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Abstract—This article introduces the IEEE Standard P2716 
“Guide for the Characterization of the Effectiveness of Printed 
Circuit Board Level Shielding.” After introducing the peculiarities 
of board level shielding, the shielding effectiveness (SE) mea-
surement methods in the guide are summarized, and some Board 
Level Shield results from a round robin conducted by the P2716 
group are presented.
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Shielding

I. Introduction

THE IEEE Standards Association has just published IEEE Standard 
P2716 “Guide for the Characterization of the Effectiveness of 
Printed Circuit Board Level Shielding” [1]. This is the first stan-
dards document that considers the specific topic of board level 
shielding.

Historically shielding standards began with the need to mea-
sure the shielding effectiveness of large enclosures such as 
screened rooms (e.g. MIL std. 285 [2] later replaced by the IEEE 
Std. 299 [3]). In such cases full-size EMC measurement anten-
nas may be used and will easily fit in a room sized enclosure. 
With the need to measure the shielding of smaller equipment 
enclosures leading to the development of IEE Std. 299.1 for 
smaller enclosures [4] having dimensions between 2 m and 
0.1 m. IEEE Std. 299.1 recommends the use of electrically small 
monopole antennas for these small enclosures. Board level 
shields typically have dimensions less than 0.1 m and the small-
est available are only a few millimeters in size. This severely 
limits the choice of antenna inside the shield.

A. Board Level Shielding

Board level shielding allows sensitive circuits, or significant emit-
ters of radiation, to have their own shielding directly on the print-

ed circuit board (PCB), such as shown in Fig. 1. This can be more 
cost effective than shielding the whole board or equipment as a 
low-cost plastic enclosure can be used. It also means that sensi-
tive components on a board can be shielded from the emitters on 
the board.

II. Board level shielding measurement

The shielding effectiveness (SE) of a Board Level Shield (BLS) is 
typically defined as the ratio of power received by an antenna 
with no BLS present, Pwo, to the power received by the same 
antenna with the BLS present, Pwi

						      (1)

A. PCB Test Fixture

In order to measure the SE of a BLS it is mounted on a test fix-
ture. Two types of test fixture are considered in IEEE Standard 
P2716. The first type aims to replicate the installation of the 
BLS on a PCB. Fig. 2 shows an example of such a fixture with 
a two-part shield attached. The BLS frame is soldered to a 
copper outline on the top surface of the PCB that is connected 
to the ground plane on the bottom of the PCB by means of a 
large number of vias. A short PCB trace is used as an antenna 
inside the shield to enable the measurement of SE. It is impor-
tant to note that some energy may enter or leave the shield 
due to the gaps in the vias between the top and bottom of the 
board and this may influence the SE measurement if the via 
spacing is too large.
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Fig. 1. Board level shield on a Wi-Fi router. 
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a) with shield lid removed showing stripline

 

b) with shield lid in place

Fig. 2. A typical BLS PCB test fixture

The second type of jig mounts the BLS as a cover to an aper-
ture in an enclosure. Fig. 3 shows an example of this type of 
jig, which is fabricated as a custom plate with an aperture 
which is slightly smaller than the BLS, designed to fit over a 
larger general-purpose SE measurement aperture. The BLS is 
clamped to the plate by means of a non-conductive screw 
that presses on the BLS. The plate is attached to the main 
enclosure by metallic screws with a clamping frame for stiff-
ness and a conductive gasket to minimize leakage around the 
plate edge.

Fig. 3. A typical BLS aperture cover text fixture

With this type of fixture the SE measurement can be used to mea-
sure the leakage of energy though BLS directly but does not aim to 
replicate the effect of the PCB mounting.

B. Stripline Test Method

Here a PCB test fixture such as shown in Fig. 2 is placed in a par-
allel plate stripline such as shown in Fig. 4 and Fig. 5. This is based 
on the stripline method used in IC EMC standards [5] and [6], and 
measurement of conductive gasket performance [7].

Fig. 4. Cross section of BLS stripline setup

Fig. 5. Stripline for BLS SE measurement

The BLS is illuminated by the “plane” wave travelling in the strip-
line, and the shielding effectiveness defined as in (1).

This method has the advantage of providing a compact test envi-
ronment and has been found to correlate well with the reverbera-
tion chamber method described below. However, as the shield is 
only illuminated with a wave from a single direction, with a single 
polarization the measured SE may vary with the orientation of the 
shield. The method can be used from very low frequencies and the 
stripline has been shown to give useful results up to 40 GHz for 
gasket measurements [7].
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C. Reverberation Chamber Method

Here a board level test fixture such as shown in Fig. 2 is placed in 
a reverberation chamber. A reverberation chamber is an electri-
cally large conductive shielding enclosure with some means of 
altering the electromagnetic modal structure, such as a mechani-
cal stirrer, operated in a frequency range where a significant num-
ber of modes are excited at any given frequency [8]. The coupling 
between the antenna under the BLS and an external antenna is 
measured as shown in Fig. 6. The received power levels are aver-
aged over a number of stirrer positions so (1) becomes:

						      (2)

where 〈P〉 indicates an average over all stirrer positions [9]. Some 
alternative definitions for SE and indication of its variability as the 
chamber is stirred are described in [10].

Fig. 6. Reverberation chamber setup for BLS SE

This method has the advantage that the shield is illuminated from all 
directions with all polarizations and the mean SE result tends to be 
independent of the detailed arrangement of the jig, antenna and cables 
in the chamber, and the statistical variation as the chamber is stirred 
can be used to give a measure of the variability of shielding over a 
range of applications and illuminations. The shield is mounted on a PCB 
and the configuration is similar to that in actual use. However the cham-
ber is larger and the measurement more complex and time consuming 
than the stripline method above. The lowest useable frequency of the 
reverberation chamber (typically a few hundred megahertz for medium 
size chambers), limits the measurement frequency range. The upper 
frequency limit of measurement is likely to be bounded by the point at 
which chamber losses limit the reverberation chamber. Reverberation 
chamber measurements have been demonstrated up to 60 GHz [11]. 

D. Dual Reverberation Chamber Method

In this method the BLS is mounted over an aperture in the wall 
between two reverberation chambers using a fixture such as that 
shown in Fig. 3. This can be done by placing a small inner (nested) 
chamber in a larger outer chamber (Fig. 7) or by building two 
chambers with a common wall.

In this method a SE value may be measured by exciting an antenna in 
one chamber and measuring the power received in the other as in (2). 
In practice the SE measured will depend on the Q-factor of the partic-
ular chambers used and does not directly correspond to the use case 

on a PCB due to the different geometry. A four antenna measurement 
method as illustrated in Fig. 7 allows for any chamber effect to be 
removed and is described in detail in IEEE Standard P2716, Annex C 
[1] based on the work of Holloway et al [12]. The method is also capa-
ble of measuring the transmission cross-section of the BLS, a metric 
which can be used to determine the shielding performance of the 
shield independent of how it is used [13]. In practice if the aperture of 
the shielding jig is small compared to the size of the chambers, the 
two antenna method gives a good estimate of the SE.

Fig. 7. Dual reverberation chamber method

E. GTEM Method

It is also possible to measure the SE of a BLS by placing the BLS in 
an aperture of an enclosure illuminated by a plane wave. The 
method described in IEEE Standard P2716 [1] uses a GTEM cell 
[14] to generate the plane wave but other TEM cells, anechoic 
chambers etc. would also be viable.

Fig. 8. Test enclosure for BLS measurement in GTEM
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The enclosure used in this case is an asymmetrical metal box 
without any parallel or orthogonal faces. The box is shown in  
Fig. 8. The shape was chosen to maximize the spectral density of 
modes which can propagate. The enclosure is also loaded with 
radio absorptive material (RAM) to minimize any resonant effects. 
Individual mounting plates were fabricated for each BLS to cover 
the enclosure aperture as shown in Fig. 9.

The SE for this method is calculated as the ratio of power received 
by an antenna in the enclosure without the shield attached to the 
mounting plate, to that with the shield attached as in (1).

In this method the SE measured depends on the details and load-
ing of the enclosure used, so is most suitable for comparing the SE 
of a number of shields. As with the stripline methods, if only a sin-
gle direction of illumination and/or polarization is used the value of 
SE measured may also depend on the orientation of the shield with 
respect to the incident wave. The method is limited in frequency at 
the lower end by the size at which the test enclosure is able to 
propagate energy internally (about half a wavelength of the largest 
cross-section), and at the upper end by the formation of Higher 
order modes in the GTEM cell (typically 1GHz, depending on the 
GTEM cell size and quality) or transmission line used. If the test fix-
ture were used in an anechoic chamber, then the lower and upper 
frequency are limited by chamber performance.

Fig. 9. BLS mounting fixtures, and reference blanking plate (bottom 

left) for GTEM enclosure.

III. BLS shielding Round robin

A. Methodology

A set of 6 identical types of BLS were sent to a number of labs 
where the various methods described above were used to mea-
sure the SE of each BLS. Each lab received its own set of shields 
so some of the variability in the measurements may be accounted 
for in manufacturing tolerances resulting in some differences 
between the shields. It was not possible for every lab to measure 
every sample.

TABLE I. Description of Key for Results Graphs

B. Measurement Dynamic Range

The dynamic range of a measurement determines the maximum 
SE that can be measured and depends on the equipment used, 
and its settings, as well as the type and detail of the test setup. 
The first factor that determines the dynamic range of any SE 
measurement is the ratio of the source power to the noise power 
in the device that measures the received power. The noise power 
in the measurement device may be reduced by decreasing the 
measurement bandwidth, with a concomitant increase in mea-
surement time. The second factor is the transmission loss in the 
jig which reduces the power at the receiver, and hence the 
dynamic range. Another important factor which may further 
reduce the measurement range in shielding measurements is the 
leakage between source and receiver that occurs due to imper-
fections in the shielding of the cables, connectors, chambers, 
and mounting jigs. Care must be taken to minimize this effect.

Fig 10. Measurement dynamic range, as maximum measureable SE 

achieved in the round robin

Fig. 10 shows the dynamic range achieved by some of the measure-
ment setups used in the round robin. It can be seen that most of the 
methods here achieved over 70dB at best, but in all methods the 
dynamic range tends to reduce at lower frequencies due to higher 
coupling losses between the antennas, and at high frequencies due 
to increased chamber losses. In all the methods the dynamic range 
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tends to be poor at low frequencies due to the sensitivity of the small 
antenna inside the BLS decreasing as the frequency is reduced. 

C. Sample 1 SE Results

Fig 11. Sample 1, 20.4 mm x38.4 mm x 10.2mm BLS with tear off lid.

Fig 12. Sample 1 with back illumination showing gaps where lid joins 

and corners of the sides

The first sample is shown in Fig. 11 and Fig. 12. It is designed for 
surface mount. It has a number of gaps at the corners between the 
sides, and between the top and sides, as well as ventilation holes 
in the top and sides. All of these apertures are a major factor in deter-
mining the SE in operation. We anticipate that the separation of the 
gaps may be affected by manufacturing and installation tolerances 
and hence will affect the reproducibility of SE measurements.

Fig. 13. Sample 1 SE measured in the round-robin

Fig. 13 shows the SE measured in the various labs using the 
methods described above. It can be seen that the stripline 
and RC method show good correlation. The dual RC mea-
surements show similar behavior but with some differences 
in the level measured. The GTEM method shows a much 
lower level of SE.

D. Sample 2 SE Results

Fig 14. Sample 2, 51.2 mm x 38.4 mm x 5.24mm BLS with clip on lid

Sample 2 consists of a frame with a clip-on lid (Fig. 14). The 
frame has a castellated base designed for surface mount. 
The lid has 8 dimples on each side, which mate with holes in 
the frame. Any coupling into the shield is via the castella-
tions and the gaps between the dimples connecting lid and 
frame. 

Fig. 15 shows the SE measured during the round-robin 
tests. Most of the measurements correspond well at fre-
quencies above 2 GHz, but the GTEM and Dual RC 1 give a 
much lower SE.

Fig. 15. Sample 2 SE measured in the round-robin
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E. Sample 3 SE Results

Fig. 16. Sample 3, 30 mm x 11 mm x 2mm

Sample 3 (Fig. 16) is a small surface mount shield. The measured 
SE results (Fig. 17) correlate well above 4 GHz for most of the 
techniques, but show considerable divergence below 4 GHz. As 
with previous samples, the GTEM method shows a lower SE value 
than the other techniques.

Fig. 17. Sample 3 SE measured in the round-robin

F. Sample 4 SE Results

Fig. 18. Sample 4, 30 mm x 30 mm x 3mm BLS

Sample 4 (Fig. 18) is a surface mount shield with ventilation holes 
and with some castellation on the edges.

The form of the measured SE (Fig. 19) correlates well across the 
range but there are substantial differences in the actual levels 
measured across the range of measurements.

Fig. 19. Sample 4 SE measured in the round-robin

G. Sample 5 measured SE

Fig. 20. Sample 5, 30 mm x 30 mm x 3mm BLS

Fig. 21. Sample 5 SE measured in the round-robin

Sample 5 is also a surface mount shield, with castellations on the 
edges which attach to the board (Fig. 20).
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The SE measurements correspond well for the striplines, RC 1 and 
the Dual VIRC, whereas Dual RC 2 gives a substantially higher 
value. The GTEM cell and RC 2 give substantially lower values.

H. Sample 6 Measured SE

Fig. 22. Sample 6, 60 mm x 60 mm x 3mm BLS

Fig. 23. Sample 6 SE measured in the round-robin

Sample 6 is a two part shield of the same construction as Sample 
2, but larger in size.

For this sample the measured SE values agree well over much of 
the frequency range for all the methods.

I. Sample 7 Measured SE

Sample 7 is a very small shield and most of the labs were unable 
to measure it with their existing jigs.

Whilst the stripline 2 measurement shows a SE of about 35 dB 
over much of the frequency range, the GTEM and Dual VIRC show 
zero shielding, with negative excursions.

V. Conclusion

It should be noted that the different methods of measuring SE are 
not all measuring the same scenario so the same results for mea-

sured SE should not be expected. The stripline and reverberation 
chamber methods are the closest approximations to the typical 
use case, and correlate well in some cases, though significant dis-
crepancies can be seen in places. The principal difference 
between the two methods is that the stripline illuminated the 
shield with only one direction and polarization, whereas the RC 
illuminates with a large number of directions and polarizations 
which are averaged to give the overall SE value. Some differences 
should be expected. The dual RC, VIRC and GTEM methods mea-
sure the transmission through the shield mounted in a wall 
between two chambers, which is quite different from the typical 
on-PCB use case. However, all the methods indicate the leakage 
due to imperfections in the shield such as holes, seams and joints.

Fig. 24. Sample 7, 2.6mm x 2.6mm x 0.9mm

Fig. 25. Sample 7 SE measured in the round-robin

A significant challenge with all these measurements is the attach-
ment of the shield to the jig. The shield can be soldered to the jig, 
and this gives a good performance, but is extremely difficult to 
remove the shield once soldered and also to remove the solder 
sufficiently well that another shield can be soldered in place with-
out distortion. Also, solder may partially fill castellations on the 
mounting surface, which alters the SE. Simply clamping the shield 
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to the jig seems an attractive alternative, but as the shields are 
mostly thin metal structures, it is difficult to ensure that the shield 
is not distorted, and that good contact is made with the jig [15]. 
Distortion of the shield can open, or close joints and seams, and 
also open up gaps in the mounting edge, all of which affect the SE. 
The use of silver conductive paint has been shown to be an effec-
tive solution for jig re-use [16], but again care is needed not to fill 
holes with the paint and the joint is easily fractured when han-
dling. The use of a gasket on the base may be an alternative solu-
tion but has not been tested in our work. For the methods where 
the shield is mounted on a printed circuit board, leakage through 
the vias connecting the top and bottom board planes around the 
edge of the shield and around the connectors may also be sources 
of leakage [17].
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good contact is made with the jig [15]. Distortion of the shield 
can open, or close joints and seams, and also open up gaps in 
the mounting edge all of which affect the SE. The use of silver 
conductive paint has been shown to be an effective solution for 
jig re-use [16], but again care is needed not to fill holes with the 
paint and the joint is easily fractures when handling. The use of 
a gasket on the base may be an alternative solution but has not 
been tested in our work. For the methods where the shield is 
mounted on a printed circuit board, leakage through the vias 
connecting the top and bottom board planes around the edge of 
the shield and around the connectors may also be sources of 
leakage [17]. 
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