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Abstract—The role of electricity theft detection (ETD) is critical
to maintain cost-efficiency in smart grids. However, existing ETD
methods cannot efficiently handle the sheer volume of data now
available, being limited by issues such as missing values, high
variance and non-linearity. An integrated infrastructure is also re-
quired for synchronizing diverse procedures in electricity theft clas-
sification. To help address such problems, a novel ETD framework
is proposed that combines three distinct modules. The first module
handles missing values, outliers, and unstandardised electricity
consumption data. The second module employs a newly proposed
hybrid class balancing approach to deal with highly imbalanced
datasets. The third module utilises an improved artificial neural
network (iANN) based classification engine, to predict electricity
theft cases accurately and efficiently. We propose three distinctive
mechanisms, including hyper-parameters tuning, regularization
and skip connections, to improve the performance of standard ANN
to handle more complex classification tasks using smart meter (SM)
data. Furthermore, various structures of iANN are investigated to
improve the generalization and function fitting capabilities of the
final classification. Numerical results from real-world energy usage
datasets confirm that the proposed ETD model has superior perfor-
mance compared to existing machine learning and deep learning
methods, and can effectively be applied to industrial applications.

Index Terms—Classification, electricity theft detection, smart
grid, smart meter data.

I. INTRODUCTION

ENERGY crises are real, extensive and seem to be long-
lasting. This is neither inevitable nor desirable. During

the transfer of energy, power system networks encounter two
types of losses: technical losses (TL) and non-technical losses
(NTL) [1]. TL are inherent and cannot be averted because
of their occurrence in transformers, cables and long-distance
transmission lines during the transfer of energy. NTL has long
plagued the utilities and has two dominant components, namely
electricity theft and non-payment of utility bills.
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Electricity theft with its many facets usually has an enormous
cost to utilities compared to non-payment because of energy
wastage and power quality problems. It has always been a
problem for power utilities and no electric power utility is
immune to power theft. Today, it is estimated that electricity theft
costs the power industry as much as $96 billion/year globally.
In developing countries, this proportion is much higher, with an
estimated cost of $60 billion/year [2]. This huge loss drives up
prices for end-users, increases the need for costly government
subsidies, and cripples utility companies around the globe.

One of the main aims of the smart grid is to lower power
system losses to equate the electricity demand-supply gap. With
the recognition of the Internet of Things (IoT) technologies and
data-driven approaches (based on single-level data collection),
power utilities have enough tools to combat electricity theft and
fraud. The electricity consumption changes frequently and a
large amount of installed IoT devices monitor the multi-source
real-time data, such as climatic factors (wind, solar, tempera-
ture), transmission and the consumers’ electricity usage record.
For example, during the uncertain times of COVID-19, when
people could be spending more time indoors, the quantity of
historical data is big and difficult to analyse [3], [4].

II. RELATED WORK AND CONTRIBUTIONS

Machine learning (ML), deep learning (DL) and time-series
models are the main approaches for electricity theft detection
(ETD) in smart grid. Based on smart meter data, normal and
abnormal power consumption patterns and footprints can be
identified with irregular, longer and higher electricity usage pat-
terns than regular and normal consumption. The ML algorithms
are gradually trained based on supervised learning to determine
the relationship between input features (consumption) and cor-
responding labels (field inspection results). The work described
by [4]–[7] concerns supervised ML algorithms to characterize
the class label of normal and anomalous power consumption
patterns. Since these algorithms utilize already fabricated data,
the computational cost is moderate with no requirement for
new hardware devices and prior knowledge about network
topology. However, there are several shortcomings in existing
classification-based schemes, such as the high false-positive
rate (FPR), time-consuming engagement of experts, and low
adaption to new types of electricity fraud [2].

Given the importance of boosting and DL algorithms, a lim-
ited but growing body of literatures [8]–[11] utilized the publicly
available SGCC (State Grid Corporation of China) dataset and
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successfully applied for NTL detection in smart grid. Hussain
et al. [8] used a feature engineered based category boosting
(CatBoost) algorithm in conjunction with the SMOTETomek
sampling algorithm for ETD. The proposed model achieved an
area under the curve (AUC) score of 92%. However, it is very
challenging for boosting algorithms to attain a higher accuracy
due to the presence of the various outliers, noise and data sparsity
since each estimator in boosting algorithms is obliged to fix
the error of the predecessors. Study in [9] exploited a CNN
based long short term memory (LSTM) model for ETD. In this
proposed hybrid model, CNN is used to automate the feature ex-
traction process, whereas LSTM is used to solve a classification
problem. The authors also utilized the synthetic minority over-
sampling technique (SMOTE) to avoid class imbalance problem.
However, SMOTE algorithm generates synthetic data instances
for minority class samples to obtain an equal distribution of both
majority and minority samples. It causes low generalization and
overfitting problems, resulting in inaccurate prediction model
results for unseen/test data. In [10], the authors proposed a
DL methodology based on multilayer perceptron (MLP) and a
convolutional neural network (CNN) to capture electricity theft
from raw electricity consumption (EC) data. However, a major
drawback of using CNN and MLP networks is their difficulty in
handling large time series data. Due to this, the input is limited
to a fixed size window and the prediction model cannot capture
a descent in the EC data if it occurred before the analysis period.
More recent work in [11] utilized a deep siamese network (DSN)
to discriminate between honest and dishonest consumers in EC
data. The proposed model achieved good prediction results but
at the cost of two shortcomings, as compared to the other well
performing DL methods [12]. First, DSNs are relatively slow
to train due to quadratic pairs learning. Secondly, the output
of DSN does not involve probabilities due to involvement of
the pairwise learning, hence making it not generalizable and
sensitive to some variations in the input [13].

Time-series data analysis methods are widely used in
ETD. For example, autoregressive integrated moving average
(ARIMA) have shown good performance in stable electricity
markets. In this regard, Singh et al. [14] proposed a relative
entropy concept that captures variations in probability distri-
bution obtained from multiple consumers. Similarly, Jokar et
al. [15] made use of energy consumption patterns as a base
recognition system to model the predictability of normal and
abnormal consumption patterns with advanced metering infras-
tructure (AMI). Although statistical methods help capture the
partial non-stationariness in recorded data and could be critical
for ETD, the presence of various outliers and building the model
on raw data may make the classification accuracy unstable.

Macro-level (micro-grid) and micro-level (smart meter) en-
ergy consumption profiles are fundamental to the application of
the classifier. It is essential to enrich the attributes of normal
energy consumers and differentiate the outliers to relate to the
energy theft phenomenon. In a binary classification problem,
various aggregating methods are also used for ETD. In a recent
work, Jindal et al. [16] proposed energy consumption data
aggregation for multiple households in local communities. For
households, the authors employed a decision tree (DT) algorithm

to predict the energy consumption value and, subsequently, a
support vector machine (SVM) classifier was trained on multiple
features to locate customers with anomalous consumption be-
haviour. On a similar task, Pulz et al.[17] used census data to ex-
tract social indicators to find the interdependence between losses
and socio-economic indices for ETD under various scenarios.
Such aggregated data-driven approaches are useful; however,
problems like non-stationary high-volume data measurements
need to be addressed to compose useful clusters.

Mostly, the aforementioned literature focuses on classifier
design or feature engineering algorithms, where conventional
classifiers, e.g., SVM and DT algorithms are popular [3], [19].
However, SVM usually has a high computational cost and it is a
challenge to find optimal values of hyper-parameters to achieve
higher classification results. DT, on the other hand, possesses
over-fitting problems that mean its performance is high during
training (seen data) but not in prediction (unseen data). Besides,
ML and DL methods rarely take Big Data into account and the
experiments are conducted considering load or price data, which
is not sufficient. Thus, theft detection precision could still be
improved considering Big Data from grid sources.

A. Contributions

In this work, we examine binary classification issues for
ETD in smart grids. Our objective is to predict the honest and
dishonest consumers accurately using Big Data from the smart
grid. To achieve this challenging task, we propose an improved
artificial neural network (ANN) for the underpinning framework
that performs energy theft tasks efficiently with normal and
anomalous consumption patterns. Compared to the shallow ML
methods, we preferred to choose ANN for the classification task
because it has stronger non-linear computational and complex
function abilities. Also, it is more suitable for classification
tasks due to many potential advantages to learning essential
laws and key features from mass data. An ANN is formed
when neural structures are constituted in the form of layers.
The computational power of a neural network is attained by
connecting hundreds of single-unit artificial neurons with their
respective weights. The artificial neuron, a processing element,
has weighted inputs and an output associated with a transfer
function. Although ANN is a promising approach, the subse-
quent challenges need to be addressed to predict electricity theft
with higher accuracy:
� Challenge 1 (Highly Imbalanced Theft Data): In real

datasets, data samples are not represented in equal pro-
portion. It is the scenario when the fraudulent instances far
outweigh non-fraud instances. Standard methods to tackle
imbalanced class problems are random over-sampling and
under-sampling. However, due to certain known draw-
backs, the classifier is biased towards majority class sam-
ples (honest consumers) and shows inaccurate performance
for minority class samples (fraudulent in our case). In bi-
nary class problems, the accurate classification of minority
class samples is more important to handle.

� Challenge 2 (High Computational Complexity): The DL
methods are slow to train. According to e.g. [20], the
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Fig. 1. Proposed electricity theft detection framework.

neural networks’ performance is constrained by processing
uncertain pieces of information. Also, these methods have
high computational costs due to the operation of forward
and backward propagations through the hidden layers. In
the ETD process, irrelevant and repetitious features make
the classifier training procedure challenging and prevent it
from being a good fit model, which ultimately lowers the
final prediction outcome of the classifier.

� Challenge 3 (Problem of Limited Generalization and
Over-Fitting): One major difficulty with training deep
architectures is exploding and vanishing gradients. As
back propagation computes gradients using the chain rule,
gradients can exponentially grow or vanish, preventing
weights from updating and thus stalling training. Another
issue faced by neural networks is the internal covariate
shift (ICS) which occurs when the distribution of network
activation changes because of variations in network pa-
rameters during training. As ANNs have a large number
of layers, this shift in input distribution can be problematic
in achieving fast convergence. Also, ANNs have the most
common problems of over fitting, limited generalization
and limited control over convergence and stability.

To address the above mentioned challenges and to assist
electrical utilities to identify energy fraud, we develop a novel
ETD framework, called sequential preprocessing, resampling
and classification (SPRC), as presented in Fig. 1. The main
components of SPRC are sequential preprocessing based on
interpolation, outliers handling and standardization (IOS), hy-
brid data resampler (HDR) and final classification with im-
proved ANN (iANN). Precisely, an interpolation method fills
missing values in the dataset to attain data uniformity. After-
wards, operations like outliers handling and normalization are
performed to make data consistent and set data values between
0-1. Like any other real-world data, electricity theft data also

contain primarily samples of honest (91%>) consumers and
very few data samples are of fraudulent (9%<) consumers. Thus,
we develop an HDR based an adaptive synthetic (ADASYN)
oversampling and near-miss under-sampling (NMU) technique
to obtain balance distribution for classifier training. Once the
data are in well-organized shape, the processed data are sent to
the iANN for final classification. In the proposed framework,
we also propose different iANN structures (sequential, parallel
and other combinations) to improve the generalization and better
function capabilities of the classifier. In contrast to relying on the
output of a single structure, it is expected that numerous mixes of
iANN structures would give higher prediction performance. We
also proposed an integrated preprocessing approach in one of our
recent conference papers and showed some initial results [21].
The current work is built on the same concept but uses a new
procedure for resampling and classifier design and, more impor-
tantly, we investigate different configurations of the iANN and
new methods to improve the ANN performance. In particular, to
achieve higher accuracy and computational efficiency, this paper
makes the following improvements:
� First, an IOS-based data preparation module employs data

imputation, outliers handling and standardization algo-
rithms to ensure data accuracy and critical insights. This
helps reduce human error during inspections, such as typos
or overlooked items missed by the human eye. Secondly,
an HDR combines the advantages of over-sampling and
under-sampling techniques to avoid the severely skewed
class distribution problem for real-world datasets. Finally,
a multi-mode classification engine, based on iANN, is
designed to complete the prediction task. The ANN’s per-
formance is improved by adopting different procedures
such as hyper-parameters tuning, regularization methods
and skip connections (HRS). The HRS-ANN has signifi-
cantly better performance than many ML and DL methods
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proposed in this field. Moreover, among the differ-
ent structures of the multi-mode classification engine
(iANN), the most effective structure is chosen for the final
classification.

� For performance assessment of the proposed methods,
extensive experiments have been conducted on real-world
data traces from the electric grid’s workload. The simula-
tion results reveal that the presented method achieves better
classification results than existing approaches proposed in
this field.

The remainder of this paper is organised as follows. Sec-
tion III presents the data preparation and class balancing mod-
ules. In Section IV, the ANN and its improvement meth-
ods are presented. Section V verifies the proposed framework
with experimental results. Finally, Section VI concludes this
work.

III. SYSTEM FRAMEWORK

The primary issue in ETD methods is to maximize classifi-
cation accuracy. However, various factors affect the electricity
consumption pattern and make the classifier training process
difficult and complex. To enhance proposed framework accu-
racy, we propose a sequential IOS, a newly developed HDR for
class balancing and an HRS-ANN-based improved classification
method. As shown in Fig. 1, the SPRC procedure starts with
ordering and standardizing the raw data. The standardization
methods are essential for the implementation of the whole
framework under consideration. Secondly, the standardised data
are fed into the class balancer to handle class imbalance issues.
Finally, the prepared data are sent to develop the ANN. Since
ANN performance depends on several hyper-parameters, we
employ the simulated annealing (SA) algorithm to tune these
parameters. Furthermore, we use regularization methods such
as batch normalization, early stopping and weight decay for ad-
dressing the dual challenges of generalization and computational
efficiency.

It is well-established that neural network performance de-
grades when more hidden layers are added to the network [22].
However, the addition of hidden layers is essential when han-
dling large datasets in ETD. The addition of extra layers of-
fers better opportunities to learn hierarchical re-composition
of complex features. To avoid the degradation problem, we
propose the use of a skip connection-based ANN to improve
classifier accuracy. Finally, learned from [23], the most effective
topology of multi-mode iANN is utilized for theft prediction. A
detailed explanation of these modules is given in the following
sections.

A. Data Preparations

Data preparation is often the first and most essential step when
analysing electricity consumption data for a specific problem.
This section describes the process of data preparation for which
we apply a sequential IOS method on the collected data. This

includes data imputation, outlier handling and data standardiza-
tion (data centring and scaling). We assume a matrix

X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x11 x12 . . . x1n

x21 x22 . . . x2n

. . . .

. . . .

. . . .

xm1 xm2 . . . xmn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−→
t1−→
t2

.

.

.−→
tm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (1)

where
−→
tk = [xk1, xk2, ...xkn] k ∈ [1,m]. (2)

represents the electricity consumption pattern. The rows and
columns depict the time stamps and the feature index of recorded
data, respectively. The index, i.e., xmn is the n− th component
of the m− th power usage values that require classification.

1) Recovering Missing Data: Due to various reasons, the
recorded data often have missing values. Some of the associ-
ated reasons are failure of hardware, storage issues, unsched-
uled maintenance, unreliable transmission of measurement data
and data corruption. In the present work, the unknown (missed
values) are recovered using an interpolation method [10] based
on,

f(xi) =

{(
xi−1+xi+1

2

)
, ifxi ∈ NaN, xi±1 /∈ NaN,

xi, otherwise,
(3)

where xi is a missed (null) recorded value represented as NaN.
2) Handling Outliers: The presence of outliers increases

data variability and distorts real results. The “three-sigma rule
of thumb” introduced in [10] is used to deal with outliers as
follows,

f(xi) =

{
X, ifxi > X,
xi, otherwise,

(4)

where X is a vector that consists of multiple entries of xi and
can be computed as Avg(X) + 2σ(X). Avg(X) and σ(X)
represent the average value and standard deviation of X .

3) Data Standardization: Often, attributes in historic data
comprises of different scales. We apply the MIN-MAX scaling
method to rescale all the values to the range 0-to-1 as follows,

xnew =
xi −min(x)

max(x)−min(x)
. (5)

B. Hybrid Data Resampler

One of the critical problems which require particular at-
tention in real-world electricity theft datasets is the unequal
data distribution or domination of the majority class (honest
samples) over the minority class (fraud samples). Due to the
imbalanced data distribution of target class, the classifier gets
skewed towards majority class samples and better learn key
characteristics and features belonging to the majority class [24].
As a result, minority samples are most often left unattended, and
hence the classifier shows inaccurate prediction results towards
fraud cases (minority class samples).
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To address the above-mentioned issue, a strategic combi-
nation of both over-sampling and under-sampling techniques
are proposed to reduce the misclassification cost of minority
samples. The proposed novel method is named HDR, and it is
used for the first time to solve the unequal class distribution
problem in this framework design.

In HDR, ADASYN [25] and NMU [26] are employed se-
quentially. First, ADASYN synthetically generates alternatives
(not duplicates) for each observation of the minority class. Let
mj and mi be the observations of majority and minority class
samples respectively, such that mi ≤ mj and mi +mj = m.
The degree of imbalanced ratio is calculated using d = mi

mj
. The

cumulative number of synthetic samples required for the minor-
ity class is determined as G = (mj −mi)× β. The variable β
represents the desired balanced level of minority and majority
samples after applying ADASYN. An ideal situation arises when
β = 1, meaning that the minority and majority samples are
equal. For each observation of the minority class, xi ∈ mi, the
k nearest numbers are obtained based on Euclidean distance to
calculate the ratio ri =

majority samples
k . After normalizing the

density distribution r̂i =
ri∑
ri

, the synthetic samples to generate
per neighbourhood are calculated using gi = r̂i ×G. Finally,
synthetic data alternatives Si are generated using the following
equation,

Si = xi + λ(xk − xi) (6)

where variable λ represents a random number λ ∈ [0, 1] and
(xk − xi) is the difference vector inn dimensional space. Unlike
ADASYN, the NMU is based on the nearest neighbour algo-
rithm with multiple variants to remove unnecessary majority
class observations from class boundaries. First, the number of
majority and minority class observations are counted. Secondly,
the average distance of majority class observations to each mi-
nority class observation d(mi,mj) is calculated based on their
Euclidean distances. Finally, each minority class observation
picks three closest k nearest majority class observations in the
majority class. The resampled dataset has only those majority
class observations which have the least distance with minority
observations in the feature space and discards the others. This
procedure repeats until the algorithm achieves a uniform distri-
bution for both classes.

Note that the efficiency of the iANN classifier in terms of
ADASYN, NMU and HDR (ADASYN+NMU) is evaluated in
Section V-C.

IV. CLASSIFIER ADJUSTMENT

After the two stages of data preparations and resampling, the
data are in a standardised form to train the classifier. This section
provides a detailed description of our proposal to accomplish the
final classification task. Since the ANN is robust and efficient
enough for supervised learning tasks, we choose ANN as the
classifier.

A. Problem Formulation

In this paper, the classification problem is modelled to com-
pute binary cross entropy loss between actual and predicted class

using the following equation,

L=− 1

N

[
N∑
i=1

yi × log(hθ(xi))+(1−yi)log(1−hθ(xi))

]
(7)

where N and yi denote training samples and true class value for
the input-output pair (xi, yi). The non-linear hypothesis hθ(x)
of the neural network is calculated below,

hθ(x) = f(wTx+ b), (8)

where w and b represent weights and biases to train the model,
and the activation function is denoted by f(.) : R → R. Com-
pared to the conventional logistic sigmoid function and hyper-
bolic tangent, we prefer rectified linear unit (ReLU) f(z) =
max{0, z} to increase the ANN learning rate. For a given
sample, the output value (activation) of unit i in layer k is defined
as follows,

aki = f(zki ) = f(wk−1
i1

ak−1
1 + wk−1

i2
ak−1
2

+...+ wk−1
ipk−1

ak−1
pk−1

+ bk−1
i ) (9)

where zki denotes the weighted sum of all activations aki , pk
denotes the number of neurons in layer k. Similarly, input layer
K1 and output layer Knk

units activation are computed as,

a1i = xi, (10)

hθ(x) = ank
i = f(wnk−1

i1
ank−1
1 + wnk−1

i2
ank−1
2

+ ...+ wnk−1
ipnk−1

ank−1
pnk−1

+ bnk−1
i ). (11)

The activations of each unit in the input, output and hidden
layers are computed using forward propagation. The objective
is to minimize L by adjusting the trainable parameters w and
b using a stochastic gradient descent (SGD) algorithm. For this
purpose, first small random values (near zero) of wk

ij and bki are
initialized and forward propagation computes the activation of
each unit from the first hidden layer towards the final layer. In
every iteration of the SGD algorithm, each parameter is updated
in order to minimise the loss as follows,

wk
ij = wk

ij − α
∂L(w, b)

∂ wk
ij

(12)

bki = bki − α
∂L(w, b)

∂ bki
, (13)

whereα represents the learning rate. We apply back-propagation
to compute the partial derivatives and update each weight in the
network, thereby minimizing the error for each output neuron
and the network as a whole. The back-propagation algorithm is
based on four fundamental steps to compute the error (δk) and
the gradient of the cost function [27].

1) First, the forward propagation computes the activation of
each unit in layer K2 up to the layer Knk

.
2) Calculate the residual (error) for each unit i in layer nk,

δnk
i =

∂

∂znk
i

|yi − hθ(xi)| = −(yi − ank
i )f́(znk

i ). (14)
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3) Calculate the residual in each unit i in layer k, k= nk −1,
nk −2,.. ., 2,

δki =

⎛
⎝pk+1∑

j

wk
jiδ

k+1
j

⎞
⎠ f́(zki ). (15)

4) Calculate the partial derivatives with respect to w and b,

akj δ
k+1
i =

∂L(w, b)

∂ wk
ij

, δk+1
i =

∂L(w, b)

∂ bki
. (16)

5) Finally, weight updating to minimise the error,

Δwk
ij = −αL(w, b)

∂wk
ij

. (17)

With the process of back forward and iterative steps of SGD,
the neural network is trained to decrease the cost function in (7).

B. Optimal Classification

As discussed before, the main objective of this framework
design is to minimize the loss function given in (7). However,
there exists a strong relationship among the loss function and
ANN hyper-parameters, which are the number of hidden layers,
activation function, batch size and learning rate. It is hard to
obtain optimal values of hyper-parameters to improve accuracy
and efficiency. The conventional methods adopted for the ad-
justment of ANN’s hyper-parameters are the SGD algorithm
or cross-validation [18]. However, the adoption of these two
methods may lead to higher computational costs and conver-
gence problems. DL models are computationally expensive.
According to [28], DL models are approaching computational
limits. The researchers discovered that DL models advancement
has been “strongly reliant” on increased computational power.
They asserted that continued progress would require “dramati-
cally” more efficient computational DL methods, either through
modifications to existing methods or new as-yet-undiscovered
procedures. In SPRC, therefore, HRS methods are applied for
optimal classification. These methods are described below.

1) Simulated Annealing-Based ANN: For practical and com-
putationally hard optimization problems, the SA algorithm is
preferred over exact algorithms such as gradient descent [29].
The main inspiration behind the algorithm operation is annealing
mechanism in metallurgy that fist applies the heating process
followed by a gradual cooling procedure of substance to obtain
defect-free crystals [29]. The task is performed in three steps:
initialization, transition mechanism for diverse states, and fi-
nally, the cooling schedule composed of an objective function
with multiple variables. The elements in the SA algorithm are
represented by a vector that contains hyperparameter values for
optimization. This procedure is repeated unless the optimal val-
ues of all hyper-parameters given in Tables I and II are obtained.
It is pertinent to mention that important hyper-parameters as well
as their initial values for ML models (used later for comparison
in Section V) and iANN are borrowed from Ref. [2]. The four
main steps of the SA algorithm are as follows:

i. Start with random initialization of population.

TABLE I
ANN HYPER-PARAMETERS USING SIMULATED ANNEALING

ii. At each iteration, evaluate more suitable solution consid-
ering the fitness (objective) function.

iii. Selection of new solution based on a probability-based
decision whether to discard or retain current solution.

iv. Progressive decrease in temperature from a maximum to
the minimum (zero) values. An inadequate solution receives a
zero moving probability, while a positive moving probability is
assigned to the adequate solution.

For parameter tuning, a hyper-parameters application pro-
gramming interface (API) is used to configure hyper-parameters
automatically [31]. The optimization toolkit is highly adaptable
to perform model optimization for different preprocessing and
classification modules. Contrary to the traditional tedious search
methods, it searches the best combination of hyper-parameters
in an automated manner and can therefore outperform human
professionals and experts in algorithms design.

2) The Role of Regularization: Regularizations are the pro-
cess of modifying a learning algorithm to prevent over-fitting.
Regularizers help limit the learning process to a subset of
the hypothesis space with manageable complexity. With the
adoption of modern regularization techniques such as batch
normalization, early stopping and weight decay to penalize large
weights, the effective Rademacher complexity of the possible
solutions is dramatically reduced [32].

a). Batch normalization accelerates the learning process of
deep ANN and reduces ICS problem and generalization error.
It stabilizes the initial random weights and configuration of the
learning algorithm to achieve a stable distribution of activation
throughout training [33]. ICS of activation i at time t is defined
as the difference,

||Gt,i −G′
t,i||2 (18)
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w
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where L is loss, wt
1,. . ., wt are the parameters of each nk layers,

Gt,i corresponds to the gradient of the layer parameters, and
G′

t,i is the same gradient after all the previous layers have been
updated with their new values.

b). An early stopping technique is incorporated into the train-
ing process, which not only prevents over-fitting but helps train
a model with fewer epochs [34]. It is a form of regularization
that allows an arbitrarily large number of training epochs and
terminates the training process when model performance stops
improving.
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TABLE II
HYPER-PARAMETERS OF THE BENCHMARK MODELS

C). Weight decay is a well-established regularization tech-
nique to keep neural network weights small and avoid an explod-
ing gradient [35]. The general formula for updating the weights
as follows,

wt+1
i = wt

i − η
∂L

∂wi
− μΔwt−1

i , (21)

where η and μ represent learning rate and momentum terms in
the ANN, respectively. The simple addition of a regularization
term to prevent over-fitting and to constrain the magnitude of
the weights is as follows,

wt
i = wt

i − η
∂L

∂wi
− μΔwt−1

i −Υwt
i . (22)

where Υ is a weight decay parameter to control the relative
importance of regularization. When Υ = 0, the weight decay
property can be easily disabled to obtain typical behaviour.

Cross-validation (CV) is a standard well-performing method
for generalized model performance evaluation. The SGCC
dataset has a relatively high imbalance distribution of the target
class values and using traditional k-fold CV may lead to incon-
sistent test results [36]. We use stratified k-fold CV (SCV), an
advanced version of k-fold CV, to obtain an equal distribution of
both classes. As a result, a small difference between the testing
performance of the model is obtained. Guided by feedback from
the SCV used in our experiments, we received very reliable
estimates when using 6-fold SCV for iANN.

3) Role of Skip Connections: The original intuition “the
deeper the better” is not always useful to learn complex features
and representations. A research team at Microsoft [22] investi-
gated the relationship between depth and network performance
and established that the percentage error for a 56-layer network
is higher than a 20-layer network on both training and testing
data. This problem of training very deep networks has been
addressed to a greater extent with recently developed residual
neural networks (ResNets)[37]. ResNets feature residual or
skip connections to distribute learning behaviour across layers,
display minimum decay in gradients and make the training of
individual residual blocks easier. In ResNets, a direct connection
skips some layers (this may vary in different models) in between
and connects directly to the output. This connection is called
‘skip connection’ and is the core of residual blocks. The overall
representation of the residual block becomes,

Xl+1 = Ψ(Fl(xl) + xl) (23)

where Fl represents the residual function and Ψ(x) is the ReLU
activation max(0, x).

C. Multi-Block Classification Engine

Enlightened by the findings of [23], we develop various iANN
based classification engines and extensive experiments have
been conducted to achieve higher convergence accuracy and
time management. All variables in the classification engine are
optimized either using the regularization method described in
Section IV-B or with rigorous trial and error to increase the
training mechanism and classification engine precision. More-
over, we implement various models of the suggested classifi-
cation engine, based on iANN, with numerous mixes such as
the sequential/cascade framework, sequential-parallel, parallel-
sequential and combined parallel construction, as illustrated in
Fig. 2, in order to choose the best-combined approach.

Fig. 2(a) shows the sequence of the serial iANN blocks. First,
the standardised data are provided to the first iANN block as an
input and the predicted results of this particular block are given
to the next block. The main goal of the model is to fit the error
through performance enhancement. Similarly, Fig. 2(b) presents
the parallel mode of iANN combinations. The sequence of these
blocks is very important to form different connections. As seen
from the figure, the same input at the same time is considered
by all blocks. Also, the same output will be evaluated by this
structure and aggregated as the process result.

Fig. 2(c)-(e) presents the extended building blocks of the
structures mentioned with different topologies. The exogenous
values such as load, price and related parameters in the time
series data are provided to the classification engine as an input
in the form of a matrix. The performance of the extended struc-
tures can be enhanced by assigning higher weights to the best
presentation and by no or low weightings to the weak networks.

With the integration of IOS, HDR and HRS-ANN, the elec-
tricity theft prediction approach can classify fraudulent activity
accurately. The next section explains experiments and analyses
based on illustrative real-world theft data.

V. EXPERIMENTAL RESULTS

A. Case Study Setup and Data Availability

For performance evaluation, five different case studies are
implemented in Google Co-laboratory in accordance with the
system framework devised in Section III. The load profile data
of 42372 consumers is obtained from SGCC for 1035 days i.e.,
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Fig. 2. Structure of the proposed prediction engine; (a): Sequential block, (b): Parallel block, (c): Sequential-Parallel block, (d) Parallel-Sequential block, (e):
Parallel input to Sequential and Parallel block.

TABLE III
METADATA INFORMATION

from 2014 to 2016. Here, 38757 consumers are recognized as
honest and the 3615 consumers as dishonest, as shown in Ta-
ble III. The models are trained and tested on actual SM data. The
SGCC dataset is the only publicly available labeled dataset with
at least one on-field inspection [38]. The data have been divided
into a training and a test dataset to generalize model capabilities
beyond the training/seen dataset. The division is performed in
a stratified manner so that there is the same percentage (%) of
NTL samples in the training and test datasets. The dataset used
for training purposes consists of 80% of the labeled data, while
the test dataset consists of 20%.

B. Performance Metrics

There are four expected outcome values in a confusion matrix
(CM) from a binary classifier i.e., true positives (TP), false
positives (FP), true negatives (TN) and false negatives (FN).
Based on CM results, Accuracy, Precision, Recall and F1-score
performance metrics are computed below,

Accuracy =
TP + TN

TP + TN + FP + FN
, (24)

Precision =
TP

TP + FP
, (25)

Recall =
TP

TP + FN
, (26)

F1Score = 2× Precision×Recall

Precision+Recall
(27)

The AUC score is often chosen as an evaluation metric to
evaluate classification accuracy. It provides more reliable as-
sessment when the class distribution is highly imbalanced. The
mathematical formula for AUC calculation is as follows [10],

AUC =
Σi∈PCRanki − M(1+M)

2

M ×N
(28)

where M and N are the number of positive and negative in-
stances in the positive class (PC), and Ranki is the rank value
of a sample i in an ascending order. The value of AUC highlights
that the probability of choosing a positive number is relatively
higher then choosing a randomly negative number. The curve is
a graphical representation the true positive rate (TPR) and false
positive rate (FPR) plotted on the y-and x-axes, respectively.

True positiverate =
TP

TP + FN
(29)

False positiverate =
FP

FP + TN
(30)

The TPR is the fraction of positive classes labelled correctly
while the FPR represents the fraction of negative class sam-
ples that are misclassified. Notably, the higher the AUC, the
better the classifier’s performance. When the AUC tends straight
up to the maximum value and then turn towards the x-axis, it
indicates that both classes are distinguished perfectly by the
classifier [19]. By contrast, when AUC= 0.5 and the curve point
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Fig. 3. Data representations before and after handling imbalanced class.

Fig. 4. Prediction results before and after resampling

tends towards the diagonal line, this yields that the classifier has
no power to discriminate between both classes.

C. Performance Results

1) Performance of Data Balancing Module: In this section,
we empirically study the effects of no sampling, over-sampling,
under-sampling and HDR on the final classification. Fig. 3(a)
and (b) show the presence of minority and majority classes of
data samples before and after handling the imbalanced class
problem. The majority class samples (green circles) are in much
greater number, as shown in Fig. 3(a), and a biased classification
is expected because the classifier is trained more on negative
samples. Without handling the highly imbalanced data distribu-
tion problem, Fig. 4(a) displays a severe performance loss when
classifying fraudulent users, whereas the values of TN, FN, FP
and TP are 100%, 5%, 0% and 95%, respectively. The honest
customers, TN, are identified 100% correctly; however, the value
of FN is much higher, which means the classifier incorrectly
indicates dishonest consumers as honest.

In ETD, the FN value needs to be reduced because these
consumers are the real culprits who indulged in illegal usage
of electricity. To resolve this issue, we utilize HDR, which effi-
ciently obtains a balanced distribution for minority and majority
classes, as shown in Fig. 3(b). The balanced data distribution
improves model training as well as generalization capabilities.
The improved numerical results are given in the form of the CM
in Fig. 4(b).

Fig. 5. Learning curves

Fig. 6. AUC score for different structures of the multimode classification
engine.

2) iANN Performance Comparison With ANN: We compare
the performance of iANN with standard ANN and the results
are shown in Figs. 5 and 6. Fig. 5 shows the loss (how bad or
good prediction is) graph for ANN and iANN only for twenty
epochs. The irregular upper plot for ANN in Fig. 5(a) reveals
that the prediction results both for training and testing datasets
have small granular feedback on performance. Also, the standard
ANN has issues like overfitting and generalization errors, due
to which it shows unstable performance for test/unseen data.
The lower plot for iANN in Fig. 5(b) reveals that the training
process converges well and the loss is smooth between the proba-
bility distributions. Parameter tuning has a big impact on model
training as it correlates model convergence, model accuracy,
infrastructure resource requirements (as a result of cost) and
training time. In Fig. 6, the AUC score for iANN is 97.9%
compared to the ANN, which has only 93.6%. The superior
performance of iANN mainly comes from the integration of
improvement techniques in DL areas. It jointly employs HRS
first to optimize the hyper-parameters of the ANN, followed
by regularization methods to resolve over-fitting problems and
finally skip connection to distribute the learning behaviour
across the layers. It is pertinent to mention here that the use
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TABLE IV
COMPARISON AMONG DIFFERENT MODES OF CLASSIFICATION ENGINE

TABLE V
ROBUSTNESS COMPARISON AMONG SPRC AND OTHER BENCHMARK SCHEMES

of the SA algorithm increases computational time. However, we
apply two newly developed methods: regularization and skip
connections. Due to the combined effects of these diverse but
interconnected procedures, both higher accuracy and reduction
in computational complexity are achieved simultaneously.

3) Performance Comparison of Different Multi-Block Classi-
fication Engines: This case study employs five different topolo-
gies of iANN, and the one best performing model is selected
as the classification engine. Fig. 6 illustrates AUC curves for
RF, LR, SVM, ANN and iANN with the proposed topology.
Tables I and II show the range of values searched as well as the
optimal value found with the SA algorithm. It is seen in Table IV
that the results obtained from combined topologies of iANN are
comparable. The standalone sequential and parallel topologies,
however, tend to obtain weak classification results because of
the over-fitting problem (and other possible reasons associated
with ANN as described in Section II-A). The results in Table IV
show the superiority of the parallel_sequential (Par_Seq) and
sequential_parallel (Seq_Par) structures. However, we select
Par_Seq topology as the final classifier to guarantee reduced
computational complexity, higher accuracy and robustness of
the prediction results.

4) The SPRC Robustness Comparison With Benchmark Al-
gorithms: Robustness is the ability of a network to perform well
when it is subject to failures. The main aim of this case study is
to examine whether SPRC guarantees network robustness under
multiple scenarios. First, a random noise (Jitter) is added to each
input pattern during network training. The addition of noise is at-
tained via the Gaussian Noise layer in Keras (the software library
used). The layer requires the standard deviation of the noise to
be specified as a parameter. In this way, time-series patterns are
recycled to explicitly learn robust features and the average accu-
racy of the algorithm is observed. Thus, deliberately introducing
noise is one way to help hold our models accountable.

The second way is to observe the model’s performance on
different proportions of training data. The difference is subtle.

TABLE VI
BENCHMARK FRAMEWORKS

A small dataset can cause the network to memorize all training
examples. We seek to have them learn the characteristics of
training data and not memorize them. In essence, DL model
performance is severely affected by the size of input/training
data. The aim is to confirm whether SPRC maintains its superi-
ority when small (60%), medium (70%) and high sizes (80%) of
training samples, compared to the size of all samples, are used as
input to train the classifier. The experimental results in Table V
illustrate that the SPRC achieves higher prediction accuracies for
all sizes of the training dataset compared to the other algorithms
under consideration. It is notable that the conventional schemes
adopt an expanding trend when more data are available for
training. For these data, the SPRC attains a maximum AUC
score of 0.987 and surpasses the other well-known algorithms
in terms of performance metrics. Furthermore, under a similar
training/testing dataset ratio, the comparison results in Table V
have shown that the proposed model can surpass the performance
of other state-of-the-art methods such as CNN-LSTM [9], WD-
CNN [10] and DSN [11] due to the reasons as discussed in
Section II.

5) The SPRC Performance on Theft Detection: This case
study compares the theft detection performance of the SPRC
approach with other benchmark approaches. The benchmarks
considered for this investigation are given in Table VI. As dis-
played in Fig. 6, the SPRC has a higher AUC score for electricity
theft prediction of this data set than all the benchmarks. The
comparison among frameworks A, B, C, D, E and SPRC in
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Fig. 7. Comparison of accuracy among SPRC and benchmark frameworks.

TABLE VII
COMPUTATIONAL TIME VS ACCURACY

Fig. 7 suggests that every module with the relevant descrip-
tion we proposed, can increase the accuracy of electricity theft
prediction. The classifier learns the problem much faster if we
can better expose the structure to the network for learning. The
SPRC prepares quality data with IOS followed by HDR to curb
the class imbalance problem. The hyper-parameter tuning, regu-
larizations and skip connections we proposed improve the ANN
performance, hence ensuring higher accuracy of electricity theft
prediction. From Table VII, it is noticed that the results from LR
and standard ANN are comparable; however, the RF and SVM
models are unable to distinguish fair and fraud electricity con-
sumptions patterns. This is because RF usually faces overfitting
problems and SVM performance degrades when large datasets
are used for training purposes. Also, when computational times
of the proposed method and other benchmark algorithms are
compared, the SPRC takes time to complete the classification
task at a comparable level with LR, SVM and iANN. There exists
a trade-off between higher accuracy and computational time.
More accurate algorithms are generally more computationally
expensive and vice versa.

VI. CONCLUSION

We have investigated how a highly imbalanced class dis-
tribution dataset can be arranged to train a classifier for the
identification of normal and abnormal electricity consumption
patterns. The presented approach integrates data pre-processing,
resampling and multi-stage classification modules into a single
model. The classification is comprised of a multi-block neural
network that is optimized by an intelligent algorithm, regular-
ization methods and skip connection to increase model training
and classification abilities. Moreover, different multi-block pre-
diction models were presented to choose the effective model.
The proposed topologies have been applied over real-world data

with a number of cases studied. We found that tuning the clas-
sifier’s hyper-parameters with an intelligent algorithm results in
smoother optimization and reduced computational complexity
of the learning process. Similarly, regularization methods help
to reduce the over-fitting and ICS problems associated with
the standard ANN. We found that residual networks distribute
learning across layers, each of which is responsible for learning
better representations, while standard networks concentrate on
learning in shallower layers and thus do not make effective use
of deeper layers.

The above is supported by results for gradient norms, where
non-decaying gradients are observed during training and testing
in terms of robustness. These results show that varied training
rates in SPRS do not change the representation as much as for
the benchmark algorithms. In addition, we find that the parallel-
sequential topology is more robust to varied learning rates.

In the next step, we will perform three further investigations
to improve the performance of SPRC in terms of robustness and
scalability. First, we will exploit knowledge from power grid
sources, network distribution topology and geographic infor-
mation to monitor energy consumption pattern abnormalities.
Secondly, the average accuracy of the classifier in terms of
robustness will be investigated adding random noise (Jitter) and
synthetically generated theft attacks on selected data. Thirdly,
the SPRC performance will be tested on unsupervised publicly
available datasets. For this purpose, synthetic data will be gen-
erated to label the dataset and make it useful for supervised
learning.
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