communication attempts with inactive MTD are avoided.

Fig. 3. ROC curves related to each model, for the quasi-periodic traffic with
±5% variation (straight lines) and ±10% variation (dotted lines), the Poisson
traffic model (dash-dotted lines with circle marker). Note that the performance
of the purely random method does not depend on the traffic model used.

TABLE III
COMPLEXITY FOR EACH ML ARCHITECTURE

it is noteworthy that TCN outperforms the other predictors
while LSTM and GRU have similar performance.

It is noteworthy that the predictors perform relatively well
under quasi-periodic traffic conditions, even with variations up
to almost ±30% in TCN and LSTM cases, and up to ±25% in
the rest. Meanwhile, under Poisson traffic, the prediction accu-
racy is more seriously affected due to the inherently stronger
randomness. However, slight variations in Poisson traffic have
no significant impact on the predictors’ accuracy.

B. Complexity Analysis

Table III shows the performance in terms of inference time,
training time, and model size. The three parameters are nor-
malized relative to the total considering the contribution of
each architecture. Notice that TCN and RNN have respectively
the largest and smallest model size. Meanwhile, regarding
inference time, TCN and LSTM are the fastest and lowest,
respectively. However, LSTM needs less training time to reach
a viable forecasting model while TCN requires more.

In any case, a deeper network architecture would enhance
the prediction accuracy by enabling the extraction of more
relevant information, but at the expense of an increased com-
plexity, training and inference time. Notice that model size and
training data size should be adjusted according to the hardware
at the BS, the requirements of the application, the number of
devices, and target packet error rate [12].

Fig. 4a) shows the performance versus model complexity.
TPR increases when a deeper architecture is used up to com-
plexity (C) below 1024, while above that the models tend
to overfit. The gap between TCN and RNN decreases after
reaching the best performance. LSTM, which attains the sec-
ond best performance, needs a deeper architecture to reach
its best prediction performance. GRU converges faster than
LSTM, thus reaching the best performance with a less com-
plex model. This is because GRU typically has fewer trainable
parameters [26]. All in all, TCN shows the best prediction
accuracy regardless of the network depth. Regarding model
size, a deeper TCN architecture demands more computational
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Fig. 4. Performance in terms of a) true positive rate and model size (top), and
b) inference and training time (bottom), as a function of complexity O(C) and
for Poisson traffic. Values in y-axes in b) and right y-axis in a) are normalized.

resources (right y-axis), increasing the gap to other models,
while the gap between LSTM and GRU increases slightly.

Fig. 4b) shows the relative time for different model com-
plexities. For inference time (left y-axis), LSTM is the slowest
regardless of the complexity, while the gap between TCN
and GRU decreases with the complexity. For training time,
a deeper architecture increases the gap between TCN and the
others, while LSTM has the fastest convergence.

VI. CONCLUSION

We compared and analyzed several traffic forecasting meth-
ods. We considered a system model using independent Poisson
point processes for spatial modeling of MTDs and event
epicenters. Furthermore, Poisson and quasi-periodic traffic pat-
terns were modeled while taking into account event-driven
traffic patterns with geometrically distributed burst duration.
We showed the superiority of TCN and the extremely poor
accuracy attained by RNN. Under quasi-periodic traffic, LSTM
and TCN outperform the other methods with similar results in
terms of prediction accuracy. However, the former is superior
in terms of inference time, while the training time is smaller
when using LSTM. On the other hand, the cost of running a
TCN-based predictor is far higher (around 3 times) than the
other baselines in terms of memory footprint.
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