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Abstract—Demand flexibility will be an inevitable part of the
future power system operation to compensate stochastic variations
of ever-increasing renewable generation. One way to achieve de-
mand flexibility is to provide time-varying prices to customers at
the edge of the grid. However, appropriate models are needed to
estimate the potential flexibility of different types of consumers for
day ahead and real-time ancillary services (AS) provision. The pro-
posed method should account for rebound effect and variability of
the customers’ reaction to the price signals. In this study, an effi-
cient algorithm is developed for consumers’ flexibility estimation
by the transmission system operator (TSO) based on offline data.
No aggregator or real-time communication is involved in the pro-
cess of flexibility estimation, although real-time communication
channels are needed to broadcast price signals to the end-users.
Also, the consumers’ elasticity and technical differences between
various types of loads are taken into account in the formulation.
The problem is formulated as a mixed-integer linear programming
(MILP) problem, which is then converted to a chance-constrained
programming to account for the stochastic behavior of the con-
sumers. Simulation results show the applicability of the proposed
method for the provision of AS from consumers at the TSO level.

Index Terms—Rational end-users, transmission system oper-
ator, flexibility resources, ancillary services, chance-constrained
programming.

NOMENCLATURE

A. Sets:

T Set of time, indexed by t, t ∈ [1, . . . , τ ].
J Set of end-users’ categories, indexed by j.
α Type of regulation, i.e., up- or down-regulation.

B. Parameters:

λλλbase Baseline electricity price [DKK cent/kWh].
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ΔλΔλΔλα
t Time-varying electricity price (called delta price)

for regulation type α at time t [DKK cent/kWh].
ΔλΔλΔλα

j ,ΔλΔλΔλ
α

j Minimum and maximum delta prices for regula-
tion type α of end-users’ category j [DKK cent].

Lbase
t,j Baseline end-users’ demand of category j at time

t [kW].
Lmin

t,j ,Lmax
t,j Minimum and maximum electricity consumption

of end-users’ category j at time t [kW].
aα

t,j Actual willingness of end-users’ category j to
provide flexibility type α at time t [p.u.].

aα
j Maximum willingness of end-users’ category j to

provide flexibility type α [p.u.].
rα

j Ramp-rate of end-users’ category j for regulation
type α [kW/h].

nα
j Maximum number of activation times for end-

users’ category j to provide flexibility type α.
dα

j ,d
α
j Minimum and maximum continuous flexibility

duration of end-users’ category j when activated
to provide flexibility type α [h].

βββth Theoretical confidence level imposed in the
chance-constrained programming.

βββac Actual confidence level achieved in the chance-
constrained programming.

Rj Maximum rebound delay for end-users’category
j [h].

C. Variables:

Lα
t,j Flexibility of end-users’ category j at time t for

regulation type α [kW].
uα

t,j Binary variable, indicating flexibility status of
end-users’ category j at time t for regulation
type α.

yα
t,j , z

α
t,j Starting and stopping binary variables of end-

users’ category j at time t indicating flexibility
type α.

I. INTRODUCTION

IN RECENT decades, a significant amount of renewable en-
ergy sources (RES) has been integrated into power systems,

supported by the increasing global awareness towards climate
change and the tremendous cost reduction in the new technolo-
gies [1]. While offering unquestionable environmental benefits
and sustainability in energy production, large penetration of
RES introduces new concerns and challenges in power systems
planning and operation because of an unprecedented level of
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stochasticity, non-linearity, and dynamics [2]. Consequently, it
causes higher risk of frequency deviation, voltage excursion,
and network congestion in real-time operation. Furthermore, it
requires larger amount of ancillary services (AS) to compensate
demand and generation imbalances in real-time. AS consist of
a variety of operations, beyond the electricity generation and
transmission. These operations guarantee service quality, con-
tinuity and security from distribution (e.g., voltage regulation)
to transmission level (e.g., frequency regulation and congestion
management). Since RES are located at different levels of the
grid, challenges are extended to all aspects of AS provision.
This further demands a holistic change in AS provision in the
future power system with high RES penetration.

An attempt of that nature is the so-called demand response
(DR) programs. Different types of DR programs have been de-
veloped and tested in the last decade or so [3]. These include
the application of time-of-use (ToU) rates, incentives, real-time
prices (RTP) and direct load control (DLC). ToU schemes define
different rates at different time of the day (i.e., usually two-tiered
peak and off peak [4]) but that do not change based on the condi-
tion of power system. Incentives are designed to be added on top
of a flat electricity retail price. The consumer is always rewarded
to alter its consumption to support the DR scheme voluntarily.
However, they are used in relation to two-way communication
schemes [5]–[7]. Finally, RTP are generated to reflect the real-
time condition of the grid [8]. RTP is different from incentives,
as in RTP consumers only receive a time-varying price. On the
other hand, in incentive-based schemes, consumers still receive a
flat retail price and, on top of that, they can agree on an incentive
to alter their consumption. This solution preserves consumers’
autonomy as it is based on one-way communication structure.
Prices are broadcast to consumers which autonomously decide
how to respond to them through decentralised controllers. Also,
no control signal is submitted to the consumers, and the same
price signal can be broadcast to a various pool of consumers
(i.e., at their HEMSs), as its formulation is not device-based.

Such price schemes have been used in the Olympic Penin-
sula Demonstration project, where the procurement of demand
flexibility in response to 5-minute price signals was success-
fully tested [9]. Although RTP might potentially increase price
volatility, it is possible to address such a concern by properly
designing the price, e.g., imposing a fixed price cap [10]. The
RTP can also be agreed in a market-based approach, such as
in transactive energy (TE) [11]. TE allows the consumers to be
actively involved in the formation of the price, which in turn
reduces uncertainty in consumers’ response. However, this type
of methods requires regular feedback from the consumers for
flexibility estimation, requiring costly and cyber security-prone
two-way communication infrastructure.

Another type of DR programs is centralised and decentralised
DLC schemes [12]. In centralised DLC mechanisms, an exter-
nal entity directly controls consumers’ load through a two-way
communication link [13]. Although such solutions substantially
reduce uncertainty in the consumers’ response [14], they com-
promise consumers’ privacy and autonomy [11]. In fact, con-
sumers have to allow an external entity to decide about the
way they consume electricity. In [15] and [16], it is shown that

consumers might be reluctant in losing control of their consump-
tion, and that automation of the consumption is accepted only
if consumers can autonomously manage it. To gain higher ac-
ceptance from consumers towards DLC mechanisms, long-term
contracts [17] have also been formulated. The main challenge
of such approaches is that consumers need to plan their fu-
ture consumption ahead of time, which most of the consumers
are not accustomed to do so [6]. Therefore, only part of the
available flexibility might be exploited in such programs. An
alternative to centralised DLC schemes is decentralised DLC,
which uses one-way communication [18]. It is implemented by
simply broadcasting a control signal from a centre, where the ul-
timate decision is made by the local controller at the consumer’s
side. This arrangement addresses privacy and comfort issues in
the DLC schemes (i.e., each distributed controller individually
satisfies the consumer’ constraints [19]). However, the control
signal generated by the central controller is based on models for
specific types of loads. Therefore, different specialised control
signals should be issued for every type of loads in order to ex-
ploit the existing potential flexibility [20], [21]. In addition, the
control signals are generated by assuming a linear model for the
device, which might not represent the true dynamics of the un-
derlying appliance, thus it might be error-prone. Nevertheless, it
is true that the error might decrease as the number of aggregated
devices grows.

While the authors acknowledge the benefits and disadvan-
tages of various RTP and DLC methods, the RTP scheme is
assumed in this study and the proposed flexibility estimation
algorithm is developed based on the RTP concept. From the
perspective of the transmission system operator (TSO), RTP
must be properly formulated to address the desired aggregated
change in consumption that solves the operational problems.
Therefore, understanding how end-users respond to different
price signals in an aggregated manner can help the TSO to esti-
mate the potential of demand flexibility and design price signals
accordingly [22]. In other words, by utilising appropriate mod-
els, the system operator can evaluate the impact of different
prices on consumers’ flexibility to determine the right price to
obtain a certain amount of flexibility [23]. Unfortunately, lit-
erature scarcely reported load flexibility estimation from the
system operator’s point of view. In [24], a daily load response
model for different end-users’ categories is proposed based on
the day-ahead spot market prices. However, the stochastic re-
sponsiveness of different end-users’ categories and consumers’
preferences have not been studied. Moreover, only few papers
investigated the flexibility potential of various industrial loads
[25], despite the fact that 80% of electricity usage is consumed
in this sector in some countries [26]. Therefore, there is a gap
in knowledge to properly estimate aggregated flexibility of the
consumers while accounting for stochasticity in their elasticity
and preferences without real-time communication links.

In this paper, an optimisation problem is formulated to es-
timate the aggregate flexibility of rational end-users (REUs)
with different elasticity and preferences at the TSO level in re-
sponse to time-varying prices. The proposed tool can be used to
quantify the amount of demand flexibility that is available for
balancing. Estimating the amount of load flexibility in response
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to different prices can be useful for an aggregator to build blocks
of load capacity bids for different time intervals (e.g., hourly,
in CAISO). Although how to generate the time-varying prices
is out of the scope of this study, the proposed method can also
be used to evaluate the impact of different prices on demand
flexibility. Moreover, balancing requirements might change due
to the prediction errors in the load demand and renewable gen-
eration and unexpected outages. Therefore, having an estimate
of the available load flexibility can be very useful during the
real-time operation of the power system. Within this context,
our method can be used to provide such an estimate both in
advance or in real-time. Furthermore, having more flexible re-
sources (from generation and demand) enhances competition in
the balancing market, resulting in price reduction that ultimately
reduces electricity prices for the end-users. In order to reduce
the negative impact of the consumers’ stochastic behaviour on
the estimated flexibility, the original formulation is converted to
a chance-constrained (CC) programming, where the risk level
of the solutions can be guaranteed. The main contributions of
the paper can be summarised as follows:

� Quantifying the aggregated up- and down- flexibility from
various types of consumers’ categories at the TSO level to
address AS requirements;

� Formulating a chance-constrained optimisation to account
for the stochasticity in the consumers’ willingness in such
an application;

� Developing a statistical model of aggregated consumers’
willingness (i.e., elasticity and preferences) for different
categories of consumers and incorporating it in the opti-
misation problem.

The rest of the paper is organised as follows: Section II
presents the theoretical foundation for the formulation in terms
of time-varying prices and REUs. It is followed by a determin-
istic optimisation formulation of the aggregated load flexibility
in Section III. Then, the formulation is converted to a CC pro-
gramming problem to address stochasticity of the end-users’
behaviour in Section IV. In Section V, a case study is proposed
and a series of simulations are carried out to show the effective-
ness of the proposed model. Simulation results are discussed
and the paper is finally concluded in Section VI.

II. MODELLING CONCEPTS

Quantifying demand flexibility at the TSO level with limited
aggregated historical data inevitably involves complex param-
eters and conditions, which must be simplified for appropriate
modelling. To keep the proposed method practical and compu-
tationally tractable, two important assumptions are made based
on the current trend in smart grid technologies, as explained
below.

A. Time-Varying Prices

Time-varying prices are assumed to exist to activate con-
sumers’ flexibility in this study. In the smart grid era, the appli-
cation of advanced metering infrastructure will further support
the time-varying pricing mechanism in practice. Without loss
of generality and similar to the Olympic Peninsula Demonstra-

tion, it is assumed that time-varying prices are superimposed
on the existing retail electricity price. We refer to the existing
flat retail price as the “baseline price”, λbase, while the time-
varying price component is called “delta price” in the rest of
the paper. The latter is denoted by ΔλΔλΔλα

t , representing the time-
varying price for flexibility type α at time t. Depending on the
grid condition, upward regulation (i.e., α = u) or downward
regulation (i.e., α = d) may be required. In the existing termi-
nology, regulation is defined from the generators’ perspective,
e.g., in California ISO [27], where a load increase is equiv-
alent to a decrease in generation (i.e., down-regulation) and
vice versa. Therefore, down-regulation is achieved from neg-
ative delta prices, Δλd

t or equivalently ΔλΔλΔλα
t : (ΔλΔλΔλα

t < 0). On
the other hand, load reduction is equivalent to an increase in
generation (i.e., up-regulation), which is achieved by positive
delta prices, Δλu

t or equivalently ΔλΔλΔλα
t : (ΔλΔλΔλα

t > 0). Since the
source of real-time operation issues can be linked to many enti-
ties (e.g., load, generation plants, transmission and distribution
networks, interconnected areas, and so on), it would be unfair
to the consumers to pay more because of the issues that were
probably initiated by other stakeholders [23]. To alleviate such
a problem, zero accumulated delta prices should be enforced at
the end of each day:

τ∑

t=1

ΔλΔλΔλu
t + ΔλΔλΔλd

t = 0 (1)

Summing the delta prices to zero over a day of operation is pre-
ferred in this paper instead of the alternative approach, which
is the sum of the demand-weighted prices. The main reason is
that it is difficult to predict the aggregated response of each
consumers’ category in the hours ahead, which leads to higher
uncertainty in the demand-weighted prices. By providing delta-
prices whose sum is zero, some periods of low prices are ensured
to exist from which the consumers can benefit (i.e., by respond-
ing to the time-varying price). In the simulation study, it is
assumed that the delta prices are known in advance by the TSO.
In the electricity markets where energy and AS are procured
simultaneously in the day-ahead market, e.g., California ISO
[28], such AS prices are available. Furthermore, the proposed
tool could be readily used for real-time operation in a rolling
horizon fashion to incorporate potential updates of the prices
and load flexibility provided in previous hours.

B. Rational End-Users (REUs)

Since manual consumers’ reaction to the price signal is not
practical nor effective, energy management systems (EMS) are
required to successfully implement price-based DR programs in
practice. Once the time-varying price is received by the EMS,
they run an individual optimisation and/or control problem lo-
cally to minimise the incurred electricity cost accounting for the
customers’ preferences [8], [29]–[31]. As an important smart
grid technology, the EMS market value reached US$4 billion
in 2017 [32]. With the current market trend, it is likely that
most of the future electricity consumers will have EMS at their
premises. This, in turn, will enhance the elasticity of demand
to time-varying prices, which is a key feature in successful
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DR implementation. In addition, application of EMSs improves
the predictability of consumers’ response to price signals while
avoiding communication of any sensitive information over com-
munication channels in real-time.

In this paper, we deal with EMS-equipped end-users, which
are called REUs, to receive the time-varying electricity prices
through one-way communication channels. The diversity of the
REUs’ behaviour towards the delta prices is modelled below.

1) REUs’ Responsiveness to the Price Signal: In order to
appropriately model the diversity of consumers’ flexibility, the
willingness of each REU to deviate from its baseline demand,
i.e., Lbase

t,j , is modelled as a stochastic phenomenon. Generally,
the price-responsiveness of a consumer depends on various fac-
tors, e.g., weather conditions, electricity price, time and type of
day, and season, etc. [33]. As an example, in [34], it is shown
that the response of the load demand has been faster in the cold
weather. In this paper, however, only electricity price, type of
consumers and time of the day are considered in the REUs’ re-
sponsiveness modelling, i.e., aα

t,j , to keep the problem tractable.
Other factors, such as the weather condition and type of day,
could be included in the current model by adjusting the willing-
ness parameter aα

t,j , e.g., as a function of the ambient tempera-
ture and type of day. Weather conditions are neglected because
various types of end-users react differently to the weather con-
ditions. Therefore, proper data is needed to estimate the rela-
tionship, which is not available to the public at the moment. The
value of aα

t,j varies within the range of [−1, 1], where 0 indi-
cates no intention to change consumption and 1 (−1) represents
a 100%-increase () in consumption in response to the delta
price. From literature, [24] approached the consumers’ price-
responsiveness in a similar manner to investigate the behaviour
of a pool of end-users. Consumers’ willingness, however, was
considered constant over time and price in that study. Halvgaard
et al. in [35] adopted a linear model of price and consumption
to formulate the price response behaviour. In [36], Aalami et al.
focused on nonlinear functions, which better describe the price
response behaviour compared to the linear models. Following
the work of Aalami, we adopted a power function to model the
consumers’ willingness, as shown in Fig. 1. Similar to [24] and
[37], where the authors assumed a price threshold for achieving
DR, a dead-band is considered to address the fact that consumers
become responsive beyond a certain price. Therefore, for a delta
price smaller than the dead-band price, i.e., ΔλΔλΔλα

j in the specific
regulation direction, no response is expected from the pool and
the flexibility is zero:

aα
t,j = 0 |ΔλΔλΔλα

t | < ΔλΔλΔλα
j (2)

When the delta price increases beyond the dead-band, the
pool of consumers starts reacting, which is modelled as follows:

aα
t,j = aα

j

(
ΔλΔλΔλα

t −ΔλΔλΔλα
j

ΔλΔλΔλ
α

j −ΔλΔλΔλα
j

)γγγ

ΔλΔλΔλα
j ≤ |ΔλΔλΔλα

t | ≤ ΔλΔλΔλ
α

j (3)

Furthermore, we assume that, beyond a certain price, i.e.,
ΔλΔλΔλ

α

j , the pool cannot provide additional flexibility because of
the rebound effect and the un-curtailable load, as discussed in

Fig. 1. Willingness parameter aα
t,j for time-varying electricity price ΔλΔλΔλα

t .
Positive prices lead to up-regulation (i.e., α ≡ u), while negative prices induce
down-regulation (i.e., α ≡ d). The parameters ΔλΔλΔλα

j and ΔλΔλΔλα
j determine the

dead-band and the saturation prices for each end-users’ category j .

[8]. Therefore, aα
t,j becomes constant:

aα
t,j = aα

j |ΔλΔλΔλα
t | ≥ ΔλΔλΔλ

α

j (4)

To account for the stochasticity and the diversity among con-
sumers even from the same category of end-users, the six pa-
rameters defining the dead-band and saturation, shown in Fig. 1,
are treated as normally-distributed random variables. In Subsec-
tion V-A, the statistical properties and a simulation framework
will be introduced to generate a pool of consumers for each
end-users’ category.

III. UP- AND DOWN-FLEXIBILITY: DETERMINISTIC CASE

The ultimate goal of this study is to estimate the amount of
demand flexibility that can be provided by different categories
of end-users, under a time-varying pricing scheme in the pres-
ence of stochasticity in consumers’ willingness. By having the
stochastic model of the consumers’ reaction to the price signal
and the assumptions made in the previous section, it is pos-
sible to formulate an optimisation problem for the REUs to
estimate their flexibility. The formulation is developed based on
the conservative assumption that a perfect rebound exists due
to practical reasons and end-users’ comfort. In fact, more than
90% of the flexibility resources at the residential premises is
provided by appliances with shiftable load (e.g., heating, venti-
lation, and air conditioning systems, clothes dryers, and so on)
[38]. Therefore, the rebound effect will be an inevitable aspect
of demand flexibility modelling, although it adversely affects
the overall flexibility. As consumers might not be willing to
increase their overall daily consumption, which might result in
higher electricity bills, a perfect load shifting is preferred in
the model that must be completed within a certain time period.
While this condition might further decrease the overall flexibil-
ity of the load demand, it provides a more realistic model of
consumers’ behaviour, which consequently improves the accu-
racy of the estimated flexibility. Since the TSO does not have
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direct access to the individual loads, and consumers only react
to the delta prices submitted by the TSO, flexibility should be
estimated from consumers’ perspective. Therefore, the model
is formulated as a minimisation of the daily cost of electricity
consumption for each end-users’ category, as shown below:

min
Lα

t , j

τ∑

t=1

(
λλλbase + ΔλΔλΔλu

t + ΔλΔλΔλd
t

) J∑

j=1

(
LLLbase

t,j + Ld
t,j − Lu

t,j

)

(5a)

s.t. − rα
j ≤ Lα

t+1,j − Lα
t,j ≤ rα

j ∀t, j, α (5b)

0 ≤ Ld
t,j ≤ ud

t,j

(
Lmax

t,j − Lbase
t,j

)
ad

t,j ∀t, j (5c)

0 ≤ Lu
t,j ≤ uu

t,j

(
Lbase

t,j − Lmin
t,j

)
au

t,j ∀t, j (5d)

(t−1)Rj +Rj∑

t ′=(t−1)Rj +1

(
Ld

t ′,j − Lu
t ′,j

)
= 0 (5e)

∀t : [t ∈ T, (tRj ≤ τ)], j

ud
t,j + uu

t,j ≤ 1 ∀t, j (5f)

yα
t,j − zα

t,j = uα
t,j − uα

t−1,j ∀t, j, α (5g)

yα
t,j + zα

t,j ≤ 1 ∀t, j, α (5h)

τ∑

t=1

yα
t,j ≤ nα

j ∀j, α (5i)

t+dα
j∑

t ′=t

uα
t ′,j ≥ dα

j yα
t,j (5j)

∀t : [t ∈ T, (t + dα
j < τ)], j, α

t+d
α

j∑

t ′=t

zα
t ′,j ≥ yα

t,j

∀t : [t ∈ T, (t + d
α
j < τ)], j, α (5k)

The objective function in Eq. (5a) calculates the cost of each
end-users’ category for purchasing electricity within the time
period τ (i.e, τ = 24 hours). The constraints are formulated as
follows: Eq. (5b) is related to the up- and down-ramp limits
of the flexible loads, which are represented for each end-users’
category j by the ramp-rate parameter rα

j ; Eq. (5c) and (5d)
impose lower and upper bounds on the amount of flexibility
that can be provided by each end-users’ category. Note that the
minimum and maximum load for each category j at time t,
i.e., Lmin

t,j and Lmax
t,j , represent the lowest and highest possible

consumption that each end-users’ category can sustain at time
t. In other words, they define the demand flexibility that can
be achieved from each end-users’ category in a specific time.
Eq. (5e) implements the energy conservation rule for each end-
users’ category, as explained at the beginning of this section.
In this constraint, the parameter Rj consists of the maximum
rebound delay by which the load shifting must be completed
for each end-users’ category j. Eq. (5f) ensures that only one
type of flexibility (i.e., up- or down-regulation) is provided by

a specific end-users’category j at time t; Eq. (5g) and (5h) rep-
resent the flexibility activation and deactivation for each end-
users’category j at time t; Eq. (5i) enforces a limit on the number
of times that a certain end-users’category can be activated in a
day. In Eq. (5i), it is assumed that only a certain number of
processes can be shifted within the day; Eq. (5j) and Eq. (5k)
refer to the minimum and maximum duration for which the load
response can be sustained. Obviously, many of the parameters
depend on the end-users’category, and hence the above optimi-
sation will be solved for a certain number of consumers in each
end-users’category, representing the characterisations and the
statistical variability in that end-users’category.

IV. UP- AND DOWN-FLEXIBILITY: CHANCE-CONSTRAINED

PROGRAMMING

Due to the importance of AS in the power system operation
and the stochastic nature of the REUs, it is valuable for the TSO
to quantify the risk in demand flexibility and include it in the
decision-making process. To do so, the deterministic optimi-
sation formulation from the previous section is converted to a
chance-constrained (CC) programming. This way, it is plausible
to deal with the level of risk associated with the provision of a
certain amount of demand flexibility. The CC formulation en-
sures that the probability of meeting a certain constraint is above
a preferred confidence level [39] by restricting the feasible so-
lution space. The CC programming has been used in the past
to solve different power system problems. For instance, it has
been applied to optimal storage sizing in [40], and to generate
optimal price signals for DR programs from the householders in
[41]. Also, in [42], such a method has been used in an optimal
power flow model of a 30-bus system to schedule generation
and reserve, where controllable loads have been considered as
thermal energy storage units.

From our model formulation, it can be seen that each end-
users’ category acts independently to minimise its operation
cost. In Eq. (3), aα

t,j is defined as a function of the electricity
price, consumers’ preferences, end-users’ category, and time of
the day. Even though this parameter does not explicitly depend
on its previous values in time, the load price-response is made
time-dependent by way of constraints (5e)–(5k), which directly
limit the provision of flexibility from consumers over time. For
instance, Eq. (5k) prevents the loads from providing flexibility
beyond a certain period of time, in particular, d

α
j hours. This

way, the provision of flexibility by loads at one hour depends
of its previous values. Time dependency is also enforced by
limiting the maximum number of load flexibility activations or
by modelling the rebound effect, as explained in Section III. On
the other hand, as aα

t,j does not depend on its previous values
in time, it is possible to evaluate each constraint independently
by using a disjoint CC method. From the formulation of the
deterministic model, the flexibility was limited by:

Ld
t,j ≤ ud

t,j

(
Lmax

t,j − Lbase
t,j

)
ad

t,j ∀t, j

Lu
t,j ≤ uu

t,j

(
Lbase

t,j − Lmin
t,j

)
au

t,j ∀t, j (6)

In order to apply CC programming, aα
t,j is treated as a random

variable and denoted by ãα
t,j . It is a function of input parameters
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ΔλΔλΔλα
j ,ΔλΔλΔλ

α

j , and aα
j , as given in Eq. (3). As argued in [43], [44],

the input parameters are assumed to be normally distributed
because of their dependence on a large number of individual
human behaviour:

Ld
t,j ≤ ud

t,j

(
Lmax

t,j − Lbase
t,j

)
ãd

t,j ∀t, j

Lu
t,j ≤ uu

t,j

(
Lbase

t,j − Lmin
t,j

)
ãu

t,j ∀t, j (7)

The right-hand side of Eq. (7) can be re-written in a compact
form, as follows:

Ad
t,j ≡ ud

t,j (L
max
t,j − Lbase

t,j )ãd
t,j (8a)

Au
t,j ≡ uu

t,j (L
base
t,j − Lmin

t,j )ãu
t,j (8b)

Lα
t,j ≤ Aα

t,j ∀t, j (8c)

In CC programming, each constraint needs to be satisfied for a
probability higher than a predefined theoretical confidence level
βββth , where th means that it is the theoretical value imposed in
the formulation.

Pr
(
Lα

t,j ≤ Aα
t,j

) ≥ βββth (9)

Adding mean μ(.) and standard deviation σ(.) of Aα
t,j to the

formulation, we will have:

Pr

(
Lα

t,j − μAα
t , j

σAα
t , j

≤ Aα
t,j − μAα

t , j

σAα
t , j

)
≥ βββth (10)

If aα
t,j follows a normal distribution, then it is possible to

define the standard score as zα :

Pr

(
Lα

t,j − μAα
t , j

σAα
t , j

≤ zα

)
≥ βββth (11a)

1 − Pr

(
Lα

t,j − μAα
t , j

σAα
t , j

≥ zα

)
≥ βββth (11b)

where the cumulative distribution function (CDF), called Φ, can
be estimated as follows:

1 − Φ

(
Lα

t,j − μAα
t , j

σAα
t , j

)
≥ βββth (12)

Eq. (12) can be further rearranged:

Lα
t,j ≤ μAα

t , j
+ σAα

t , j
Φ−1 (1 − βββth) (13)

By defining Φ−1(1 − βββth) as Φ−1
βββ t h

, the constraints can be
written as:

Ld
t,j ≤ μd

aud
t,j

(
Lmax

t,j − Lbase
t,j

)
+ σd

aud
t,j

(
Lmax

t,j − Lbase
t,j

)
Φ−1

βββ t h

(14a)

Lu
t,j x ≤ μu

a uu
t,j

(
Lbase

t,j − Lmin
t,j

)
+σu

a uu
t,j

(
Lbase

t,j − Lmin
t,j

)
Φ−1

βββ t h

(14b)

According to the value of the binary variable uα
t,j , two sce-

narios can be identified:
� Scenario I: uα

t,j = 0, where:

Lα
t,j = 0 (15)

In this scenario, the flexibility is zero.

� Scenario II: uα
t,j = 1, where:

Ld
t,j ≤ μd

a

(
Lmax

t,j − Lbase
t,j

)
+ σd

a

(
Lmax

t,j − Lbase
t,j

)
Φ−1

βββ t h
(16a)

Lu
t,j ≤ μu

a

(
Lbase

t,j − Lmin
t,j

)
+ σu

a

(
Lbase

t,j − Lmin
t,j

)
Φ−1

βββ t h
(16b)

According to Eq. (16a) and (16b), the amount of flexibility is
bounded by a certain value that takes into account the mean and
standard deviation of aα

t,j and the quantile of a standard normal
variable. The latter will depend on the predefined theoretical
confidence level, i.e., βββth , and the estimated flexibility by this
method will be guaranteed at that confidence level. Therefore,
it will help TSO to make an informed decision considering its
risk.

V. SIMULATION STUDY AND DISCUSSION

To show the effectiveness of the proposed model, a simula-
tion study is carried out using actual data, which are provided
by Elforbrugspanel in 2008. Data is collected by Energinet
(the Danish transmission system operator) and Dansk En-
ergi (the Danish advocacy group for energy companies) by
monitoring hourly electricity demand for a selected pool of
consumers in every Danish municipality [45]. The selected
pool has been defined to represent the national demand. 2106
meters have been installed to study the residential, agricultural,
industrial and commercial electricity demand in this project.
The aggregated data of each end-users’ category has been
reported monthly to Elforbrugspanel. The main output of the
project has been the calculation of the average of the hourly
individual electricity demand for 29 end-users’ category.

The proposed formulation can possibly work with different
AS markets and time-frames in the order of minutes to hours,
as long as the required data with the right time resolution is
available. In our simulation studies, we consider balancing ser-
vices that are procured one day in advance and use data for
the hourly average consumption for 29 end-users’ categories, a
list of which is given in Table I. This way, the estimated delta
prices are submitted to the REUs’ EMS in a single shot 24 hours
ahead, and the problem is solved once for all types of loads. In
order to compound the aggregated behaviour of the consumers,
the actual consumption of each category is weighted by the
total number of consumers in that category, which is obtained
from [46]. The data used in the simulations is also available in
[47]. The simulation starts by generating a pool of consumers
of diverse flexibility in subsection V-A. Then, the normality as-
sumption of the consumers’ willingness, aα

t,j , is checked for the
CC optimisation problem. In subsection V-D, the deterministic
and CC optimisations are solved for different load categories
with two different confidence levels. In subsection V-D, the im-
pact of the confidence level on the results is analysed and the
results of CC optimisation are validated in subsection V-E. Fi-
nally, in subsection V-F, the impact of different rebound effects
on the results is investigated.

A. Generating a Pool of Consumers’ Willingness

In the first part of the simulation, a pool of consumers is cre-
ated with different preferences, i.e., aα

t,j , followed by checking
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TABLE I
AVERAGE VALUES μ(.) AND STANDARD DEVIATIONS σ(.) OF ΔλΔλΔλj ,ΔλΔλΔλj [DKK CENT/KWH] AND |aα

j | [P.U.]; RAMP [KW], FLEXIBILITY ACTIVATIONS [P.U.],
FLEXIBILITY DURATION [H] AND REBOUND DELAY [H] PARAMETERS FOR DIFFERENT END-USERS’CATEGORIES

Fig. 2. Conceptual flowchart of the simulation study.

the normality of their behaviour, as shown in the flowchart of
Fig. 2. Then, the CC optimisation problem is solved with the
given theoretical confidence level, βββth , to quantify the aggre-
gated load flexibility.

Prior to that, however, delta prices should be generated. As
mentioned in Section II, a certain delta price set will be commu-
nicated from the system operator to the REUs to create a change
in their consumption. In Eq. (5a), the baseline electricity price,
λλλbase, is set to 225 DKK cent/kWh [48], the hourly delta price
set is randomly generated by following a uniform distribution.
The magnitude of delta prices (i.e., absolute value) is within the
range of [20, 75] cent DKK/kWh, following the rule defined in
Eq. (1) and Eq. (3). As one can see, the delta price range is set
to be well beyond the dead-band and below the flexibility sat-
uration in consumers’ willingness to avoid violating the upper
and lower limits [8]. In fact, it is counterproductive for the TSO
to submit an insignificant price (i.e., lower than the dead-band

price) to the pool of consumers, as no reaction will be achieved.
On the other hand, it is economically inconvenient for the TSO
and consumers to submit an excessive price (i.e., higher than the
saturation price), as the same price response can be achieved
with a smaller price. Considering the limited accuracy of the
estimated prices due to the unpredictable nature of AS require-
ments, the delta prices is unknown to a large extent. Therefore,
it is reasonable to treat it like a normally-distributed random
parameter. In this study, we simulate the aggregated flexibility
response for 5000 different daily profiles of delta prices. This is
to estimate the range of potential flexibility in each hour of the
day, accounting for the stochasticity in delta prices and quanti-
fying the risk for the system operator in exploiting load demand
flexibility. In the future, these delta prices might be generated
by another optimisation problem [23].

In the simulations, we will refer to the absolute value of the
maximum willingness parameter |aα

t,j |. This is because we con-
sider that the magnitude (i.e., absolute value) of the maximum
willingness parameter will be the same to provide up- or down-
regulation for each end-users’ category j. For this reason, we
just provide the absolute value of aα

t,j to calculate aα
t,j . However,

au
t,j is supposed to be negative and ad

t,j is positive, as shown in
Fig. 1. Therefore, we calculate au

t,j and ad
t,j from Eq. (3), using

the same magnitude of |aα
t,j | but with opposite signs. The mean

and standard deviation of the input parameters used in the sim-
ulation study, i.e., ΔλΔλΔλα

j ,ΔλΔλΔλ
α

j , |aα
j |, are reported in Table I. The

parameters are used to generate random numbers using a normal
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Fig. 3. Range of aα
t,j achieved for a sample end-users’ category for different

ΔλΔλΔλα
t .

distribution. Due to data scarcity for different end-users’ cate-
gories, input parameters are assumed to be the same for all time
instances and up- and down-regulation. In order to determine
the values of |aα

t,j | for each end-users’ category, reference [49]
is used, where the amount of maximum flexibility is quantified
for several consumers’ sectors in Denmark. Such estimates are
compared to the consumption that we previously calculated for
each end-users’ category from the data set. For instance, accord-
ing to [49], cement manufacturing and iron foundries are able
to provide 16 MW load reduction. From the consumption we
previously calculated from the data set, the total electricity con-
sumption of these consumers’ categories is 30 MW. Therefore,
a maximum willingness parameter of 0.5 (i.e., 50% of the total
consumption) is estimated for these categories (i.e., basic metal
and construction). In different studies, e.g., [58], [59], various
sectors and countries have been investigated in price elasticity,
whose concept is discussed in [60]. To include diversity in the
willingness parameters for those sectors whose estimate in [49]
is provided only for aggregated loads, this concept of price elas-
ticity is used . Because of the lack of information, the willingness
parameters of the remaining sectors are randomly chosen.
Moreover, σaα

j
is defined in a way that the values of |aα

j | are
maintained between 0 and 1. When the value generated by
the distribution function exceeds the higher or lower limits
(1 for higher and 0 for lower limits), another random number
is re-drawn from the normal distribution. The choice of ΔλΔλΔλα

j

is approximately selected based on the nature of different
end-users’categories [24]. For instance, we assumed that
industries might behave such that they prevail the continuity
of their service, unless very high delta prices are offered.
Similarly, ΔλΔλΔλ

α

j values are intuitively determined. For the case
of ΔλΔλΔλα

j , the value of σ is chosen by considering a normal
distribution of prices and that each price has to be bigger than
zero. 5000 samples of |aα

j | are generated for each category of
end-users and time. The results of a sample end-users’ category
are shown in Fig. 3. The number of samples is chosen in a
way to statistically represent the variability of consumers’
willingness in every end-users’ category. These values are later

Fig. 4. QQ plots and histograms for au
t ,j and ad

t ,j of a sample end-users’
category j at a specific time t.

used in the optimisation studies, both deterministic and CC
problems, to estimate the aggregated load flexibility.

In the next step, we investigate the normality of aα
t,j in order to

justify the application of CC programming. Eq. (3) is defined as
the ratio of two normal components, namely (ΔλΔλΔλα

t −ΔλΔλΔλα
j ) and

(ΔλΔλΔλ
α

j −ΔλΔλΔλα
j ), which might lead to a non-normal distribution.

In Fig. 4, a statistical analysis using QQ plot and histograms of
aα

j is carried out for a sample load category j and up- and down-
flexibility at a specific time. In the QQ plots, the two vertical
lines represent ±2 standard deviations of the data, meaning that
the values within those lines are 95% of the data. Fig. 4 shows
that the behaviour of up- and down-willingness is approximately
normal due to the dominating variance of aα

j in Eq. (3).

B. Selection of γ

In [35], the price responsiveness of consumers is modelled
as a linear function, which is equivalent to a value of γ equal
to 1 in Eq. (3). In spite of that, it is reasonable to assume that
consumers might be more inclined to alter their consumption
profile when they receive big delta prices, as also suggested in
[36]. The value of γ will be limited by the fact that consumers
have different sensitivities to prices and some of them might
always be responsive to achieve cost minimisation. In Fig. 5,
the distribution of aα

t,j is analysed for different values of γ (i.e.,
1, 1.5 and 2). It is clear from the figure that a reasonable choice
of γ does not compromise the normality assumption. In this
paper, γ is equal to 1.5.

C. Explanation of the Consumers’ Constraints Parameters

In the simulations, Lmin
t,j and Lmax

t,j are calculated from the
available data set [45], by identifying the minimum and max-
imum values of the historical electricity consumption for each
time t and end-users’ category j. This method is preferred
in this study as it is the only information that was available
at the time. Following a similar approach, Lbase

t,j is calculated
from the data set by averaging the consumption of each end-
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Fig. 5. QQ plot and histogram for generic aα
t,j of a sample end-users’ category

j at a specific time t for values of γ equal to 1, 1.5, and 2.

users’ category at time t. Parameters related to the consumers’
constraints (e.g., ramp, flexibility provision duration and flexi-
bility activation times) are estimated due to the current lack of
more detailed information and provided in Table I. The ramp
parameter rα

j is determined from the consumption data set, as
rα

j = r̃α
j max1≤t≤τ (Lmax

t,j ), where r̃α
j is a parameter that de-

pends on the type and characteristics of the loads of each end-
users’ category j. Considering hourly resolution of data and
proposed formulation, it is reasonable to assume that r̃α

j will
not be very restrictive since loads can change relatively fast.
In fact, the majority of the loads have faster dynamics than an
hour, i.e., they can go from 0 to 100% consumption in less than
an hour. For the consumers’ categories with mainly thermal
loads (e.g., public [49]) and whose processes can be shifted in
time (e.g., paper [54]), a larger r̃α

j is assumed. For the industrial
consumers, however,it will be more restrictive. In order to deter-
mine the amount of activation times for each end-users’ category
nα

j , it is assumed that the industrial consumers have generally
less shiftable processes compared to the residential and com-
mercial consumers. Therefore, nα

j for industrial consumers is
considered smaller than for residential consumers. By generally
accounting on the flexibility from ventilation, heating and air
conditioning (HVAC), it is feasible for the residential and com-
mercial consumers to be activated and deactivated several times
during the day without technical constraints. On the other hand,
a waste water treatment facility from the industrial sector might
be the only shiftable process, limiting the overall consumption
flexibility. In determining dα

j , it is assumed that end-users’ cate-
gory can provide flexibility for a minimum duration of 1 hour, as
HVAC is present in almost every end-users’ category. Regarding
the choice of the maximum flexibility duration values in Table I,
the commercial consumers are assumed to be mainly affected
by the thermal dynamics of HVAC [49]. For the industrial and
residential consumers, longer dynamics are expected, as their
loads are not only thermal and they might have different charac-
teristics (e.g., electric vehicle charging, laundry machine and so
on). In the simulation studies, the case of perfect daily rebound

Fig. 6. Flexibility achieved for different delta prices by CC optimisation for
βββth =0.95 considering daily rebound: baseline consumption, flexibility for the
reference delta price ΔλΔλΔλα ∗

t , and the delta price.

is solved for each end-users’ category (i.e., Rj = 23 for each
j). Afterwards, a conservative case is considered by applying
strict rebound effects, given in Table I, in order to evaluate the
impact of the rebound on the overall flexibility. To determine the
parameter Rj for the case of strict rebound, it is assumed that
the end-users’ flexibility is mainly constrained by the thermal
dynamics of their loads. However, there are cases like the pa-
per industry where production processes can be shifted to other
times of the day [54]. For end-users’ categories where processes
can be shifted within the day, the rebound constraint is relaxed.
Also, for the agricultural consumers, Rj is estimated by ac-
counting for the processes involving animal waste treatment,
irrigation and curing tobacco [52].

D. Up- and Down-Flexibility Estimation

In this section, the CC optimisation problem is solved for
different theoretical confidence levels using the aα

t,j values from
Section V-A.

� Low-risk case
For a conservative simulation study, βββth = 0.95 is selected

as theoretical confidence level. It implies that, globally, the con-
straints in Eq. (5c) and (5d) will be respected with a probability
that is equal or higher than 95%. In other words, it guaran-
tees that the estimated flexibility from the consumers, given
their stochastic behaviour, will be achieved 95% of the time or
higher.

In Fig. 6, the achievable flexibility for different prices is
shown in relation to the baseline consumption for βββth = 0.95. It
emerges that the maximum flexibility is about 7% of the hourly
load demand. It is also noticeable that the flexibility in the early
morning is mainly for up-regulation, while the down-regulation
potential seems to be small, i.e., around 3% of the hourly load
demand. Although such a result may appear counter-intuitive, it
is due to the selected values of Lmin

t,j and Lmax
t,j that are used in

the simulation studies. They are extracted from annual data by
finding the minimum and maximum consumption values of each
end-users’ category at each hour of the day. Since the data set
at hand does not include the impact of consumers’ response to
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Fig. 7. Flexibility achieved for different delta prices by CC optimisation for
βββth =0.50 considering daily rebound: baseline consumption, flexibility for the
reference delta price ΔλΔλΔλα ∗

t , and the delta price.

the prices, the maximum load in early hours is very close to the
average consumption, which resulted in lower down-flexibility
in the simulation results. In the future, advanced methods can
be developed to calculate these parameters by collecting aggre-
gated data from REUs in response to the delta prices. The corre-
lation between delta prices and flexibility is −0.73, confirming
a strong negative correlation between the two parameters. The
correlation does not reach −1 because of the constraints ap-
plied to the minimisation problem and the different amount of
flexibility available for up- and down-regulation. In order to
verify the correlation between flexibility and delta prices visu-
ally, the flexibility obtained in response to a randomly-selected
daily delta prices, i.e., ΔλΔλΔλα∗

t , is shown in Fig 6. It can be no-
ticed that the highest amount of down-regulation (i.e., increased
consumption) is achieved at hour 23:00, with 3.6% increase in
demand, corresponding to the biggest negative delta price. The
highest amount of up-regulation is achieved at hour 19:00 with
5.8% decrease in total demand, coinciding with a relatively large
positive delta price.

� High-risk case
The CC optimisation for 5000 delta prices is repeated for

βββth = 0.50. As expected, the up- and down-flexibility patterns
are identical to the “low-risk case.” However, their magnitude
increases substantially for all hours, as shown in Fig. 7. It can
be seen that the flexibility range raises by 76% compared to the
“low-risk case.” At hour 23:00, the demand is expected to in-
crease by about 7% in response to the given price, while 12.2%
decrease in demand is observed at hour 19:00. The simulation
results show that the TSO might over-estimate the flexibility
potential if the associated risk is not considered in the formu-
lation. It will, in turn, result in unsuccessful demand flexibility
procurement in the real-time operation.

E. Validation of CC Formulation

In this sub-section, we investigate the quality of the CC solu-
tions for the case of daily rebound. As it was mentioned earlier,
the CC solutions are valid only if the actual confidence level
(i.e., βββac achieved in the Monte Carlo simulation study) is big-

Fig. 8. CC validation for the case of daily rebound. (a) Imposed βββth and
achieved βββac in CC method for price set ΔλΔλΔλ∗t . (b) Probability of βββac for
deterministic and stochastic case for price set ΔλΔλΔλ∗t .

ger than or equal to the theoretical confidence level (i.e., βββth

imposed on the formulation and associated simulation study) of
the CC programming. To do so, we need to impose a theoreti-
cal confidence level and solve the CC formulation for a given
price set. From the results, the flexibility Lα

t,j is obtained. Af-
terwards, this value is used in Eq. (5c) and (5d) to investigate
how many times the constraints are violated. In Eq. (5c) and
(5d), aα

t,j is the generated pool of consumers’ willingness dis-
cussed in subsection V-A. Since we are dealing with thousands
of constraints in this simulation, while our intent is to provide a
readable plot of the results, we calculate the mean value of the
actual confidence level of the various constraints. This process
is repeated for different values of theoretical confidence level,
i.e., βββth ∈ [0.1, 0.98], and the mean values of βββac are plotted
in Fig. 8(a) in comparison to the βββth imposed. From the figure,
it can be seen that the actual confidence level is always higher
than the theoretical counterpart. Therefore, it can be concluded
that the constraints are always satisfied for the given confidence
level, and that the normality assumption of aα

t,j was correct.
Moreover, Fig. 8(a) shows that the CC programming behaves
more conservatively on the lower range of βββth , where the ac-
tual confidence level is always greater than the theoretical one
(e.g., for βββth = 0.50, the actual confidence level is 0.54). This
is because the constraints are loosely confined for small βββth val-
ues, which result in more availability of load demand to provide
flexibility.

Also, in order to understand the value of using CC, we in-
clude a study where we compare the different performances of
the deterministic and stochastic cases. Therefore, we solve the
stochastic and deterministic formulations, where in the latter it
is imposed a βββth of 0.95. Afterwards, we calculate for each for-
mulation what is the percentage of the constraints that achieve a
certain βββac . In Fig. 8(b), the results are provided through prob-
ability density functions. For the actual βββac show that, for the
stochastic case (i.e., blue line), 92% of the constraints have a
βββac that is slightly above 0.95. In a few instances, βββac = 1 is
obtained because of the condition imposed in Eq. (5e) and the
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TABLE II
ANALYSIS OF THE FLEXIBILITY PROVIDED DURING THE DAY, CONSIDERING

DIFFERENT REBOUND EFFECTS AND βββth = 0.95

Fig. 9. CC validation for the case of strict rebound. (a) Imposed βββth and
achieved βββac in CC method for price set ΔλΔλΔλ∗t . (b) Probability of βββac for
deterministic and stochastic case for price set ΔλΔλΔλ∗t .

rebound effect. For the deterministic case (i.e., black line), how-
ever, the actual confidence level lies below 92% for 95% of the
constraints and is lower than the one obtained by the CC formu-
lation. These results prove that quantifying the risk and trying to
maintain a specific level of certainty is of paramount importance
for the TSO in real-time operation, which is provided by the CC
formulation in this study.

F. Effect of the Rebound Constraint

In the simulation studies so far, we investigated the CC valida-
tion for the case of daily rebound. However, in reality, different
consumers’ categories can defer their loads for a shorter range
of time, leading to a strict rebound. In order to quantify the effect
of the rebound on the flexibility estimation, Table II reports the
difference in flexibility obtained by the daily and strict rebound
constraints. The values are calculated as the average amount
of up-regulation flexibility (i.e., the amount of down-regulation
will be the same, as we imposed perfect rebound in Eq. (5e)) pro-
vided during the day for the different price scenarios. It emerges
that having a strict rebound reduced the flexibility provision by
35%.

In Fig. 9, the CC validation is repeated for the case of strict
rebound.

From Fig. 9(a), it can be seen that the actual confidence
level is more conservative when dealing with a strict rebound
by reaching βββac of 0.96 for an imposed theoretical confidence
level of 0.95. Also, Fig. 9(b) confirms the relevance of adopting
CC, where the deterministic approach leads to a confidence level

that is lower than 0.92 for 73% of the constraints. Such a result
violates the requirement of the TSO, which imposed a βββth of
0.95.

VI. CONCLUSION

This paper offers a methodology to estimate the aggregated
load flexibility of consumers given a certain price response func-
tion. It is formulated by considering the uncertainty in the con-
sumers’ willingness to react to the price signals. The proposed
approach only requires aggregated historical consumption data
to operate. In the proposed framework, the load flexibility at the
TSO level is quantified. Time-varying prices are submitted by
the system operator to the end-users at the edge of the grid to
alter their consumption while minimising their operation cost
locally. A nonlinear and stochastic consumers’ price-response
function is considered in this study. In order to quantify the risk
in the amount of estimated demand flexibility, a CC formula-
tion of the problem is developed and its applicability is proven
by the simulation studies. This approach allows to estimate the
flexibility that can be achieved under a certain confidence level.
Actual load data from Elforbrugspanel in Denmark is used for
simulation studies. The simulation results show that the choice
of confidence level significantly affects the flexibility estima-
tion. For a conservative confidence level (i.e., 0.95), the method
estimates a consumption change that is up to 7% of the total
consumption. The quality of the CC solutions is also verified in
two different ways. It is shown that the application of CC can
provide a meaningful management of risk for the TSO, which
is fundamental for AS provision. We finally evaluate the case
of daily and strict rebound constraints, showing that a strict re-
bound effect limited the overall flexibility provision by 35%.
The proposed approach can be used at the TSO level to quantify
demand flexibility for day-ahead or real-time AS procurement.
In our future work, we will investigate how to enhance our
model to account for other uncertainties (such as uncertain delta
prices) that the REU’s EMS will most likely consider. Also, we
will model aα

t,j as a function of weather and type of day.
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