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Chance-Constrained Outage Scheduling
Using a Machine Learning Proxy

Gal Dalal , Elad Gilboa, Shie Mannor, and Louis Wehenkel

Abstract—Outage scheduling aims at defining, over a horizon
of several months to years, when different components needing
maintenance should be taken out of operation. Its objective is to
minimize operation-cost expectation while satisfying reliability-
related constraints. We propose a data-driven distributed chance-
constrained optimization formulation for this problem. To tackle
tractability issues arising in large networks, we use machine learn-
ing to build a proxy for predicting outcomes of power system
operation processes in this context. On the IEEE-RTS79 and IEEE-
RTS96 networks, our solution obtains cheaper and more reliable
plans than other candidates. All our code (Matlab) is publicly avail-
able at https://github.com/galdl/outage_scheduling.

Index Terms—Outage Scheduling, Stochastic Optimization,
Scenario Optimization, Chance Constraints.

NOMENCLATURE

L Set of components requiring an outage.
Tm Candidate outage moment set.
um ∈ URT Outage schedule.
T Outage scheduling planning horizon.
C Outage scheduling cost function.
r/r Momentary/average reliability.
rmin Minimal tolerable reliability.
LS/LS Momentary/average load shedding.
LSmax Maximal tolerable load shedding.
αr/αLS Reliability/load-shedding criterion probability

tail.
us ∈ Us Short-term (unit commitment) decision.
Cs Short-term cost.
uRT ∈ URT Real-time action.
CRT Real-time cost.
St ∈ S System state at time t.
Z = {St}T

t=1 Stochastic scenario.
ys/yRT Short-term/real-time informational state.
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h(um ) Outage schedule feasibility constraints.
n(t)/n(b) Number of transmission-lines/buses.
n(g ,d)/n(g ,w ) Number of dispatchable/wind generators.
Wda/Dda Day-ahead wind-generation/load forecast.
Wt/Dt Wind-generation/load at time t.
Jt Seasonal weather factor at time t.
topt Topology at time t.
tm /ts/tRT Mid/short/real-time time index.
Ts/TRT Short-term/real-time simulation window

length.
Ns/NRT Short-term/real-time simulation replicates.

I. INTRODUCTION

OUTAGE scheduling is performed by transmission system
operators (TSOs), as an integral part of asset management,

in order to carry out component maintenance and replacement
activities [1]. However, scheduling of the required outages for
maintenance jobs is a complex task since it must take into ac-
count constrained resources (e.g. working crews, hours, and
budget), increased vulnerability of the grid to contingencies
during outages, and the impact of the scheduled outages on op-
erations. Moreover, outage schedules, which are planned on a
mid-term scale of several months to years, must also be robust
with respect to uncertainties.

In this work, we present a general framework for assessing
the impact of a given outage schedule on expected costs and
system reliability, incurred while operating the system during
the schedule’s period. In addition, we formulate and solve a
stochastic optimization program for optimally scheduling a list
of required outages. To do so, we take into account the smaller-
horizon decision processes taking place during this time interval.
These latter concern day-ahead operational planning and real-
time operation.

The complex dependence between the multiple time-horizons
and the high uncertainty in the context of mid-term planning
renders the corresponding assessment problem challenging. As
demonstrated in [2], solving an extensive amount of unit com-
mitment (UC) problems to mimic short-term decision-making
does not scale well to realistic grids, with thousands of buses or
more. This is specifically burdensome while simulating trajecto-
ries of months to years. To deal with this complexity we propose
to use machine learning to design a proxy that approximates
short-term decision making, relieving the dependence of mid-
term outcome assessment on accurate short-term simulations;
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ergo, allowing a tractable assessment method. Specifically, we
replace exact UC computations with pre-computed UC solu-
tions to problems with similar input conditions. See Section V
for further details on the method.

When planning for future outages to enable maintenance, a
certain reliability criterion is attempted to be satisfied at all fu-
ture times. Nowadays, TSOs often ensure the deterministic N-1
reliability criterion per each post-outage scenario, while other
probabilistic criteria are also being investigated [3], [4]. To make
the system secured months in advance, the asset management
operator should ideally assess whether each of the possible fu-
ture scenarios is secure, by taking into account the coordination
with day(s)-ahead and (intra)hourly operation. Since consider-
ing all possible realizations of future events is impractical, they
must be approximated using sampled paths of future scenarios.
In this work, we thus also devise a sampling scheme that richly
represents possible occurrences while being tractable. We trust
such methods are crucial for high-quality mid-term analysis.

A. Related Work

Current practice in transmission system asset management
offers three main approaches: time-based, condition-based,
and reliability-centered preventive maintenance [5]. As for the
academic literature, two popular trade-offs are i) increasing
equipment reliability via maintenance while minimizing main-
tenance costs, and ii) minimizing the effect of outages on socio-
economic welfare while satisfying operating constraints.

In [6], the first above trade-off was considered in a two-stage
formulation. The first stage schedules mid-term maintenance
that imposes conditions on the second stage problem: short-term
N-1 secured scheduling. By choosing a maintenance action per
each time-interval, Weibull asset failure probability was analyt-
ically minimized. In [7], an analytic objective function was also
designed. There, maintenance reduced cumulative risk of events
such as overloads and voltage collapses, assuming known year-
ahead generation and load profiles. The accumulated gain was
negative during the actual maintenance, but positive afterwards
due to its failure rate reduction. In more recent work [8], a greedy
outage scheduling algorithm used Monte-Carlo simulations to
assess the impact of outages on system operation. By mimick-
ing experts heuristics for mid-term outage-scheduling, it enables
long-term assessment of system development and maintenance
policies.

As mentioned earlier, coordination with UC and economic
dispatch may render the outage schedule assessment intractable,
especially under security criteria. To overcome this, a coordi-
nation strategy between the different tasks was proposed in [9].
There, mid-term planning over a deterministic 168-hour-long
scenario minimized UC scheduling costs under changing
network topology. In [10], a stochastic coordination model is
formulated as an hourly Mixed Integer Program (MIP) using
scenario trees that involve various disturbances. Lagrange Re-
laxation is then applied to decompose and separately solve the
long-term maintenance and short-term deterministic UC prob-
lems. A resembling formulation and approach appear in [11]. In
the bilevel outage scheduling model there, a yearly upper-level

Fig. 1. Our Bayesian hierarchical window sampling is a scenario generation
approach, which combines both sequential trajectory simulation and snapshot
sampling. In each level of the hierarchy, a snapshot of future grid and environ-
ment conditions is sampled, and sequential simulation is performed from that
point on, for a limited time window.

transmission-capacity-margin objective is constrained by
lower-level market clearing problems. Using equilibrium
constraints, the problem is recast as a mixed integer-linear
program (MILP) and solved with branch-and-cut techniques.

B. Our Contribution

Our contribution is three-fold. First, we provide a new prob-
abilistic mathematical framework that accounts for three enti-
ties involved in the multiple-horizon decision-making process;
these are namely the mid-term, short-term and real-time deci-
sion makers. Our model captures their hierarchy and formulates
their coordination using an information sharing scheme, that
limits each via partial observability.

Second, we introduce a component that greatly reduces sim-
ulation runtime by predicting approximated short-term decision
outcomes; we refer to it as a proxy. We do so with a well-
known machine learning algorithm, nearest neighbor. Machine
learning has been applied previously to various power system
applications, such as power flow prediction [12]–[15], distur-
bance detection [16], and fault classification [17]. To the best of
our knowledge, we are the first to apply it for predicting UC out-
comes. But more significantly, this work is novel in integrating a
proxy to replace a decision making layer in long-term planning
hierarchy, who takes inputs from an upper layer and its outputs
are used in a lower layer. This enables a critical reduction in
computation time, which turns the table and deems large-scale
data-driven assessment with multiple time-horizons tractable.

Third, we devise a scenario-based optimization methodology.
It builds on our scenario generation approach, Bayesian hierar-
chical window sampling, which combines both sequential tra-
jectory simulation and snapshot sampling while accounting for
coordination between the three decision layers; see Fig. 1. Using
it, we solve our stochastic chance-constrained outage scheduling
formulation for IEEE-RTS79 and IEEE-RTS96 with distributed
computing and show promising results.

The individual merits of the above methods are given in
detail in the rest of the paper but are also summarized as follows.
The hierarchical window sampling approach is decomposed
for supporting multiple stakeholder situations. It also allows
for natural top-down hierarchical simulation given conditional
empirical distributions of parameters such as daily wind genera-
tion and hourly deviations, which are usually easier to represent
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compared to joint distributions. Next, our machine-learning UC
algorithm allows for more tractable simulation by re-using pre-
computed UC solutions instead of accurately computing them
each time from scratch. Lastly, the distributed Cross-Entropy
optimization method enables searching the combinatorial space
of outage schedules based on Monte-Carlo simulation, without
requiring derivable and decomposable analytic forms of objec-
tive and constraints.

C. Comparison of Our Methodology to Existing Literature

Traditionally, for both short and long time horizons, the power
system literature often formulates MIPs and tractably solves
them using relaxation and decomposition methods such as the
respective Lagrange Relaxation [18] and Benders Decomposi-
tion [19]. This is also the case with literature considered state-
of-the-art for outage scheduling [10], [11].

A potentially intriguing direction would have been a direct
comparison via simulation of the above work to the one pre-
sented here. However, this is impractical because both [10],
[11] and other related works require the explicit probabilities
of each event and a closed mathematical (well-structured) form
of the corresponding cost and reliability criteria. With our data-
driven methodology neither of the above is accessible, because
of the way real-time simulation is conducted. Indeed, in our case,
probabilities of the short-term inputs to the UC can be explicitly
computed in principle; however, the consequent real-time sce-
narios and their probabilities are dependent on the outcome of
these UC programs. Specifically, the real-time OPF depends on
the day-ahead plan in terms of generator availability, planned
load shedding and planned wind curtailment. Put differently,
the involved probabilities are transformed from the UC input
space to its output, so they cannot be expressed analytically.
Similarly, and perhaps even more problematically, the real-time
reliability criterion defined here depends on the solutions of nu-
merous non-convex ACPFs (see Section II-B). So closed form
expressions for this criterion are not accessible. Therefore, we
compare the traditional line of work as in [10], [11] to ours with
by summarizing the differences as follows.

Traditional analytic MIP formulations are common both in
literature and industry. It benefits from well-established MIP op-
timization theory. Also, recent uncertainty-aware formulations
for short-term operation could be potentially leveraged for long-
term as well. On the other hand, this methodology suffers from
the several shortcomings. First, strong assumptions on proba-
bilities and implications are made; the analytic MIP approach
assumes some fixed scenario set with known event probability
along with its price and reliability implications. Contrarily, our
method is data-driven. It solely relies on access to some black-
box scenario generator; this even conforms with resampling
existing real-life data (in our work we sample a distribution
that is known to us, but this is not an actual restriction). Gen-
erating more scenarios during the optimization itself, if needed
to improve accuracy online, is done on-the-go by sampling.
Second, efficient MIP relaxation and decomposition methods
necessitate suitable mathematical structures. Contrarily, our
approach is fully Monte-Carlo based and hence poses no limita-

Fig. 2. Toy example of an outage schedule um. The black and white entries
correspond to 1 and 0. In this example, the planning horizon is 4 months and
transmission lines with IDs {7, 22, 45} are required to undergo outages; two
outages are required for line 7, and 1 for lines 22, 45. In this specific schedule,
line 7 outages are scheduled for months 1 and 4, line 22 outage is scheduled for
month 2, etc.

tions in terms convexity or other mathematical structures. Any
computable criterion of interest can be assessed and optimized.
Adding layers such as real-time operation is also convenient due
to the modular structure. Lastly, the modular structure allows
replacing layers in the hierarchy with approximated surrogates,
i.e., proxies such as the one introduced in this work. It is not
clear whether this can be done as part of a MIP formulation.

II. MATHEMATICAL PROBLEM FORMULATION

In our problem setting, the TSO lists necessary outages, each
one defined by a duration and a specific component to be taken
out of operation for maintenance. A specific component can
be required to undergo more than a single outage. The outage
scheduling horizon (e.g. several months, or a couple of years)
is split into T hourly time-steps. Let L be the set of compo-
nents required to undergo a single outage or more, and Tm be
a given set of candidate outage moments (e.g. monthly steps).
The decision variable um ∈ Um = {0, 1}|L×Tm | is a matrix, with
[um ]�,i ∈ {0, 1} denoting whether component � ∈ L undergoes
an outage that starts at time i ∈ Tm . An example for an outage
schedule is given in Fig. 2.

We formulate the mid-term stochastic optimization program
in (1), where the goal is to minimize expected future operating
costs by adopting an optimal planned outage schedule um .

min
um ∈Um

T∑

t=1

ESt ∈Z {C(St, um , u∗
s , u

∗
RT)} (1a)

s.t. P {r(Z, um , u∗
s , u

∗
RT) ≥ rmin} ≥ 1 − αr (1b)

P
{
LS(Z, um , u∗

s , u
∗
RT) ≤ LSmax} ≥ 1 − αLS (1c)

h(um ) ≤ 0 (1d)

u∗
s = arg min

us ∈Us (um )
Cs(us, ys , um ) (1e)

u∗
RT = arg min

uRT∈URT(u∗
s ,um )

CRT(uRT, yRT, u∗
s , um ). (1f)

This formulation’s components are explained as follows.

A. Objective

The objective in (1a) is the aggregated expected cost of op-
erational decisions summed over the evaluation horizon. The
expectation is w.r.t. the distribution of the uncertain future con-
ditions of the grid encased in and denoted by stochastic exoge-
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nous scenario Z. Scenario Z = (S1 , . . . , ST ) is a series of states
St , which are introduced in more detail in Section III-A. When
making decisions in the mid-term time-horizon, one must take
into account the smaller-horizon decisions that take place dur-
ing it. In this work, the smaller-horizon decisions considered are
short-term (day-ahead) operational planning us ∈ Us(um ) and
real-time control uRT ∈ URT(us). Each of the sets of candidate
smaller-horizon decisions Us(um ), URT(us, um ) is function of
the decisions that are taken higher in the hierarchy.

In our work, a real-time decision u∗
RT defines a vector of redis-

patch values for each redispatchable generator, wind curtailment
values for each wind generator, and LS values for each bus, and
is determined by minimizing the cost CRT of deviation from the
day-ahead market schedule u∗

s . The latter is determined by mini-
mizing a day-ahead objective Cs . Lastly, we choose the function
C(St, um , u∗

s , u
∗
RT) to only account for the real-time operating

costs. Specifically, it is identical to CRT, apart for the LS cost.
This is because LS is already addressed via (1c). However, the
formulation is general, and may in principle also incorporate
real-time LS, as well as market surplus and day-ahead reserve
purchase costs, if deemed important.

B. Reliability and Load Shedding Chance-Constraints

To maintain the generality and flexibility of our model while
respecting its probabilistic framework, we define a reliability
metric that is independent of smaller time-horizon specificities.
It allows for equitable comparison between different mainte-
nance strategies and operation policies. Inspired by the common
N-1 criterion used in the industry, we adapt it to our probabilistic
setup. Namely, we consider the system’s ability to withstand any
contingency of a single component. We thus define reliability
as the portion of contingencies under which the system retains
safe operation, which, practically, we measure via AC power
flow convergence.

For this, denote by N−1(St, um ) the N-1 contingency list and
by r(St, um , u∗

s , u
∗
RT) ∈ [0, 1] the real-time reliability, which for

brevity we also denote by r(St, um ). The latter is calculated for
given state St and is dependent of current topology, dictated by
um :

r(St, um ) =
1

|N−1(St, um )|
∑

c∈N−1 (St ,um )

I[PF(c,St ,um )],

where I[PF(c,St ,um )] equals 1 if a feasible ACPF solution exists
during contingency c ∈ N−1 , and 0 otherwise. Also, let

r(Z, um , u∗
s , u

∗
RT) =

1
T

∑

St ∈Z

r(St, um ); (2)

i.e., the average success rate for scenario Z.
In similar fashion, let LS(St, um ) be the total load shed

in state St , as determined by the real-time decision u∗
RT, and

LS(Z, um , u∗
s , u

∗
RT) = 1

T

∑
St ∈Z LS(St, um ); i.e., the average

amount of load shed during scenario Z. This LS criterion in fact
corresponds to a known index: expected demand not supplied
(EDNS), up to normalization by the horizon length.

Based on the these definitions, the chance-constraints in (1b)–
(1c) ensure that the average reliability remains above a minimal

value rmin and that the average LS remains below a maximal
value LSmax , with respective probabilities 1 − αr and 1 − αLS.
Based on reasonable achievable values for our specific test-case
modifications listed in Section VII, throughout this work we
set rmin = 0.8,LSmax = 0.5% of overall load capacity, αr =
0.05, αLS = 0.05.

The reason for explicitly incorporating the two chance con-
straints together is to ensure both high reliability and low LS
at the same time, as these two obviously trade-off. We further
relate to this trade-off in Section VII.

C. Feasibility Constraints

Maintenance feasibility constraints h(um ) in (1d) define
which maintenance schedules are feasible, e.g., cannot main-
tain more than two assets per month.

D. Coordination With Smaller-Horizon Subproblems

Lastly, the constraints in (1e)-(1f) ensure coordination be-
tween mid-term and smaller-horizon decisions. The informa-
tional states ys and yRT appearing as arguments of C, Cs, CRT

depict the partial information revealed to the respective decision
makers in these time-horizons; further details on the notion of
informational states are given in Section III-B.

III. DECISION MAKING MODEL

In this section, we elaborate on our probabilistic decision
making model. We define a state-space representation encap-
sulating all exogenous uncertain information and the decision
makers’ limited access to this information. Our model is generic
and can be adapted for additional uncertain factors.

A. State-Space

State St ∈ S captures all exogenous uncertain information at
time t, required to make informed decisions in all considered
time-horizons. Let n(t) , n(b) , n(g ,d) , n(g ,w ) respectively be the
number of transmission lines, buses, dispatchable generators,
and wind generators in the network. The state St is defined as
the following tuple:

St = (Jt,Wda,Dda,Wt,Dt, topt), where

� Jt ∈ R2 is the seasonal weather factor, determining the
intensity of demand and wind generation. This variable
changes monthly, with values drawn around a mean profile
corresponding to typical seasonal trends.

� Wda ∈ Rn ( g , w )×Tda
+ is the day-ahead wind generation fore-

cast, where Tda is the day-ahead planning horizon (24 in
our simulations). Notice that variables with subscript ’da’
remain fixed for time periods of length Tda, and are updated
each Tda time-steps.

� Dda ∈ Rn ( b )×Tda
+ is the day-ahead load forecast.

� Wt ∈ Rn ( g , w )

+ is the realized wind generation at time-step
t. It is assumed fixed during the intra-day interval (1 hour).

� Dt ∈ Rn ( b )

+ is the realized load at time-step t.
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� topt ∈ {0, 1}n ( t )
is the network transmission line topology

at time-step t, as determined by exogenous events. Entry
topt(i) = 0 indicates line i is offline at time t, due to a
random forced outage.

B. Informational States

Decision makers with different time-horizons are exposed to
different degrees of information; i.e., the higher the decision’s
temporal resolution, the more state variables are realized at
the time of the decision. We formulate these granularities via
informational states as follows. Denote S1:k

t to be St’s sub-
vector containing entries 1 to k. Let ys = S1:3

t = (Jt,Wda,Dda)
and yRT = St ; these are respectively the short-term and real-time
informational states. When performing her decision, the short-
term planner is exposed to ys, which carries the realizations of
the day-ahead generation and load forecasts. Notice he is also
exposed to the higher-level mid-term decision um ; however,
we do not model it as a part of the informational state as it
is not exogenous. As for the real-time operator, he is exposed
to realized values of all state entries, i.e. yRT, and is similarly
informed of the higher level decisions um and us .

For completeness, we also define the mid-term informational
state ym = S1

t = Jt, even though it does not appear directly
in (1) (it does appear later for scenario generation purposes).
Notice that in our work um is an open-loop mid-term strategy,
so ym is not used to revise mid-term decisions.

C. Smaller-Horizon Formulations

Our formulation contains three hierarchical levels of deci-
sion making, namely mid-term outage scheduling, short-term
day(s)-ahead planning, and (intra)hourly real-time control. We
often refer to the short-term and real-time problems as the inner
subproblems. We now present the candidate decisions in these
latter.

1) Short-term Formulation: The formulation

u∗
s = arg min

us ∈Us (um )
Cs(us, ys , um ), (3)

which also appears in (1e), is set in this work to be UC. As
explained in Section II, we choose the cost C in (1a) to be solely
based on real-time realizations and decisions. Thus, the UC cost
here is not to be minimized by the mid-term planner; rather, the
UC solution is plugged into the real-time problem for setting
commitment constraints and redispatch costs reference. Notice
the UC formulation depends on day-ahead forecasts of wind
power and load Wda,Dda. These are parts of the informational
state ys , to which the decision maker is exposed when facing his
day-ahead planning decision. The feasible action-space Us(um )
in (3) depends on the topology set by the mid-term decision um ,
and it may also embody a reliability criterion of choice, e.g. N-0
or N-1.

We now bring our complete UC formulation. In this work,
the reliability criterion used is N-0; i.e., no contingency list is
considered at the subproblem level. Instead, our probabilistic
notion analogous to N-1 resiliency is ensured via (1b). Also,
we use the DCPF approximation, in which voltage magnitudes

and reactive powers are eliminated from the problem, and real
power flows are modeled as linear functions of the voltage angles
[20]. This results in the following MILP which we model with
YALMIP [21] and solve with CPLEX [22]. The formulation and
notations rely on [20], with two main differences: i) we extended
it to the time domain, and ii) we added wind-curltaiment and
load-shedding penalties.

u∗
s = arg min

us ∈Us (um )
Cs(us, ys , um ) = arg min

α,Θ ,Pg , t ,WC,LS

Tda∑

t=1

⎡

⎣
n ( g , d )∑

i=1

(
α

(i)
t f

(i)
P (P (i)

g ,t ) + α
(i)
t (1 − α

(i)
t−1)SUi(t

(i)
off (α, t))

)

+
n ( g , w )∑

iw =1

WC(iw )
t · CWC +

n ( b )∑

ib =1

LS(ib )
t · VOLL

⎤

⎦ , (4a)

subject to (4b)

gP,t(Θ, α, Pg ) = BbusΘt + Pbus,shift + Dda + Gsh − LSt

−(Wda−WCt)−Cg (αt. ∗ Pg,t) = 0, (4c)

Bf Θt + Pf,shift − Fmax ≤ 0, (4d)

−Bf Θt − Pf,shift − Fmax ≤ 0, (4e)

θi,t = θref
i i ∈ Iref, (4f)

α
(i)
t P (i),min

g ≤ P
(i)
g ,t ≤ α

(i)
t P (i),max

g , i = 1, . . . , n(g ,d) , (4g)

0 ≤ WC(iw )
t ≤ W

(iw )
da,t , iw = 1, . . . , n(g ,w ) , (4h)

0 ≤ LS(ib )
t ≤ D

(ib )
da,t , ib = 1, . . . , n(b) , (4i)

t
(i)
off (α, t) ≥ t

(i)
down, i = 1, . . . , n(g ,d) , (4j)

t(i)on (α, t) ≥ t(i)up , i = 1, . . . , n(g ,d) , (4k)

t = 1, . . . , Tda. (4l)

The formulation’s components are explained as follows.
� α ∈ {0, 1}n ( g , d ) ×Tda denotes commitment (on/off) status of

all dispatchable generators at all time-steps.
� Θ ∈ [−π, π]n

( b )×(n ( t ) +1)×Tda denotes voltage angle vec-
tors for the N-1 network layouts at all time steps.

� Pg ∈ Rn ( g , d )×Tda
+ denotes the dispatchable generation vec-

tor, with fP being its piecewise-linear cost function.
� WC ∈ Rn ( g , w )×Tda

+ , LS ∈ Rn ( b )×Tda
+ denote the wind cur-

tailment and LS decision vectors, with CWC, VOLL being
their corresponding fixed prices per MW.

� t
(i)
down, t

(i)
up denote minimal up and downtime limits for

generator i, after it had been off/on for t
(i)
off /t(i)on ; the lat-

ter are functions of α and t, as depicted in (4a).
� SUi(t

(i)
off (α, t)) denotes start-up cost of dispatchable gen-

erator i after it had been off for t
(i)
off time-steps.
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� gP,t(Θ, α, Pg ) denotes the overall power balance equation
for line l being offline.

� Bbus, Pbus,shift denote nodal real power injection linear
coefficients.

� Bf , Pf,shift denote line flow linear coefficients.
� Gsh denotes a vector of real power consumed by shunt

elements.
� Cg denotes generator-to-bus connection matrix, where

(αt. ∗ Pg ) denotes the dot-product of the two vectors.
� Fmax denotes line flow limits.
� Iref denotes the set of indices of reference buses, with θref

i

being the reference voltage angle.
� P

(i),min
g , P

(i),max
g denote minimal and maximal power

outputs of generator i.
Furthermore,
� (4c)-(4e) ensure load balance and network topology con-

straints;
� (4f)-(4i) restrict the decision variables to stay within

boundaries. Namely, voltage angle limits, generator min-
imal and maximal power output range, wind curtailment
and LS limits; and

� (4j)-(4k) bind the different time steps to follow generator
minimal up and downtime thermal limits.

2) Real-Time Formulation: In real-time, deviations from the
forecasts and other unforeseen events need to be rectified. The
resulting adaptation decisions are taken on an (intra-)hourly
basis. The formulation

u∗
RT = arg min

uRT∈URT(u∗
s ,um )

CRT(uRT, yRT, u∗
s , um ), (5)

which also appears in (1f), follows the UC solution in (3) as
a baseline. In our work, we model and account for generation
adjustments, as well as LS and wind curtailment. Additional
adjustments that go beyond the scope of this work can be, e.g.,
grid topology alterations, and flexible load reduction. Problem
(5) is solved sequentially for each hour, where each solution at
time t is fed to the next one at time t + 1 to incorporate tem-
poral constraints. Similarly as in (3), a reliability criterion of
choice, such as N-1, may be ensured via the definition of the
set URT(u∗

s , um ). Although here, as in the short-term formula-
tion, we do not employ such a criterion due to the probabilistic
approach we take in Problem (1).

Our real-time formulation is identical to the short-term plan-
ning formulation (4) except for the following differences:

� The real-time horizon is 1, i.e., Tda = 1 instead of 24 in
the day-ahead horizon. It is thus solved independently per
each hour of day and passes required information between
consecutive hours.

� Wind power and load forecasts Wda,Dda, which are
matrices with Tda columns, are replaced with their respec-
tive single-column hourly realizations Wt,Dt .

� The on/off commitment schedule α∗ is no longer a decision
variable, rather it is retrieved from the short-term solution
and plugged-in as a constant.

� If a solution cannot be found to the single-hour convex
program, rescheduling takes place; i.e., the single-hour

Fig. 3. Our Bayesian hierarchical window scenario sampling approach for
scenario generation relies on a conditional factorization of the state to its three
informational states.

program is resolved, this time with αt being a decision
variable, as in original the day-ahead formulation (4).

� A symmetric redispatch cost is added to the objective:∑n ( g , d )

i=1 α∗,i
t |f (i)

P (P ∗,(i)
g ,t ) − f

(i)
P (P (i)

g ,t )|. It juxtaposes the

day-ahead hourly generation plan P
∗,(i)
g ,t with the real-time

hourly generation value P
(i)
g ,t .

IV. SCENARIO GENERATION

To solve (1) in the face of exogenous uncertainties and the
intricate interaction between these uncertainties, we rely in this
work on scenario-based simulation [23]. Existing literature on
scenario generation splits into two main categories. The first
is full-trajectory simulation [7], where (intra)hourly develop-
ments are simulated as a single long sequence. In our mid-term
problem that spans over a whole year, such an approach will
result in high variance and possibly necessitate an intractable
number of samples to produce a decent evaluation of scenario
costs. The second category of approaches is based on snapshot
sampling of static future moments [24]. The main issue with
this methodology is the loss of temporal information.

In light of this, we introduce a new scenario generation
approach, Bayesian hierarchical window scenario sampling,
which is a hybrid of the two aforementioned methodologies,
aimed at mitigating the disadvantages of each of them. Relying
on Bayesian factorization, we decompose of the probability of
state St to

P {S} = P {yRT|ys, ym}P {ys |ym}P {ym} ,

where the time index was stripped away for brevity.
Notice that since each of the real-time and short-term pro-

cesses are conditioned on higher levels in the hierarchy, the
state sequence St is a stationary Markov process; i.e.,

P {Z} = P {S0} · P {S1 |S0} . . . P {ST |ST −1} ,

where P {St+1 |St} is a stationary state transition probability.
With that in mind, we visualize our sampling process in Fig. 3

and describe it as follows. First, we draw monthly parameters for
wind and load intensity, i.e., draw a sequence {y(tm )

m } from tran-

sition probability P
{

y
(tm + 1 )
m |y(tm )

m

}
, where tm is a monthly
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time index. Then, we draw Ns replicas of Ts consecutive days1;
this results in sequences {y(ts )

s } drawn from transition proba-

bility P
{

y
(ts + 1 )
s |y(ts )

s , y
(tm )
m

}
, where ts is a daily time index.

Lastly, per each such day, we draw NRT replicas of TRT consecu-
tive hours and form sequences {y(t)

RT } from transition probability

P
{

y
(t+1)
RT |y(t)

RT , y
(ts )
s , y

(tm )
m

}
. Having realizations of day-ahead

forecasts in ys and their corresponding hourly realizations in
yRT, we can respectively solve the daily and hourly inner sub-
problems. Based on the incurred costs, we are able to evaluate
the scenarios’ accumulated costs per each month in a parallel
fashion.

A. Comparison to Quasi-Static Time Series

We now discuss the relation between our scenario generation
approach and an alternative – quasi-static time series (QSTS).
Similarly to our simulation, QSTS also performs sequential
steady-state power flow calculations. In its naive implemen-
tation [25], this method corresponds to the fully sequential sim-
ulation discussed earlier in this section. Recently, more sophis-
ticated variants of it have been developed. One relevant example
is [26], in which both long and short time-steps are simulated:
coarse simulation is performed by default and when a material
state change is detected, finer simulation takes place, starting
again from the last long timestep index. Both our technique and
the one in [26] focus on improving computational tractability of
long-horizon simulation. However, the latter is designed for flat
simulation, as opposed to the hierarchical multi-horizon setup
we tackle in our work. Due to the complexity involved by consid-
ering three stakeholders and their state evolution, we decompose
the state itself and not only its temporal resolution. Also, since
our framework is probabilistic, we rely on Bayesian conditional
factorization. This allows sampling multiple possible sequential
evolutions given a specific realization of month/day. Inspiring
from [26], one can analogously make the number of samples
for a specific month/day dependent on, e.g., empirical variance
of a criterion of interest. Another natural future research direc-
tion would be to directly combine the technique in [26] with
ours.

B. Wind and Demand Distributions

Here we provide details on the models used for the stochastic
wind and demand components, along with the data and test-
cases they are based on.

1) Wind Power Distribution: Wind generation capacities are
taken from [27], along with their daily mean profile. In addition,
a monthly wind profile is adopted from [28]. The wind process
mean μw (t) is obtained from the formula

μw (t) = μw,hourly(ts) · μw,monthly(tm ),

1The choice of the window lengths Ts and TRT controls the level of arbitration
between sequential scenario sampling and static snapshot sampling. Essentially,
they arbitrate between the bias and variance of the sampling process. Completely
sequential trajectory sampling has low bias but high variance, while completely
static snapshot sampling lowers the variance, though it introduces bias due to
its simplicity and choice of times of snapshots.

where μw,hourly(ts) ∈ Rn ( g , w )

+ is the daily wind mean profile
at time-of-day ts , and μw,monthly(tm ) ∈ [0, 1] is the monthly
wind profile relative to its peak at month tm of the year; the
latter is dictated according to the drawn process {y(tm )

m }, with
distribution adopted from the data in [28].

The daily wind generation process Wda is multivariate normal:

Wda ∼ N
(
μw (t), diag((pw,σ · μw (t))2)

)

where pw,σ ∈ [0, 1] is a constant (=0.15) that multiplies the
mean μw (t), to obtain a standard deviation that is a fixed fraction
of the mean. diag(x) is a square diagonal matrix, with the
elements of x as its diagonal, assuming wind generators to be
uncorrelated. Wda is truncated to stay in the range between 0
and the generator’s capacity.

The hourly wind generation Wt is assumed to be a biased
random walk, with expectation Wda; i.e., the real-time wind
process is following the daily forecast up to some accumulated
forecast error:

Wt = Wda(t) + δt , (6)

δt+1 = δt + εt , (7)

where εt is Gaussian noise, εt ∼ N (0, 5 · 10−3 · Wda(0)).
2) Load Distribution: The daily load Dda is assumed to fol-

low a distribution similar to the daily wind distribution Wda,
with the same formula containing peak loads and daily profiles
for each bus μd,hourly(ts) ∈ Rnb

+ with values taken from [27].
The fraction of mean for standard deviation is pd,σ = 0.02.

Equivalently, the hourly load process Dt follows its day-
ahead forecast Dda up to some accumulated error, as depicted in
(6) and (7); in this case, the noise is εt ∼ N (0, 10−3 · Dda(0)).

V. MACHINE LEARNING FOR A SHORT-TERM PROXY

As mentioned earlier, in this work we utilize machine learn-
ing to build a short-term proxy. Thus, we replace exact solu-
tions of the multiple UC problem instances, originating in (1e),
with their quickly-predicted approximations. We use a well-
known machine learning algorithm: nearest neighbor classifi-
cation [29]; we thus call it UCNN. The methodology relies on
a simple concept: creating a large and diverse data-set that con-
tains samples of the environment and grid conditions along with
their respective UC solutions. Then, during outage schedule as-
sessment, instead of accurately solving the numerous UC prob-
lem instances, we simply choose the pre-computed UC solution
with closest input conditions. Hence the phrase nearest neigh-
bor. To confidently obtain high-quality approximate solutions,
we generate the data-set so as to cover all relevant topologies
that might be encountered during prediction. In our context, this
implies a data-set that is O(2|L|), where L is the set of transmis-
sion lines for which outages ought to be performed. In general,
this combinatorial dependence is not necessarily compulsory.
Nevertheless, the question of accuracy degradation with smaller
data-sets and more efficient data-set compositions are subject to
future work.
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Fig. 4. UCNN algorithm diagram. In an initial phase, multiple UC inputs are generated, solved, and then stored along with their solutions and costs to create a
diverse data-set, also referred to as training set. In a second phase, when a new UC problem instance is received, an approximate UC solution is obtained by finding
a nearest-neighbor among the existing solutions in the data-set; i.e., a pre-solved similar problem instance. This is to replace the usage of the computationally
expensive UC solver.

The method’s strength stems from the fact that during the
optimization process (1), which is based on multiple outage
schedule assessments, UC problem instances are often similar
to previously computed ones. The initial data-set creation can
either be done offline or online, i.e., by continually adding new
solutions to the data-set as they become available. Nearest neigh-
bour is attractive not only because of its ability to successfully
handle the combinatorial problem structure (see [30]), but also
because it seamlessly supports online updates. Being a “lazy”
learner, its prediction capability is improved by simply adding
accurately solved UC instances to its data-set. For the experi-
ment described in this section, a data-set of 5000 UC problem
instances was created in an ‘offline’ fashion. After obtaining
this initial data-set, UCNN reduces computation time in several
orders of magnitude, with relatively little compromise in quality
[30]. The method is visualized in Fig. 4.

In addition to the direct UC approximation comparison in
[30], we examine the resulting accuracy of outage scheduling
assessment when using UCNN to solve the short-term subprob-
lem instead of exact UC computations. To do so, we generate
four arbitrary outage schedules under the configuration given
in Section VII. Then, for each of these schedules, we present
in Fig. 5 means and standard deviations of several metrics in
our simulation across the year’s progress. These metrics are
i) day-ahead operational costs and ii) LS amounts, taken from
the short-term UC simulation. Additionally, they include the
real-time values of iii) reliability as defined in (2) and vi) real-
time operational costs. In all of these plots, the red curve is of an
empty, no-outage schedule given as a baseline, evaluated using
exact UC simulation; the blue and green curves are respectively
based on exact UC and UCNN simulations of the arbitrary out-
age schedules. The persistent proximity of the green curve to
the blue demonstrates the low approximation error when using
UCNN, as it propagates to the four inspected metrics during the
simulation.

Fig. 5. Low proxy approximation errors demonstrated for IEEE-RTS79. Plot-
ted are monthly costs of no-outage schedule as a reference (red) and four
arbitrary outage schedules, evaluated with exact UC (blue) and UCNN (green).

VI. DISTRIBUTED CROSS ENTROPY OPTIMIZATION

Problem (1) is a non-convex combinatorial stochastic opti-
mization program with inner MILPs. Continuing the discussion
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Fig. 6. A visualization of the Cross Entropy method.

in Section I-C, it is too complex for the objective and constraints
to be expressed in explicit analytic form and for the program
to be solved using gradient-based optimization. Furthermore,
gradient-based approaches would preclude the option of uti-
lizing smaller-horizon machine learning proxies such as our
UCNN. For this reason, we choose a gradient-free simulation-
based optimization approach. It is performed with distributed
Monte-Carlo sampling, where multiple solutions in Um are be-
ing assessed in parallel on multiple servers. Each month of such
solution assessment is itself simulated in parallel.

In CE, a parametric distribution Pu is maintained over the
solution space Um . Per each iteration k until convergence of
P

(k)
u to some final value, CE performs consecutive steps of:
1) Drawing N candidate outage schedules u

(k)
m,i ∼ P

(k)
u ,

i = 1, . . . , N. Then, evaluating their respective costs c
(k)
i

in parallel, based on simulated sampled scenario set Ẑ(k)

(generated with our Bayesian hierarchical window sce-
nario sampler):

c
(k)
i =

1
|Ẑ(k) |

∑

Ẑ∈Ẑ(k )

∑

St ∈Ẑ

C(St, u
(k)
m,i , u

∗
s , u

∗
RT).

2) Updating the parametric distribution of solutions P
(k)
u

based on the lowest (cheapest) 0.15-percentile of c
(k)
i .

This iterative process is visualized in Fig. 6.
In our simulations the outage scheduling horizon is one

year with monthly candidate outage moments. Therefore,
um is a binary matrix; i.e., um ∈ Um = {0, 1}|L|×12 . Entry
[um ]�,m = 1 indicates a scheduled outage of line � during
month m.

We thus represent the CE distribution P
(k)
u with a matrix

of size |L| × 12 whose entries [P (k)
u ]�,m ∈ [0, 1] depict outage

likelihood. At iteration k = 0, these are all initialized to 0.5. As
explained in the experiments section, according to the outage
lists for IEEE-RTS79 and IEEE-RTS96 we need to schedule
either 1 or 2 outages per each line in L, depending on the line.
Thus, per each row [P (k)

u ]� ∈ [0, 1]12 (corresponding to line l)
we respectively draw 1 or 2 entries out of the 12 candidate

entries. This per-row sampling is performed by drawing one
out of the

(12
1

)
or alternatively

(12
2

)
entry combinations based

on their proportional probability, calculated using matrix P
(k)
u .

The first step of the CE algorithm is thus to iterate the above
procedure N times for sampling u

(k)
m,i, i = 1, . . . , N .

The second step of the CE algorithm is to update P
(k)
u as

follows. Let Ic ⊂ {1, . . . , N} be the set of indices of the low-
est 0.15-percentile of costs c

(k)
i . Then, we update the entries

P
(k+1)
u = 1

|Ic |
∑

j∈Ic
u

(k)
m,j ; i.e., the entries of P

(k+1)
u are set to

be the average of the top solutions’ entries.
Lastly, our criterion for convergence is when the entropy of

P
(k+1)
u drops below some small ε > 0. This occurs when all

entries are sufficiently close to either 0 or 1.
As for constraint satisfaction, it is ensured in the following

way: Chance-Constraints (1b)-(1c) are evaluated empirically
and their violation is penalized with increasing-slope barrier
functions; Feasibility Constraint (1d) is ensured via the struc-
ture of the CE parametric distribution described above; Inner
Constraints (1e)-(1f) are ensured via the solvers used for simu-
lating them.

VII. SIMULATION STUDIES

We run our simulations on a Sun cluster with Intel Xeon(R)
CPUs @2.53GHz, containing a total of 300 cores, each with
2GB of memory. All code is written in Matlab [31]. In each
iteration of the CE algorithm, we assess the objective and con-
straint values of 75 drawn outage schedules in parallel, while
also parallelizing the simulation of each of the 12 months.
The simulation parameters introduced in Section IV, depict-
ing daily and hourly trajectory length and multiplicity, are
Ts = 3 , Ns = 4, TRT = 24, NRT = 2. This totals a year-long
trajectory which is sampled 3 times.

A. Test-Cases and Outages

In our simulation, we consider the IEEE-RTS79 and IEEE-
RTS96 test-cases [32]. We adopt updated generator parameters
from Kirschen et al. [33], namely their capacities, min-output,
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Fig. 7. Modifications and target outages in the IEEE-RTS96 test-case (con-
ducted per each of the zones, though plotted on one for simplicity). Red circles
denote removal, green circles denote increase, and red exclamation marks de-
note candidate planned outage. In RTS79, the same modifications and outages
are conducted in its single zone (except of outages in interconnections since
they do not exist there).

ramp up/down limits, min up/down times, price curves and start-
up costs. Peak loads and hourly demand means are based on data
from the US published in [27]. Capacities and means of hourly
wind generation are also based on real data, taken from [27].
Value of lost load is set to VOLL = 1000[ $

M W h ], taken from
[34] and wind-curtailment price is set to CWC = 100[ $

M W h ],
taken from [35].

Additionally, we slightly modify the test-cases so as to create
several ‘bottleneck’ areas to provide conditions for variant out-
age schedule qualities. In RTS79, these modifications include i)
removal of transmission line between bus 1 and 2, and ii) shift
of loads from buses 1 and 2 to buses 3 and 4, respectively. In
the case of RTS96, the same exact modifications are replicated
to all three zones.

Next, we specify the outage lists. For RTS79, it is composed
of 13 outages: 2 outages per each of lines {2, 3, 4, 5, 25, 26}
and 1 outage for line 11. For RTS96, the list is composed of
30 outages: 9 per each zone plus 3 for the interconnections.
Specifically, in the first zone of RTS96 we have 2 outages per
each of lines {2, 3, 4, 5} and 1 outage for line 11; these are
replicated similarly to the equivalent lines in the second and
third zones. The additional interconnection outages are 1 per
each of lines {12, 119, 120}. The test-case modifications and
outages are visualized in Fig. 7.

B. UCNN Data-Set Size Complexity

We now briefly relate to the UCNN data-set size and, for
clarity, distinguish it from the optimization search space size.
The latter is, in general, much larger than the former. To see
this, let us denote by K the number of outages required per

Fig. 8. Convergence of the Cross Entropy method. Plotted are medians with
upper and lower quartiles of three metrics for the top CE percentile: operational
costs (redispatch, wind curtailment and unit re-commitment), average reliability,
and average load shedding.

each line in the outage list L. Then each of the |L| lines has(|Tm |
K

)
= O(|Tm |K ) possible outage allocations throughout the

planning horizon, resulting in an optimization search space sized
O(|Tm |K |L|). Contrarily, as explained in Section V, the required
UCNN data-set size is proportional to the outage combinations,
i.e., O(2|L|); it does not depend on Tm or K.

Nevertheless, the exponential growth in L poses a scalability
issue when generating the UCNN data-set. Given our setup, as
specified in Subsection VII-A, the resulting size for RTS-96
is O(23×5+3). To mitigate this, when scheduling outages for
RTS96, we assume that the year is partitioned into three periods
of 4 months, and each of the three “zone operators” is exclusively
allocated with distinct 4 months to conduct her 9 outages. This
is enforced via the feasibility constraint (1d). As for the outages
of the additional 3 interconnections, those are independent and
free to be chosen to any of the year’s 12 months. We thereby
do away with the exponential dependence of UCNN’s data-set
complexity in the number of zones, i.e., reduce the O(23×5+3)
training set size to O(3 × 25+3).

C. Results

Fig. 8 exhibits the fast convergence as expected from CE
when solving (1) for the two test-cases, along with intrigu-
ing differences between them. It gives the median with upper
and lower quartiles of the top CE percentile for three metrics:
operational costs from (1a) (redispatch, wind curtailment and
unit re-commitment), average reliability from (1b), and average
LS from (1c). In both test-cases, operational costs significantly
drop. As for the reliability and LS, a somewhat complementary
behavior is observed for the two test-cases. The reliability in
RTS79 starts off with high enough values, 83%, to satisfy its
constraint (1b), while the LS amount starts high and quickly
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Fig. 9. A visualization of drawn outage schedules throughout selected iter-
ations of the CE optimization process, demonstrating convergence to a single
schedule. Each iteration is represented with a gray-level-mapped matrix, whose
rows denote the transmission line index out of those undergoing outages and
their columns denote the outage moments. For a given entry, the gray-level cor-
responds to the relative intensity of outages selected for the specific line-month
combination.

Fig. 10. Two heuristic outage schedules that experts would possibly consider.
For explanation on the visualization method see Fig. 2.

drops to a satisfying level of 0.4%. The exact opposite hap-
pens for RTS96: reliability starts low and increases drastically
to 83%, while LS values consistently remain low throughout the
optimization process, stabilizing at 0.05%.

We also visualize the convergence in the space of outage
schedules in Fig. 9 via gray-level-mapped matrices. The rows of
these matrices denote the transmission lines and their columns
denote the outage moments. For a given entry, the gray-level
corresponds to the relative intensity of outages selected for the
specific line-month combination. The initial CE iteration begins
with uniformly-drawn candidate outages moments, followed by
convergence towards a single solution. In the case of RTS96, the
zonal time-allocation can be seen in the form of three shaded
blocks of entries, with the three interconnection outages in the
form of three shaded independent rows.

To demonstrate the efficacy of our optimized outage schedule,
we compared it with two heuristics that mimic possible expert
outage schedules, as well as multiple arbitrary outage schedules.
The first expert heuristic, visualized in Fig. 10(a), performs pe-
riodic maintenance; this method is presently used by various
European TSOs [36]. The second expert heuristic, visualized in
Fig. 10(b), schedules as many of the outages during times when
the load is low; we chose it since it was found to be optimal
in [10]. Notice that these two expert plans are confined to our
exclusive zonal time separation, due to the setup described in

Fig. 11. A comparison on IEEE-RTS96 of 100 arbitrary outage schedules to
10 instances per each of the heuristics depicted in Fig. 10, and our optimization
solution. Altogether there are 130 instances of scenario-evaluation runs, nor-
malized in the relative frequency histograms in (a). In (a), the dominance of our
solution is shown in all three inspected metrics. There is one single exception
to its optimality: a random schedule with > 90% reliability. However, in (b),
where the reliability vs. load-shedding tradeoff is depicted, this single schedule
is shown to suffer from high load shedding.

Section VII-B. Per each of those heuristics, as well as for our
optimization solution, we ran 10 evaluations. Lastly, we eval-
uated 100 random schedules that comply with the zonal time
allocation. Fig. 11(a) displays operational cost, reliability, and
LS histograms of the 130 evaluated schedules. The load-based
schedule outperforms the periodic one. However, both are out-
performed by optimization solution, which consistently exhibits
the lowest operational costs, highest reliability, and lowest LS.
One exception to its optimality is a single random schedule that
achieves reliability greater than 90%. To further examine it, we
added a scatter plot in Fig. 11(b) to capture the reliability vs.
LS tradeoff. It reveals that the aforementioned highly-reliable
random schedule suffers from high load-shedding values, as
opposed to our optimization solution.

In our last simulation we tested the quality of the optimization
solution as a function of the number of drawn outage schedules
per each iteration of CE. Namely, we ran the CE optimization
procedure until convergence (for the convergence criterion see
Section VI) 5 times, with N (number drawn schedules per CE
iteration) taken from [10, 20, 40, 75, 125]. Fig. 12 gives the
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Fig. 12. Quality of the optimization solution as a function of the number of
outage schedules drawn per each iteration of Cross Entropy. The figure
depicts the tradeoff between computational cost and reachable objective-
value/constraint-satisfiability. Plotted are medians with upper and lower quar-
tiles of three metrics: operational costs (redispatch, wind curtailment and unit
re-commitment), average reliability, and average load shedding. In both test-
cases, the constraints are satisfied and the objective saturates at N = 75 drawn
outages per iteration, in terms of median performance.

converged values in terms of operational cost, reliability and
LS. The plots reveal that for both test-cases N = 75 is sufficient
to satisfy the reliability and LS constraints, which respectively
should be above 80% and below 0.5% (see Section II-B). Also,
no significant reduction in operational costs is witnessed beyond
beyond that value.

VIII. CONCLUSION

The power system infrastructure is ageing, and its main-
tenance is becoming more and more costly and complex.
This calls for new sophisticated outage scheduling tools, that
will handle uncertainty and coordination with operations. The
scenario assessment framework introduced in this work enables
detailed evaluation of implicit intricate implications an outage
schedule inflicts on a power system. We harness the power of
machine learning and distributed computing to tractably per-
form multiple schedule assessments in parallel. We also wrap
it in an optimization framework that finds convincingly high-
quality schedules. An additional, straightforward application of
the methodologies introduced here is assessment of a predefined
maintenance schedule considered by experts.

The focus of this work is in the probabilistic framework and
hierarchical methodologies. Nevertheless, we believe it enables
gaining new insights for both academic networks and more com-
plex real-world test-cases. The proposed framework is flexible
and can be adapted to different practical cost functions and relia-
bility criteria. But most importantly, it is completely data-driven
– it does not rely on knowing the probabilities of scenarios; it

solely requires access to a black-box scenario generator. This
conforms with resampling real-life data.

Lastly, this work raises the question of the benefit of real-time
simulation for planning purposes compared to more classical
methods. To answer that question, one should first understand
how to evaluate and compare classical methods to data-driven
methods in terms of known metrics, given the inherent differ-
ences between them listed in Section I-C. In this work, we
attempted to bridge some of the gaps between the two schools,
by focusing on metrics which we found comparable. Other met-
rics, such as the probabilistic N-1 reliability criterion, required a
certain level of flexibility in order to become “data-compatible”.
Nonetheless, the authors encourage future research on devising
methods for performance comparison both in simulation and
real systems.
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Liège, Belgium. He is a Full Professor of electri-
cal engineering and computer science. His research
interests lie in the fields of stochastic methods for
systems control, optimization, machine learning and
data mining, with applications in complex systems,
in particular large scale power systems planning, op-
eration and control, industrial process control, and
bioinformatics and computer vision.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


