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Abstract—Topology identification (TI) is a key task for state
estimation (SE) in distribution grids, especially the one with high-
penetration renewables. The uncertainties, initiated by the time-
series behavior of renewables, will almost certainly lead to bad TI re-
sults without a proper treatment. These uncertainties are analytically
intractable under conventional framework—they are usually jointly
spatial-temporal dependent, and hence cannot be simply treated as
white noise. For this purpose, a hybrid framework is suggested in
this paper to handle these uncertainties in a systematic and theoret-
ical way; in particular, big data analytics are studied to harness the
jointly spatial-temporal statistical properties of those uncertainties.
With some prior knowledge, a model bank is built first to store
the countable typical models of network configurations; therefore,
the difference between the SE outputs of each bank model and
our observation is capable of being defined as a matrix variate—the
so-called random matrix. In order to gain insight into the random
matrix, a well-designed metric space is needed. Auto-regression
(AR) model, factor analysis (FA), and random matrix theory (RMT)
are tied together for the metric space design, followed by jointly
temporal-spatial analysis of those matrices which is conducted in a
high-dimensional (vector) space. Under the proposed framework,
some big data analytics and theoretical results are obtained to im-
prove the TI performance. Our framework is validated using IEEE
standard distribution network with some field data in practice.

Index Terms—Topology identification, renewables, uncertainty,
random matrix theory, AR model, factor analysis, high dimension.

I. INTRODUCTION

TOPOLOGY identification (TI) of admittance matrix Y,
the so-called network topology, is a precondition for state

estimation (SE) in distribution systems. Inaccurate TI has long
been cited as a major cause of bad SE results [1]. During a
daily operation, Y may be partially reconfigured [2]. While the
knowledge ofY is crucial, it may be unavailable or outdated (via
TI) due to some reasons [3]–[7]. Among these reasons, the uncer-
tainties caused by the behavior of high-penetration renewables
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[8], [9], which are analytically intractable for most tools, are one
of the main challenges. How to address these uncertainties by
harnessing their jointly spatial-temporal statistical properties is
at the heart of our study, and this question threads throughout
the proposed hybrid framework.

A. Related Work and Motivation of our Work

Ref. [10]–[12] are relevant to our paper to an extent. Ref. [10]
builds a model bank, and then conducts TI task by applying
a recursive Bayesian approach to identify the correct network
configuration in the bank. Ref. [11] conducts TI task by compar-
ing the collected voltage time-series with a library of signatures
computed a priori. Ref. [12] formulates the TI problem as a
mixed integer quadratic programming (MIQP) model to find
a topology configuration with weighted least square (WLS) of
measurement residues.

Several data-driven TI approaches, as Ref. [3]–[7], are pro-
posed recently. They are mainly based on iterations, graph the-
ory, sparsity-based regularization, and so on. These approaches
are feasible to TI task with very little knowledge about the
network. Ref. [6] tells that an accurate TI result is acquirable
only if the noise is well addressed. For instance, even with a small
error in measurements, the regression-based method may fail in
TI task (see Section V-C in Case Studies). Most TI algorithms,
especially those derived from least square, rely heavily on the
second-order statistics of meter data [4], [5], and hence they are
applicable to (Gaussian) white noise.

Renewables-derived uncertainties (e.g., randomness caused
by a gust of wind), however, often exhibit themselves as non-
Gaussian noise. The conventional statistics such as first/second-
order statistics (mean/variance) are even not nearly enough to
represent these non-Gaussian variables, and the (jointly spatial-
temporal) dependence should be taken into account. There-
fore, there is an urgent need for some powerful approach to
make these uncertainties analytically tractable with a system-
atic and theoretical procedure. This is the major motivation
and superiority of our proposed hybrid framework. Under our
framework, some statistical properties and theoretical results are
established.

B. Our Work and its Contributions

In order to handle the renewables-derived uncertainties, we
have to go back to the model bank following Ref. [10], [11].
It is reasonable and feasible to list all the possible models in
practice with prior knowledge, since the network configuration
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Fig. 1. Proposed Hybrid Framework.

of a particular grid must be confined to only a few typical models.
Because of the bank, the difference between the bank model SE
output and our observation is capable of being defined as a matrix
variate—the so-called random matrix.

Then we move to the heart of our hybrid framework—high-
dimensional analytics of the random matrix. Auto-regression
(AR) model, factor analysis (FA), and random matrix theory
(RMT) are tied together for the jointly temporal-spatial model-
ing and analysis of the random matrices. And high-dimensional
statistics are obtained as big data analytics. This framework
enables us to gain insight into the (multiple) renewables-derived
uncertainties, which are analytically intractable under conven-
tional framework.

In particular, our framework deals with a large number (spatial
space, N ) of nodes simultaneously, and each node (i=1, ..., N )
samples time-series within a given duration (temporal space,
T ) of observation. Classical statistic theories treat fixed N only
(often small, typicallyN<6 [13]) . This fixed (small)N is called
the low-dimensional regime. In practice, we are interested in
the case that N can vary arbitrarily in size compared with T
(often T is large, typically N>20, c= N/T > 0 [13]). This
fundamental requirement is the primary driving force for us
to study big data analytics with high-dimensional statistics.
For jointly spatial-temporal analysis, a (large-dimensional) data
matrix, rather than a vector or a scalar [14], is adopted as the
basis.

This work is expected to contribute some insight to the
renewables-derived uncertainties that are often analytically in-
tractable. We take advantage of high-dimensional statistics that
is made analytically tractable only recently [15], [16]. To our
knowledge, this type of analysis is, for the first time, conducted
in the context of TI. Our big data analytics are motivated to
improve TI performance, and may be further expanded to other
applying fields: the detection and localization of faults [17],
the detection of unmonitored switching of circuit breakers in
network reconfiguration [18], etc.

The remainder of this paper is organized as follows.
1) Section II presents the hybrid framework and gives a

general discussion about it.

2) Section III, by employing the model bank, aims to convert
our observation into a random matrix with prior knowl-
edge.

3) Section IV studies the high-dimensional statistics of the
random matrices based on AR, FA, and RMT.

4) Section V validates our framework with case studies based
on IEEE standard distribution network using some field
data.

II. HYBRID FRAMEWORK OF TOPOLOGY IDENTIFICATION

A. Hybrid Framework

Fig. 1 summarizes the presented framework by illustrating
how Model Bank, AR, FA, RMT are put together coherently.
The hybrid framework mainly consists of two parts—the model-
based part (Section III) and the data-driven part (Section IV).
The former, with prior knowledge, converts the observed data
into “difference” in the form of random matrix. Starting from
the random matrix and going through a rigorous mathematic
procedure, the latter aims to gain insight into the uncertainties
through big data analytics, with a focus on the jointly spatial-
temporal analysis and the underlying theories/tools.

First, we build “bank” (referring to [10]) to store countable
(often a few) virtual models mapping the possible network con-
figurations of a real grid. The bank can be seen as the universal
set of possible models among which we try to pick out the most
likely one. Hence, we need a well-designed metric space—a set
together with a metric defined on it.

The SE for the models, mainly based on power flow (PF)
analysis, is the second step. We make an assumption that each
agent on distributed nodes (Agent i on Node i for instance)
does collect some local information, such as power usage (Pi)
and voltage magnitude (Vi), on its own access point (Node i).
However, it has no prior information about how it is connected
via power lines in the network, not to mention power flow on
the branch (Pi,j and Qi,j). The information on Pi,j and Qi,j is
often a precondition for some SE algorithms [12], but not for
ours. From this aspect, our assumption is practical and flexible
for engineering scenarios.
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Then we move forwards to the differenceX,which is modeled
as a non-Gaussian random matrix for further big data analytics.
For each bank model (Model Mm for instance), its SE output
(Ẑm) does provide a comparison for our observation (Zob), and
then the difference Xm is defined as

Xm = Zob − Ẑm. (1)

Each Xm consists of multiple time-series, which can be
generally decomposed into four components—the trend, the
seasonality, the mutation, and the randomness. Feature extrac-
tion of the trend and the seasonality is a well discussed topic
in time-series analysis [19], and our previous work [20] has
proposed an RMT-based mutation detection algorithm to handle
sudden changes. Here we focus on the randomness.

B. Non-Gaussian Randomness Tools and Related Work

The randomness component of renewables-derived uncertain-
ties cannot be simply modeled as white noise—successive ob-
served data in the form of time-series usually show serial depen-
dence. In order to formally incorporate this (temporal) depen-
dent structure, it is reasonable to explore a general class of mod-
els called auto-regressive (AR) models—xt=

∑p
i=1 bixt−1+εt

[21]. From the spatial aspect, FA and RMT are tied together
to conduct jointly temporal-spatial analysis of the dependence
among those multiple time-series.

1) Factor Analysis: FA is often used for dimension reduction
in high-dimensional datasets [15]. Because of the latent
constructs (e.g., spatial-temporal independence) lying in
the sampling data, FA is preferred to principal component
analysis (PCA) [22]. FA has already been successfully ap-
plied in various fields such as statistics [23] and economet-
rics [24]. Ref. [25] employs FA to handle high-frequency
data in financial market. In power system domain, our
previous work [26] applies FA to anomaly detection and
location with both simulated data and field data.

2) Random Matrix Theory: The entries of a random matrix
are random variables and the matrix size is often very large,
so RMT is naturally connected with our problem at hand.
The goal of RMT is to understand the joint eigenvalue
distribution in the asymptotic regime as the statistic ana-
lytics from big data. To our best knowledge, RMT is devel-
oped to address this high-dimensional regime since clas-
sical statistic theories apply to low-dimensional regime
only [13]. Recently, RMT has already been successfully
applied in many fields of power system [20].

3) ARMA+RMT: This mode is relevant to our big data ana-
lytics. Ref. [27] employs the free random variables (FRV)
calculus to calculate the empirical spectral density (ESD)
of the sample covariance for several VARMA-type pro-
cesses. The derivation is RMT-based and mathematically
rigorous; the theoretical result is nicely matched against
the spectra obtained via Monte Carlo simulations.

III. MODEL-BASED PART UTILIZING PRIOR KNOWLEDGE

This part aims to convert our observed data into “difference”
in the form of random matrices. With PF analysis, the SE output

of each bank model is computed asZm. It supplies a comparison
for our observed data Zob, and hence the difference is capable
of being defined (Eq. 1).

A. Grid Network Operation

For each node in a power grid, Node i for instance, considering
the node-to-ground admittance yi (yi = gi + j · bi, j=

√−1), its
active power P and reactive power Q are expressed as:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Pi=Vi

∑
k �=i

Vk (Gikcosθik+Biksinθik)−Vi
2
∑
k �=i

Gik−Vi
2gi

Qi=Vi

∑
k �=i

Vk (Gik sin θik−Bikcosθik)+Vi
2
∑
k �=i

Bik+Vi
2bi

(2)
Abstractly, a physical power system obeying Eq. (2) can be

viewed as an analog engine—it takes bus voltage magnitude V
and phase angel θ as inputs, conductance G and susceptance B
as given parameters, and “computes” active power injection P
and reactive power injection Q as outputs. Thus, the entries of
Jacobian matrix J, i.e. [J ]ij , are defined as the partial derivatives
of the outputs, P and Q, with respect to the inputs, V and θ. All
in all, J consists of four parts H,N,K,L:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Hij= ViVj (Gij sin θij−Bij cos θij)−δij ·Qi+δij ·V 2
i bi

Nij= ViVj (Gij cos θij+Bij sin θij)+δij ·Pi−δij ·V 2
i gi

Kij= −ViVj (Gij cos θij+Bij sin θij)+δij ·Pi+δij ·V 2
i gi

Lij= ViVj (Gij sin θij−Bij cos θij)+δij ·Qi+δij ·V 2
i bi

(3)
where Hij=

∂Pi

∂θj
, Nij=

∂Pi

∂Vj
Vj ,Kij=

∂Qi

∂θj
, Lij=

∂Qi

∂Vj
Vj .

B. Power Flow Analysis

PF analysis deals mainly with the calculation of steady-state
system status, i.e., voltage magnitude V and phase angel θ,
on each network bus, for a given set of variables such as
load demands, under certain assumptions such as in a balanced
system operation [28]. Conventional PF analysis is model- and
assumption-based. That is to say, the information of network
topology Y is a prerequisite for the calculation, and the input
(output) variables need to be preset as one of the following three
categories:
� P and V (Q and θ) for voltage controlled bus/PV bus;
� P and Q (V and θ) for load bus/PQ bus;
� V and θ (P and Q) for reference bus/slack bus.
Consider a power system with n buses, among which there

are mPV buses, l PQ buses, and 1 slack bus (n = l +m+ 1).
Starting with Eq. (2), PF functions is formulated as Eq. (4).

y :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

P1

...
Pn−1

Qm+1

...
Qn−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=f

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

θ1
...

θn−1

Vm+1

...
Vn−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=:f (x) J=

⎡
⎢⎣

∂y1

∂x1
· · · ∂y1

∂xK

...
. . .

...
∂yK

∂x1
· · · ∂yK

∂xK

⎤
⎥⎦

(4)
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Fig. 2. IEEE 33-bus Network

where := is the assignment symbol in computer science.
Eq. (4) builds a differentiable mapping function f :x∈RK→

y∈RK . It consists of K=2n−m−2 equations, from the same
number (m+2l=K) state variables, θ and V , to the power
injections, P and Q. Following Eq. (3), J is calculated as a
K×K matrix:

J =

[
[H]n−1,n−1 [N]n−1,n−m−1

[K]n−m−1,n−1 [L]n−m−1,n−m−1

]
(5)

To formulate the linear approximation process that the system
operation point shifts from (x(k),y(k)) to (x(k+1),y(k+1)), the
iteration is set as follows:

x(k+1) := x(k) + J−1
(
x(k)

)(
y(k+1) − y(k)

)
(6)

The iteration depicts how to update the state variables from
x(k) to x(k+1). y(k) and x(k) are known quantities under our
assumption in Section II-A. y(k+1), according to Eq. (4), is
the desired P,Q on PQ buses and desired P on PV buses1.
x(k+1) is the state variables that need to be estimated through
the iteration in this expression (Eq. 6).

The above model-based deterministic PF analysis is not al-
ways reliable in practice, since the network topology Y, and the
operation points (x(k),y(k)) are required to be of high precision
and up-to-date. These requirements, unfortunately, are often
unrealistic as mentioned in Sec I.

C. Model Bank

During the daily operation of a distribution grid, its topology
may be partially reconfigured due to maintenance or emer-
gency/optimal operation. Taking IEEE 33-bus network for in-
stance, the network topology is shown in Fig. 2. It is a 12.66-kV
distribution grid system including a substation and 37 branches.
The normally closed branches are represented by solid lines, and
normally opened ones by dashed lines.

With the pair switch of these normally closed/opened
branches, the grid has ‘countable’ possible network configu-
rations. In practice, however, it is reasonable to study only a few
models even for a large system, since the network configuration
of a particular grid must be confined to several typical models.
We employ the concept of ‘bank’ referring to [10] to store
them, and the deterministic PF analysis works out the SE results
of these models as Ẑm. These SE outputs Ẑm allow of the
comparison with our observed dataZob, and hence the difference
X is capable of being defined as a random matrix (Eq. 1). In this
way, the TI task is converted into a matching problem under

1For PQ buses, neither V nor θ are fixed; they are state variables that need
to be estimated. For PV buses, V is fixed, and θ needs to be estimated.

certain metric space. The design of the metric space will be
discussed in Section IV-E.

IV. HIGH-DIMENSIONAL ANALYSIS WITH RMT AND FA

Our motivation arises from the fact that the renewables-
derived uncertainties cannot be simply modeled as white noise.
They do contain much (latent) structural information, especially
when there is an extra bias caused by a certain (although maybe
unknown) poor assumption or negligence. For this purpose, FA
is employed in our framework. The entries of the resultant matrix
are random variables in large size, so RMT is naturally relevant
to the problem [20].

A. RMT-Based Problem Formulation

The goal of RMT is to understand joint eigenvalue distribution
in the asymptotic regime as big data analytics. The spectrum
of a covariance matrix generally consists of two parts: A few
spikes/outliers and the bulk. The former represents common
factors that mainly drive the features, and the latter represents
unique factors or error variation that arise from idiosyncratic
noise. For the noise part, we consider a minimum distance
between two spectral densities—a theoretical one ρT from an
ideal structure model, and an empirical one ρE relevant to the
(multiple time-series) observed data.

B. Factor Analysis Formula

To deal with high-dimensional datasets, FA is often used
for dimension reduction in sampling data with underlying con-
structs that cannot be measured directly [15], [22].

Regarding empirical data X ∈ RN×T , FA is formulated as

X = L(p)F(p) +R. (7)

where F ∈ Rp×T is a matrix of common factors, L ∈ RN×p is
factor loadings, p is factor numbers, and R ∈ RN×T is residues,
also called unique factors or error variation.

Eq. (7) enables to decompose observed dataX into systematic
information and idiosyncratic noise. Usually, only X is observ-
able, L is composed of the first p principal components of X,
F=(LTL)

−1
LTX, and R=X− LF.

We focus on residues R, which may contain some latent
constructs and statistical information. Instead of regarding R
as Gaussian noise a priori, we assume that there are cross-
and auto-correlated structures. Without loss of generality, R̂ is
represented as

R̂=A
1/2
N εB

1/2
T (8)

where ε is an N×T Gaussian matrix with independent and
identically distributed (i.i.d.) random entries, AN and BT are
N×N and T×T symmetric non-negative definite matrices,
representing cross- and auto- covariances, respectively. Eq. (8)
leads to a separable sample covariance matrix in the sense that
AN andBT are separable. This structural assumption of separa-
bility is a popular assumption in the analysis of spatial-temporal
data [16]. Although this assumption does not allow for spatial-
temporal interactions in the covariance matrix, in many real data
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applications, the covariance matrix can be well approximated
using separable covariance matrices for a space-time covariance
matrix problem.

C. FA Estimation Based on Spectrum Analysis

Now the objective of the mentioned matching problem is to
match the spectral density ρE against ρT.

The former ρE means the ESD of the covariance matrix of
residues R constructed from empirical data. It can be controlled
by the p number of common factors to be removed following
Eq. (7). It is defined as [29]

ρE(λ) =
1

N

N∑
i=1

δ
(
λ − λ

(CN )
i

)
(9)

where {λ(CN )
i }Ni=1 is the eigenvalues of CN = 1

T RRT, and δ is
the Dirac delta function.

The latterρT means the theoretical spectral density of the ideal
covariance matrix ĈN with the assumed structural model, i.e.,
ĈN = 1

T R̂R̂T= 1
T A

1/2
N εBT ε

TA
1/2
N (Eq. 8). Assuming a parsi-

monious matrix structure of AN and BT , which is determined
by only a small parameter set θ. Mathematically motivated by
the result of [30], the spectral density of ĈN , under certain
assumptions, converges to a certain limiting distribution ρT(θ),
as the size N tends to infinity.

D. Simplified Model on Covariance Structures of Residues

A difficulty lies in the calculation of the limiting density,
ρT(θ), for general θ=(θAN

,θBT
). The actual calculation of

ρT(θ) is quite complex, which makes the implementation dif-
ficult. A recent study of [27], fortunately, provides the direct
derivation of this limiting spectral density using free random
variable (FRV) techniques. They particularly present analytic
forms when the time-series data follow ARMA processes. In
our task, we employ these techniques to calculate ρT(θ). First,
two assumptions are made:

I. The cross-correlations of R̂ are effectively eliminated
by removing p factors, and therefore R̂ has sufficiently
negligible cross-correlation: AN ≈IN×N .

II. The auto-correlations of R̂ are exponentially decreasing,
i.e., {BT }ij = b|i−j|, with |b| < 1.2

Under the two assumptions, we can conduct spectrum analysis
of the simplified model, and thus ρT(b) is capable of being
computed. The major steps are briefly given as follows:

1) The mean spectral density can be derived from the Green’s
function G(z) by using the Sokhotsky’s formula:

ρT(λ) = − 1

π
lim
ε→0+

ImG(λ + iε). (10)

2) The Green’s function G(z) can be obtained from the
moments’ generating function M(z) :

G(z) =
M(z) + 1

z
, |z| �= 0. (11)

2This is equivalent to modeling residues as an AR(1) process: R̂it=

bR̂i,t−1+ξit, where ξ∼N (0, 1− b2) so that the variance of R̂t is 1.

Fig. 3. Spectral Density of ρT(b) and gMP.

3) M(z) can be found by solving the polynomial equation:

a4c2M4 + 2a2c(−(1 + b2)z + a2c)M3 + ((1− b2)2z2

−2a2c(1 + b2)z + (c2 − 1)a4)M2 − 2a4M − a4 = 0
,

(12)
where a =

√
1− b2, and c = N

T .
It is worth mentioning that when b = 0, Assumptions I & II

imply that R̂ is a standard Gaussian matrix with i.i.d. random
elements, and its spectral density is marked as ρT(0). On the
other side, Marchenko-Pastur Law says that for a Laguerre
unitary ensemble (LUE) matrix Γ∈CN×T (c=N/T ≤ 1), its
spectral density gMP(x) does follow M-P Law [31]:

gMP(x) =
1

2πcx

√
(x− s1) (s2 − x), x ∈ [s1, s2] (13)

where s1 = (1−√
c)2 and s2 = (1 +

√
c)2.

The two spectral densities should be equivalent, i.e. ρT(0) is
equivalent to gMP. Fig. 3 displays this phenomenon.

Fig. 3(b) also tells that the theoretical spectral densities ρT(b)
are distinguishable with different coefficients b in the AR model.
This property implies that the (latent) coefficients b offers excel-
lent potential for the metric space construction. With the help of
metric space, the randomness component of the observed data
is able to be addressed via spectrum analysis.

E. Metric Space Designing

To design a metric space for solving the mentioned match
problem, we need to assign a set and then define a distance
function (metric) on it. What we have in practice are the observed
data Zob in the form of multiple time-series, and SE outputs
Ẑm derived from Zob and Model Mm. The difference (Eq. 1:
Xm = Zob − Ẑm) is the first and most obvious choice for us to
extract some statistical information from.

Before designing the metric space, let us look through those
conventional statistics indicators, e.g., first/second moment
(mean/variance). We have already argued that the profiles of
renewables-derived uncertainties do follow AR models. Mean
and variance contain enough statistical information for an i.i.d.
Gaussian random variable, but insufficient for an AR model, not
to mention multiple AR processes (temporal aspect) on those
connected distributed access points (spatial aspect).

Some more powerful tools are needed to map the dif-
ference Xm, which consists of a large number of random
variables, into some indicator within a well designed metric
space. The proposed hybrid framework (Fig. 1) conducts jointly
temporal-spatial analysis ofXm as follows: First,X is converted
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into R with a given p (Eq. 7), and then the ESD ρE is calculated
(Eq. 9). On the other hand, with a given coefficient b, the
theoretical spectral density ρT(b) is capable of being computed
(Eq. 8→12→11→10). Then, the metric distance such as Jensen-
Shannon divergence can be naturally studied:

d(Zob, Ẑm)= |Xm|D=D(ρT(b),ρE(p))=
∑
i

piDJS(ai, bi)

(14)
where DJS(a, b)=a log a+b log b−2v log v with v= a+b

2 .
With the metric space design, the TI task is converted into a

convex optimization problem

argmin
m

d(Zob, Ẑm)=argmin
m

D(ρT(b),ρE(p)). (15)

The convex optimization can be readily calculated using modern
software toolbox such as CVX.

V. CASE STUDIES

A. Case Background and Model Bank

IEEE 33-bus Network (Fig. 2) is used to validate our pro-
posed hybrid framework. Considering a sampling dataset with
1440 observations (4 hours with a 0.1 Hz sampling rate). This
observation leads to the empirical dataset Zob, which consists of
local sample data from 33 access points. Following Section II-A,
it is assumed that there is no prior information about the power
flow on the connected branch (Pi,j and Qi,j).

Fig 4(a) depicts the active power generation/consumption
at each node (Pi ∈ Pob⊂Zob). For Node 20 and Node 31,
the curves are of high variation derived from the behavior of
some wind speed data in practice. For other nodes, however, the
curves are stationary since the profile of routine power usages
is relatively smooth. It is noteworthy that we only discuss the
randomness component as mentioned in Section II.

The physical grid only has numerous possible operation mod-
els (Section III-C), and we arrange them to form the model bank
(Fig 5). Through parallel PF analysis, we test each model, e.g.
Model Mm, and work out its SE result Ẑm. Fig 4(b) depicts the
voltage magnitudes of Model M1 (V̂1⊂ Ẑ1).

The low-dimensional statistics Mean μ and Variation σ con-
tain enough statistical information about Gaussian variables, but
not about the renewables-derived randomness V̂1, of which
multiple AR time-series contribute a major part. Moreover,
Mean μ is vulnerable to fixed measurement error. To address
those renewables-derived uncertainties is the primary motivation
for our proposed framework.

B. Case Designing

We assume that at time point t=720, due to some reason
there is an operation model transformation from Model M1 to
M2—the system operates under M1 during 0∼720, and M2

during 721∼1440. We also take the measurement error into
account, and regard it as a Gaussian random variable E, whose
statistical properties can be fully described by mean μE and
standard deviation σE .

Fig. 4. Dataset from 33 Points and 1440 Observations.

Fig. 5. Models Stored in the Model Bank.
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Fig. 6. V1: Voltage Magnitude Component of Difference X1.

Our previous work [32] has already shown that the fixed
measurement error μE has no influence to the RMT-based
analysis and indicator at all. Therefore we only need to consider
σE . Referring to [33], it is supposed that σE=0.005 p.u.—the
standard deviation of the measurement errors is 0.5%. The uncer-
tainties caused by renewables and measurement errors together
may significantly influence the statistical properties of observed
data, thereby disabling TI performance.

When both Zob, the observed data, and Ẑm, the SE output
of Model Mm, are known a priori, so is their difference Xm.
As the reasons given in our previous work [20], only voltage
magnitude Vm⊂Xm is discussed. Furthermore, we keep each
observation duration 720 sampling points, and thus divide the
whole observation into 5 periods: T1 (1∼720), T2 (181∼900),
T3 (361∼1080), T4 (541∼1260), and T5 (721∼1440). We use
Vm(:,Tj) to represent the voltage difference on all the 33 nodes
during Tj , which can be denoted as Vm_j when there is no
ambiguity. Fig. 6 shows the voltage magnitude difference in
each period for Model M1: V1_1, V1_2, . . ., V1_5.

C. Regression-Based TI and its Failure When Uncertainties
are Not Well Addressed

We test the TI performance by employing Jacobian matrix
J (Eq. 5), a matrix variate which is strongly associated with
network topology Y. From Eq. (4), the estimation of J can
be naturally formulated as a regression problem. Under fairly
general conditions, the target J, according to Eq. (3), keeps
nearly constant within some duration, called Δt, due to the
stability of the system, or concretely, of variablesV, θ, Y . During
Δt, considering T times observation at time instants ti, (i=
1, 2, . . . , T, tT −t1=Δt), we acquire the operation data points
in the form of (x(i),y(i)).

In this case, we take the period T1 (1∼720) for study. The
truth-value of J on each sampling point is calculated via Eq. (3)
in a model-based way. The result validates that J indeed keeps
nearly constant at around its mean JMean (Fig. 7(a), 20 level),
and with the standard deviation JSD (Fig. 7(b), 0.04 level).
Therefore, it is reasonable to set JMean as the benchmark during
this observation period T1.

Defining Δx(k)�x(k+1)−x(k) and Δy(k)�y(k+1)−y(k),
Eq. (4) is rewritten as Δy(k)≈J(k)Δx(k). Since J keeps nearly

Fig. 7. Basic Statistical Information of J in Period T1.

constant during T1, the expression is reformulated as

B≈JA (16)

where J∈RK×K , B=[Δy(1), . . . ,Δy(T )]∈RK×T , and A=
[Δx(1), . . . ,Δx(T )]∈RK×T .

The least square method is the first and the most obvious
choice as the solution to the regression problem formulated
as Eq. (16). It is capable of handling the scenarios where the
network topologies Y are unreliable or even totally unavailable,
and thus, Y are no longer essential information. This property
agrees with our assumption in Section II-A. Conversely, the
result of J estimation inherently contains the most up-to-date
information about Y.

In particular, ordinary least square (OLS) and total least square
(TLS) [34] are tested, and numerous scenarios with different
types of noise are studied. Fig. 8 shows the results.

1) Fig. 8(a) and 8(e) tell that both OLS and TLS perform
well (JErr is at the same order as JSD; JErr—difference
between the estimated values and the benchmark JMean)
when there is no error on neither y side (B in Eq 16) nor
x side (A).

2) Fig. 8(b) and 8(f) tell that their performances reduce from
good level to acceptable level when some Gaussian error
(5%) injects into y (x is assumed to be error free).

3) Fig. 8(c) and 8(g) tell that when the Gaussian error (5%)
comes from both y and x, TLS becomes the only option
to reach a barely-passing result. TLS is a type of error-in-
variables regression, a least squares data modeling tech-
nique in which observational error on both dependent and
independent variables is taken into account [35].

4) However, if the noise does not follow i.i.d. Gaussian
distribution, as the aforementioned renewables-derived
uncertainties, both OLS and TLS fail in this kind of re-
gression task. These uncertainties, which are analytically
intractable under conventional framework, will almost
certainly lead to bad results without a proper treatment,
as illustrated in Fig. 8(d) and 8(h). This is the primary
motivation for our proposed hybrid framework.

D. Elementary RMT-Based Analysis

To make these renewables-derived uncertainties analytically
tractable, we have to study the problem in a high-dimensional
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Fig. 8. Performance of OLS and TLS on J Estimation with Different Types of Noise.

Fig. 9. ESD of Cm_j for Model m in Period Tj .

space. Under the RMT framework provided in our previous work
[20], we gain insight the uncertainties from the spectrum aspect
via high-dimensional analysis.

Fig. 9 depicts the analysis result for Model Mm in Period
Tj . The ‘gT’ Curve is the theoretical M-P Law spectral density
as given in Eq. (13). The ‘Hist’ Curve means histogram for
the ESD. First, we set factor numbers p in Eq. (7) to convert
difference V into residues R. Then we calculated the ESD of
Cm_j=

1
T RRT according to Eq. (9). The ‘ρE’ Curve is the

probability density estimate of the ‘Hist’ Curve using Kernel
Smoothing Function (code ‘ksdensity(·)’ in Matlab, for Model
M1) or Moving Average Function (code ‘smooth(·)’, for M3).

The metric space designed in Section IV-E enables us to
quantify the TI performance of each bank model in spectrum
space. The outliers tend to large and evident as the corresponding
model becomes deviant, and the deviation will lead to a large
d(Vob, V̂m_j)= |Vm_j |D as defined in Eq. (14).

E. FA Analysis and Time-Series Analysis

For each difference-derived random matrix, e.g. V3_1, we
calculate its ESD with a different factor numbers p, and then
obtain the results as shown in Fig. 9(d). As we increase factor
numbers p, the outliers are alleviated. This phenomenon agrees
with the fact that FA is often used for dimension reduction
in sampling data with underlying constructs, i.e. converting
Vm_j into L(p)F(p) following Eq. (7). However, the residues
part Rm_j could also have some latent construct. For instance,
the randomness caused by a wind following AR model with
coefficients b. This statistic property cannot be eliminated sim-
ply by increasing p. Fortunately, Ref. [27] applies RMT to
derive spectral density of large sample covariance matrices
generated by multivariate ARMA processes in analytic forms
(Eq. 8→12→11→10). Following Ref. [27], we push forwards
our research on the residues Rm_j .

Temporal analysis is conducted first by estimating the auto-
correlation coefficient b of Rm_j using Burg’s method (code
‘arburg(·)’ in Matlab). If the picked model perfectly matches
the real grid, the renewables-derived auto-correlation would be
eliminated, and only (Gaussian) measurement error remains.
Fig. 10 validates this—all the nodes on V1_1 (Column C1) and
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Fig. 10. Estimated auto-correlation coefficient b̂ of Vm_j .

V2_5 (C10) are of small auto-correlation (b̂ ≈ 0), and therefore
we should accept the hypothesis that Model M1 matches the real
system in Period T1, and M2 in Period T5.

Fig. 9(a) also depicts the phenomenon that only measurement
error remains—V1_1-derived ESD does closely match the the-
oretical ‘gT’ Curve (M-P Law) and no obvious outliers exist.
Besides, we can find that the values of the nodes close to the
reference bus (e.g. Node 2, 3, 19) are usually stable around 0. The
phenomenon that these nodes are insusceptible to renewables is
consistent with our common sense.

F. Jointly Temporal-Spatial Analysis With Latent Structure

M-P Law can nicely model R1_1 in some sense. Then some
open questions are raised, for example: 1) How to model other
columns, e.g., Column 11 (R3_1)? 2) Can we extract some
information from them, and how? To address these questions,
jointly temporal-spatial analysis is discussed.

We revisit our prior information to find out the causes which
may decide/influence the statistical properties of Rm_j . One
major cause is the two independent renewables on Node 20 and
Node 31. From the local field data we know that their power
outputs follow AR process with some latent structure. Another
major cause is the inherent topology Y, although it is unknown
and may have a transformation at some time point.

Then we conduct the analysis with the data from a few
nodes but not all of them. This is practical when the advanced
sensors such as μPMUs are only deployed on some important
buses. RMT-framework inherently supports statistical analysis
with data only from a subset of nodes—the data matrix can be
naturally divided into data blocks without additional error, but
this is not true for mechanism models. Our previous work [32]
gives a discussion on this RMT-framework property.

For Column 11 (R3_1), we take the renewables-influenced
nodes’ data (b ≈ 0.9) into account, and then make a jointly
temporal-space analysis following Section IV. The coefficients b̂
of these influenced nodes are similar. With the prior knowledge
of Model M3 stored in the bank, we divide these influenced
nodes into three parts: 1) Node 6, 7; 2) Node 20∼22; and

Fig. 11. Jointly Spatial-temporal Analysis to Grid Nodes.

3) Node 29∼33. Then we study their cross-correlation under
this division—the closely connected nodes must show strong
correlation, while the separated nodes show the independence.
Based on this property, we use the theoretical spectral density
ρT(b) to test them, and the results are given in Fig. 11.

The ESD of relevant data derived from separated nodes
closely matches the theoretical density ρT(0.9). This phe-
nomenon is built upon the premise of the Assumption I in
Section IV-D (R̂ has sufficiently negligible cross-correlation:
cross-covariances matrix AN ≈IN×N ). It means that the ran-
domness component of these separated nodes are influenced
by renewables with independent behaviors. This independence
is often reasonable especially for an integrated energy system
(IES) with diverse sources. While for those closely connected
nodes (Node 20∼22 in this case), the independence condition is
violated, so there is no consistency between ρE and ρT(0.9).

G. Test With IEEE 85-bus Network

In addition, we test our framework using IEEE 85-bus radial
distribution systems. The sampling sensors, renewable genera-
tors with diverse/similar patterns are deployed as Fig. 12.

As a distribution grid usually operates in open loop, we just
test the pair switch of the normally closed branches and the
normally open branches. In particular, we test the pair switch of
the normally closed branches B11−12 (closed→open) companied
with the normally open branch B44−84 (open→closed) in Model
M2, and with B66−83 (open→closed) in M3, respectively. The
error of branch impedance is also tested—M4 tests B5−18,
B9−10, B60−63, B32−40, and B35−48. Similar to Fig. 10 and 11,
Fig. 13 a shows the time-series information, and Fig. 13(b) shows
the jointly spatial-temporal analysis results.

The results in Fig. 13 validate the hybrid framework again.
This framework is suitable to the scenarios when the renewables-
behavior dominates our observed data. For the nodes influenced
by multiple sources, such as Node 25∼32, however, it is hard
to model them in practice. Under an ideal scenario, independent
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Fig. 12. IEEE 85-bus radial distribution systems.

Fig. 13. Result of IEEE 85-bus Radial Distribution Systems.

component analysis (ICA) or free component analysis (FCA)
[36] may be applied to separate the mixed signal into additive
(independent) subcomponents. The combination of ICA/FCA
and our framework offers excellent potential for a more complex
scenario.

VI. CONCLUSION

This paper explores several high-dimensional analytics in
the context of topology identification. We propose a hybrid
framework, by tying AR model, FA, and RMT together, to handle
the renewables-derived uncertainties in the form of multiple
time-series. Our framework, through a systematic and theoreti-
cal procedure, makes these uncertainties analytically tractable,
and is immune to fixed measurement error.

Several future studies are in order. Clearly, further research
is needed to employ the more general residue modeling, for
which we can calculate the spectral density readily. For ex-
ample, as described in [27], if considering vector ARMA(1,1)
processes, we have up to 6th-order polynomial equations. Ob-
viously, compared to i.i.d. Gaussian noise, the joint temporal
model (AR) and spatial model (FA) oftentimes provide more
flexible and rigours models and analyses on renewables-derived
uncertainties. Besides, the framework is capable of handling
comprehensive behavior (on the nodes influenced by multiple
sources) with the help of existing algorithm such as ICA. The
combination of conventional tasks in power system with novel
tools in data science is a long-term goal in our community, espe-
cially in big data era. In addition, this hybrid framework can be
extended to an integrated energy system, in which randomness
and independence is more evident.

REFERENCES

[1] F. F. Wu and W. H. E. Liu, “Detection of topology errors by state estima-
tion power systems,” IEEE Trans. Power Syst., vol. 4, no. 2, pp. 50–51,
Feb. 1989.

[2] S. Bolognani, N. Bof, D. Michelotti, R. Muraro, and L. Schenato, “Iden-
tification of power distribution network topology via voltage correlation
analysis,” in Proc. 52nd IEEE Conf. Decis. Control, 2013, pp. 1659–1664.

[3] G. Cavraro and V. Kekatos, “Graph algorithms for topology identifica-
tion using power grid probing,” IEEE Control Syst. Lett., vol. 2, no. 4,
pp. 689–694, Oct. 2018.

[4] D. Deka, S. Backhaus, and M. Chertkov, “Structure learning in power
distribution networks,” IEEE Trans. Control Netw. Syst., vol. 5, no. 3,
pp. 1061–1074, Sep. 2017.

[5] O. Ardakanian et al., “On identification of distribution grids,” IEEE Trans.
Control Netw. Syst., vol. 6, no. 3, pp. 950–960, Sep. 2019.

[6] J. Yu, Y. Weng, and R. Rajagopal, “Patopa: A data-driven parameter and
topology joint estimation framework in distribution grids,” IEEE Trans.
Power Syst., vol. 33, no. 4, pp. 4335–4347, Jul. 2017.

[7] Y. Yuan, S. Low, O. Ardakanian, and C. Tomlin, “Inverse power flow
problem,” 2016, arXiv:1610.06631.

[8] X. He, L. Chu, R. C. Qiu, Q. Ai, Z. Ling, and J. Zhang, “Invisible units
detection and estimation based on random matrix theory,” IEEE Trans.
Power Syst., vol. 35, no. 3, pp. 1846–1855, May 2019.

[9] B. Yang, T. Yu, H. Shu, J. Dong, and L. Jiang, “Robust sliding-mode
control of wind energy conversion systems for optimal power extraction
via nonlinear perturbation observers,” Appl. Energy, vol. 210, pp. 711–723,
2018.

[10] R. Singh, E. Manitsas, B. C. Pal, and G. Strbac, “A recursive Bayesian
approach for identification of network configuration changes in distribu-
tion system state estimation,” IEEE Trans. Power Syst., vol. 25, no. 3,
pp. 1329–1336, Aug. 2010.



HE et al.: HYBRID FRAMEWORK FOR TOPOLOGY IDENTIFICATION OF DISTRIBUTION GRID WITH RENEWABLES INTEGRATION 1503

[11] G. Cavraro and R. Arghandeh, “Power distribution network topology
detection with time-series signature verification method,” IEEE Trans.
Power Syst., vol. 33, no. 4, pp. 3500–3509, Jul. 2018.

[12] Z. Tian, W. Wu, and B. Zhang, “A mixed integer quadratic programming
model for topology identification in distribution network,” IEEE Trans.
Power Syst., vol. 31, no. 1, pp. 823–824, Jan. 2015.

[13] R. Qiu and P. Antonik, Smart Grid and Big Data. Hoboken, NJ, USA:
Wiley, 2015.

[14] Y. C. Chen, J. Wang, A. D. Domínguez-García, and P. W. Sauer,
“Measurement-based estimation of the power flow jacobian matrix,” IEEE
Trans. Smart Grid, vol. 7, no. 5, pp. 2507–2515, Sep. 2016.

[15] J. Yeo and G. Papanicolaou, “Random matrix approach to estimation of
high-dimensional factor models,” 2016, arXiv:1611.05571.

[16] X. Ding and F. Yang, “Spiked separable covariance matrices and principal
components,” 2019, arXiv:1905.13060.

[17] M. He and J. Zhang, “A dependency graph approach for fault detection and
localization towards secure smart grid,” IEEE Trans. Smart Grid, vol. 2,
no. 2, pp. 342–351, Jun. 2011.

[18] Y. Sharon, A. M. Annaswamy, A. L. Motto, and A. Chakraborty, “Topology
identification in distribution network with limited measurements,” in Proc.
IEEE PES Innovat. Smart Grid Technol., 2012, pp. 1–6.

[19] D. C. Montgomery, C. L. Jennings, and M. Kulahci, Introduction
to Time Series Analysis and Forecasting. Hoboken, NJ, USA: Wiley,
2016.

[20] X. He, Q. Ai, R. C. Qiu, W. Huang, L. Piao, and H. Liu, “A big data
architecture design for smart grids based on random matrix theory,” IEEE
Trans. Smart Grid, vol. 8, no. 2, pp. 674–686, Mar. 2017.

[21] P. Bacher, H. Madsen, and H. A. Nielsen, “Online short-term solar power
forecasting,” Sol. Energy, vol. 83, no. 10, pp. 1772–1783, 2009.

[22] D. D. Suhr, “Principal component analysis vs. exploratory factor analysis,”
in Proc. 13th Annu. SAS Users Group Int. Conf., 2005, paper 203-30.

[23] J. Fan, Y. Liao, and M. Mincheva, “High dimensional covariance matrix
estimation in approximate factor models,” Ann. Statist., vol. 39, no. 6,
2011, Art. no. 3320.

[24] I. I. Dimov, P. N. Kolm, L. Maclin, and D. Y. Shiber, “Hidden noise
structure and random matrix models of stock correlations,” Quantitative
Finance, vol. 12, no. 4, pp. 567–572, 2012.

[25] M. Pelger, “Large-dimensional factor modeling based on high-frequency
observations,” J. Econometrics, vol. 208, no. 1, pp. 23–42, 2019.

[26] X. Shi, R. Qiu, Z. Ling, F. Yang, H. Yang, and X. He, “Spatio-temporal
correlation analysis of online monitoring data for anomaly detection and
location in distribution networks,” IEEE Trans. Smart Grid, vol. 11, no. 2,
pp. 995–1006, Mar. 2020.

[27] Z. Burda, A. Jarosz, M. A. Nowak, and M. Snarska, “A random matrix
approach to Varma processes,” New J. Phys., vol. 12, no. 7, 2010, Art. no.
075036.

[28] A. Gomez-Exposito, A. J. Conejo, and C. Canizares, Electric Energy
Systems: Analysis and Operation. Boca Raton, FL, USA: CRC press, 2018.

[29] T. Rogers, “New results on the spectral density of random matrices,” Ph.D.
dissertation, King’s College London, London, U.K., 2010.

[30] L. Zhang, “Spectral analysis of large dimensional random matrices,” Ph.D.
thesis, Nat. Univ. Singapore, Singapore, 2006.
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