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Abstract—In this paper, solution operator discretization
methods with linear multistep and implicit Runge–Kutta
(SOD-LMS/IRK) are presented for efficient eigen-analysis of large
delayed cyber-physical power system (DCPPS). First, the time
integration-based discretization generates highly structured ap-
proximate matrices to the solution operator. Exploitation of the
structure ensures low computational burden and high efficiency in
solving the matrix-inversion-vector product involved in eigenvalue
computation. Second, the implicitly restarted Arnoldi algorithm is
employed to compute critical eigenvalue from the solution opera-
tor’s discretized matrices. SOD-LMS/IRK are endowed with scala-
bility in analyzing very large DCPPS by fully utilizing the inherent
sparsity in the augmented system state matrices. The main contri-
bution of the presented SOD-LMS/IRK is the improved efficiency
and scalability of existing SOD-PS (pseudo-spectral collocation)
and SOD-LMS/IRK. Numerical results on the 16-generator 68-bus
test system, a 516-bus, and a 33028-bus real-life large transmission
systems validate the effectiveness of the proposed SOD-LMS/IRK.

Index Terms—Cyber-physical power system, eigen-analysis,
small signal stability, solution operator discretization, spectral dis-
cretization, time delay, wide-area measurement system.

NOMENCLATURE

DCPPS Delayed cyber-physical power system.
SOD Solution operator discretization.
IGD Infinitesimal generator discretization.
EIGD/ IIGD Explicit/iterative infinitesimal generator

discretization.
MIVP Matrix-inversion-vector product.
MVP Matrix-vector product.
SOD-LMS/IRK/PS Solution operator discretization with

linear multistep/implicit Runge-Kutta/
pseudo-spectral collocation.
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IRA Implicitly restarted Arnoldi algorithm.
WADC Wide-area damping controller.
WAMS Wide-area measurement system.

I. INTRODUCTION

WAMS deployed at the transmission level provides wide-
area situational awareness of the physical power system

in real time [1], [2]. In sharp contrast with local signals, wide-
area measurements, such as active power on the tie-lines and
relative rotor angles/speeds, show good observability of some
significant interarea oscillation modes. By using wide-area mea-
surements as remote feedback control signals, WADCs have a
significant potential in stabilizing power system against inter-
area low frequency oscillations [3]. However, processing and
transmitting wide-area measurements in WAMS introduce un-
neglectable communication delays. Typically, they are in the
range of a few milliseconds to several hundred milliseconds
[4], [5]. The time delay impacts on system’s small signal sta-
bility [6]–[10] and WADC design [11], [12] are far from trivial.
Challenges posed by time delay in WAMS reveal the need of ef-
ficient stability analysis algorithms and robust controller design
methods for DCPPS.

In recent years, there are increased interests in spectral
discretization-based methods for eigen-analysis of the physi-
cal power system with inclusion of time delays. The methods
allow one to compute eigenvalues of DCPPS from the spectra
of the infinitesimal generator and solution operator associated
with DCPPS. For IGD-based methods presented in [13]–[15],
only a set of eigenvalues surrounding a given shift point can
be captured. Multiple runs of the methods are required to scan
critical oscillation modes of DCPPS located in the vicinity of
the imaginary axis. To avoid the eigenvalue scanning, SOD-PS
was presented in [16] to compute a set of critical eigenvalues
with damping ratios less than a given threshold by one run of the
method. Nevertheless, the efficiency of SOD-PS is constrained
by iteratively solving the high-dimensional MIVP in generating
Krylov sequences. In [17], two time integration-based meth-
ods, i.e., SOD-LMS/IRK, were presented for eigen-analysis of
DCPPS. A salient characteristic of the methods is the highly
structured approximate matrices to the solution operator. How-
ever, it is questionable whether the methods still work when the
size of the system scales up. This is because the QR algorithm
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adopted in [17] calls for prohibitive memory. In addition, the
inherent sparsity in the augmented system state matrices has not
been exploited.

From the viewpoint of the authors, it is believed that the ad-
vantages of SOD-PS and SOD-LMS/IRK are complementary.
Based on this finding, scalable and efficient SOD-LMS/IRK
methods are presented by applying the computational frame-
work presented in [16] to SOD-LMS/IRK in [17]. First, the the-
oretical foundation of SOD-LMS/IRK is established. The reason
why SOD-LMS/IRK gains superior efficiency to SOD-PS is an-
alyzed. Second, how to determine the discretization step-length
and select LMS/IRK integration methods are intensively dis-
cussed. Third, SOD-LMS/IRK are efficiently implemented and
endowed with scalability by exploiting the inherent sparsity in
augmented system matrices. Last, comparisons among SOD-
LMS, SOD-IRK and SOD-PS are conducted through numerical
studies on the 16-generator 68-bus test system and two real-life
large transmission systems.

The main contribution of this paper is the improved scalability
and efficiency of previous SOD-based methods in [16] and [17].
The scalability of SOD-LMS/IRK is achieved by fully exploiting
the inherent sparsity in augmented system state matrices. SOD-
LMS is provided with the highest efficiency by directly solving
the MIVP involved in sparse eigenvalue computation. SOD-
IRK gains higher efficiency than SOD-PS by cutting down the
burden of iteratively solving the involved MIVP. In addition, the-
oretical analyses are intensively conducted, including efficiency
comparison among various SOD-based methods, determination
of the step-length for time integration-based discretization, and
appropriate use of different LMS/IRK methods. At last, empha-
sis should be placed on the unique feature of SOD-LMS/IRK.
As has been proved in [16], SOD-based eigen-analysis methods
can efficiently calculate the least damped oscillation modes of
DCPPS. Therefore, they are capable of determining the small
signal stability of DCPPS in a faster manner when compared
with EIGD in [15].

The remainder of the paper is organized as follows. Section II
formulates the eigenvalue problem of DCPPS. Section III es-
tablishes the theoretical foundation of time integration-based
SOD methods. Section IV gives guidance on determining the
discretization step-length and selecting LMS/IRK integration
methods. SOD-LMS/IRK are efficiently implemented in Sec-
tion V. The effectiveness of SOD-LMS/IRK is validated in
Section VI, followed by Section VII which concludes the paper.

II. DCPPS MODELING AND ITS EIGEN-PROBLEM

The dynamics of DCPPS around an equilibrium (x(0),y(0))
can be described by the following set of delayed differential
algebraic equations.

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Δẋ(t) = A0Δx(t) + B0Δy(t)

+
∑m

i=1(AiΔx(t − τi) + BiΔy(t − τi))

0 = C0Δx(t) + D0Δy(t)

0 = CiΔx(t − τi) + DiΔy(t − τi), i = 1, . . . , m

(1)

where t is the time instant. x(t) ∈ Rn×1 is the state variable
vector, consisting of state variables of dynamic components,
e.g., generators and the associated excitation systems, HVDC
systems and FACTS devices, as well as supplementary damp-
ing controllers on them, etc. y(t) ∈ Rl×1 is the algebraic vari-
able vector, i.e., bus voltage. τi (i = 1, . . . ,m) are discrete
time delays, 0 < τ1 < · · · < τm � τmax . Ai ∈ Rn×n , Bi ∈
Rn×l , Ci ∈ Rl×n and Di ∈ Rl×l (i = 0, . . . , m) are aug-
mented system matrices, which are highly sparse. In addition,
Ci = C0 and Di = D0 for i = 1, . . . , m.

Since matrix D0 is non-singular, (1) can be further reduced
to the following delayed differential equations by eliminating
Δy(t) and Δy(t − τi) (i = 1, . . . , m).
{

Δẋ(t) = Ã0Δx(t) +
∑m

i=1 ÃiΔx(t − τi), t ≥ 0

Δx(t) = Δx(0) � ϕ, t ∈ [−τmax , 0]
(2)

where ϕ is the initial system state. Ã0 ∈ Rn×n and Ãi ∈
Rn×n (i = 1, . . . , m) are the dense matrix of system states and
highly sparse matrices of delayed system states, respectively.
They can be formulated by the augmented system matrices Ai ,
Bi , C0 and D0 (i = 0, . . . , m).

Ã0 = A0 − B0D
−1
0 C0 (3)

Ãi = Ai − BiD
−1
0 C0 . (4)

The characteristic equation corresponding to (2) is transcen-
dental and has an infinite number of eigenvalues.

(

Ã0 +
m∑

i=1

Ãie−λτi

)

v = λv (5)

where λ and v are the eigenvalue and the corresponding right
eigenvector, respectively.

In this paper, two time integration-based SOD methods are
presented to compute a reduced set of critical oscillation modes
of large DCPPS from (5) so that the small signal stability of the
system is efficiently and reliably determined.

III. THEORETICAL FOUNDATION OF TIME INTEGRATION-BASED

SOD METHODS

This section presents the theoretical foundation of time
integration-based SOD methods, including definition and ex-
pression of the solution operator, Kronecker product reformula-
tion of approximate matrices generated by SOD-LMS/IRK, as
well as analyses of the unique features of time integration-based
SOD methods.

A. Solution Operator

The solution operator T (h) associated with DCPPS is the
operator transforming the initial condition ϕ at time instant t to
the solution segment at a later time instant t + h [18], where h
is the transfer step-length satisfying 0 ≤ h ≤ τmax .

(T (h)ϕ) (t) = Δxh(t) = Δx(t + h), t ∈ [−τmax , 0]. (6)

Corresponding to (2), T (h) has two segments.
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1) Time Integration: When t ∈ [−h, 0] and t + h ∈ [0, h],
Δxh(t) is the solution to the following ordinary differential
equation

Δẋh(t) = Ã0Δxh(t) +
m∑

i=1

ÃiΔxh(t − τi) t ∈ [−h, 0] (7)

which follows from the Picard’s Existence and Uniqueness
Theorem [19].

2) Shift: For t ∈ [−τmax ,−h], Δxh(t) is always the initial
condition part of (2) since t + h ≤ 0. T (h) in this case is a shift.

In summary, the expression of T (h) can be explicitly refor-
mulated as follows.

Δxh(t) =
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ϕ(0) +
∫ t

0

(
Ã0Δxh(s) +

∑m

i=1
ÃiΔxh(s − τi)

)
ds

t ∈ [−h, 0]

ϕ(t + h) t ∈ [−τmax , −h].
(8)

For small signal stability analysis of DCPPS, it is the eigen-
value λ rather than the solution Δxh(t) that interests power
engineers. To obtain λ, one can compute the nonzero eigen-
values μ of T (h) instead by utilizing the following spectral
mapping [16].

⎧
⎨

⎩

μ = eλh , μ ∈ σ(T (h))\{0} (9)

λ =
1
h

ln μ =
1
h

(ln |μ| + j arg μ) (10)

where |μ| and arg μ are modulus and principal argument of
μ, respectively. arg μ can be computed as arcsin( Im(μ)

|μ | )mod π
h

[20]. σ(·) denotes the spectrum. \ denotes the operation of set
difference.

Since finding eigenvalues of T (h) is an infinite-dimensional
problem on a Banach space, two time integration schemes, i.e.,
LMS and IRK, are presented in the following sections to dis-
cretize T (h) first. Then, a reduced set of eigenvalues are calcu-
lated from the finite-dimensional approximate matrices to T (h).

B. SOD-LMS

The LMS discretization of T (h) is achieved by evaluating
Δx(t + h) shown by (8) at N + k grid points of ΩN , as illus-
trated by Fig. 1(a).

At point t = θ0 , the linear k-step method with a step-length
of h is applied to the time integration segment of (8) [21]. At
the remaining points, the discretization of the second segment
of (8) is straightforward by applying the shift property [22].

By representing the system states at points of h + ΩN in terms
of the states at points of ΩN , the discrete counterpart of (8) is ob-
tained. The resultant coefficient matrix T N ∈ R(N +k)n×(N +k)n

Fig. 1. Different schemes for discretizing T (h). (a) SOD-LMS. The set ΩN

consists of N + k equally spaced discrete points defined by θj = −jh, where
j = 0, 1, . . . , N + k − 1, h = τm ax /N , k is the number of steps in the LMS
method. (b) SOD-IRK. The set ΩN s consists of Ns points defined by θj,q =
−jh + cq h, where j = 1, . . . , N , q = 1, . . . , s, cq are abscissae of an s
stage IRK method. (c) SOD-PS [16]. The sub-intervals [−(j + 1)h,−jh] (j =
0, . . . , N − 1) and [0, h] are respectively discretized by the shifted p and q
nodes of the second and first kind Chebyshev polynomials. Essentially, the
discrete points are projections of equally spaced points on the upper half of the
unit circle.

is an approximant to T (h).

T N =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

ΓN

In 0

. . .
...

In 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(11)

where ΓN ∈ Rn×(N +k)n is the first block rows of T N . In ∈
Rn×n is an identity matrix.

By applying the methodology presented in [13], [15], ΓN in
the multiple time delay case can be explicitly expressed in terms
of system state matrices Ãi (i = 0, . . . , m).

ΓN = R−1
N ΣN (12)

RN = αkIn − hβkÃ0 (13)

ΣN = �T
m+1 ⊗ In +

m∑

i=0

�T
i ⊗ Ãi (14)

where ⊗ denotes the Kronecker product. αj and βj (j =
0, . . . , k) are coefficients of linear k-step method. �i ∈
R(N +k)×1 (i = 0, . . . , m + 1) are constant Lagrange interpo-
lation vectors and dependent on αj and βj (j = 1, . . . , k), as
well as the interpolation coefficients.

C. SOD-IRK

The principle of SOD-IRK is similar to that of SOD-LMS
[23]. As Fig. 1(b) illustrates, the N sub-intervals of length h are
further discretized by the abscissae of an s-stage IRK method,
resulting in a set ΩN s of Ns grid points.

For mnemonic convenience, the coefficients of IRK, aij , bi

and ci, i, j = 1, . . . , s, are usually arranged in the Butcher’s
tableau (A, b, c) [24].
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By applying IRK to evaluate system states at θ0,q (q =
1, . . . , s) and using the shift property to assess system states at
the remaining points of ΩN s , the approximate matrix to T (h)
is derived.

T N s =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

ΓN s

Isn 0
. . .

...

Isn 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(15)

The Kronecker product reformulation of the first block rows
ΓN s ∈ Rsn×N sn is given as follows.

ΓN s = R−1
N sΣN s (16)

RN s = Isn − A ⊗ (hÃ0) (17)

ΣN s = L0 ⊗ In +
m∑

i=1

(hALi) ⊗ Ãi (18)

where Li ∈ Rs×N s (i = 0, . . . , m) are constant Lagrange
interpolation matrices.

D. Features of Time Integration-Based SOD Methods

The unique features of SOD-LMS/IRK can be derived from
the expressions of the discretized matrices T N and T N s as well
as the principles of multistep and one-step algorithms [24].

1) T N and T N s Are Highly Structured: They are block ma-
trices and highly sparse. Their sub-diagonal blocks are identity
matrices with dimensions of n and sn, respectively.

2) Γn and ΓN s Are Explicit: They are explicit about system
state matrices Ãi (i = 0, . . . , m). The explicitness allows one
to fully exploit the inherent sparsity in augmented system matri-
ces (presented in (3) and (4)) and makes the methods particularly
suitable for solving large DCPPS.

3) SOD-LMS/IRK Are More Efficient Than SOD-PS: No
Kronecker product is involved in RN because LMS needs to
evaluate (2) once to obtain Δx(0). In contrast, IRK requires
s evaluations and hence Kronecker product emerges in RN s .
For large DCPPS, the direct inverse of RN s is unavailable [25].
Thus, iterative methods should be employed by SOD-IRK to
compute the product between the inverse of RN s and a vec-
tor (MIVP), leading to more computational burden and lower
efficiency than SOD-LMS.

Nevertheless, SOD-IRK is more efficient than SOD-PS in
[16], whose efficiency is also constrained by the iterative so-
lution of MIVP involved in eigenvalue computation. It can be
seen from Fig. 1(b) and (c) that the sizes of the MIVPs in SOD-
IRK and SOD-PS are sn and Nn, respectively. Since s � N ,
SOD-IRK gains lower computational burden and higher effi-
ciency in iteratively solving the involved MIVP when compared
to SOD-PS.

IV. DETERMINATION OF STEP-LENGTH

AND LMS/IRK METHODS

This section discusses how to determine the step-length h and
select LMS/IRK methods for fine discretizing T (h).

A. Determination of Step-Length h

Small step-length h can ensure preservation of the stability
properties of DCPPS by SOD-LMS/IRK. However, the sizes of
T N and T N s are inversely proportional to h. Thus, a large h is
always expected to reduce the burden of computing eigenvalues
from T N and T N s .

To this aim, a step-length heuristic is proposed in [21] by
virtue of the correspondence between the absolute stability re-
gions of LMS/IRK (the region in the hλ plane where all roots ζ of
the methods’ characteristic equation satisfy |ζ(hλ)| ≤ 1) [24]
scaled by 1/h and the delay-independent stability of DCPPS
(i.e., stability for all values of τi > 0, i = 1, . . . , m).

h = 0.9
ρε

||Ã0 || +
∑m

j=1 ||Ãj ||
(19)

where 0.9 is a safety factor. ε is a number small enough so that
ε/h � 1. Given a small value ε, ρε is the safety radius of the
absolute stability region of the LMS/IRK methods [21].

It should be emphasized that the step-length h determined
by (19) is a sufficient condition under which a given LMS/IRK
method retains the delay-independent stability of DCPPS. Con-
sidering τmax is typically less than 1.0 s, the setting N ≥ 10 or
h ≤ 0.1 is sufficient to ensure that critical oscillation modes of
DCPPS can be recovered by SOD-LMS/IRK.

B. Selection of LMS/IRK Methods

LMS and IRK are essentially two large classes of time inte-
gration methods. It is of great importance to investigate which
method can guarantee the accuracy of discretizing T (h) so that
the small signal stability of DCPPS can be accurately and reli-
ably captured.

1) Selection of LMS/IRK Methods: It is well-understood that
the physical power system is a stiff system with significantly
different time scales. In addition, it has been revealed that the
stiffness of DCPPS is independent of time delays, which can be
validated by visualization of the sequences of eigenvalues with
decreasing real parts (see [14], [16]).

It follows from [24] that explicit time integration methods do
not work for problems described by stiff differential equations,
e.g., the explicit Adams-Bashforth (AB) LMS method. In the
case study sections of this paper, the performances of two clas-
sic implicit LMS methods, i.e., implicit Adams-Moulton (AM)
and backward differentiation formulas (BDF), in approximating
T (h) are intensively investigated. Furthermore, numerical re-
sults on discretizing solution operator by typical IRK methods,
including Radau-IA, Radau-IIA and Gauss, are presented.

2) Selection of the Step k and Stage s: The rules of thumb on
selecting the step k of LMS and the stage s of IRK are given as
follows by analyzing the local error in estimating the rightmost
eigenvalue of DCPPS, i.e., O(hp), in terms of the order p of
LMS/IRK methods [24]. Generally, p varies proportionally with
k or s. Specifically, for the k-step AB, AM and BDF methods,
p = k, k + 1, k, respectively, where k = 1–6. For the s-stage
Radau-IA, Radau-IIA and Gauss methods, p = 2s − 1, 2s −
1, 2s, respectively, where s = 1, 2, 3.
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Fig. 2. Boundaries of the absolute stability regions for LMS and IRK. For
each method, the unbounded absolute stability regions are the exterior of curves
depicted. (a) LMS with BDF of k = 1–6. (b) IRK with Radua IA (IIA) of
s = 1–3.

It is natural to choose a higher order of p to reduce the esti-
mation error O(hp). However, the rationale behind (19) is that
the absolute stability regions of the LMS/IRK methods scaled
by 1/h mimic the left-half plane up to some accuracy ε. In
this sense, the LMS/IRK methods with unbounded stability re-
gions completely or nearly covering the left-half plane is highly
suggested, including BDF methods with k = 2–4 and all IRK
methods, as depicted in Fig. 2.

V. EIGEN-ANALYSIS OF LARGE DCPPS BY SOD-LMS/IRK

In this section, a reduced set of critical oscillation modes
of DCPPS are efficiently computed from the discretized ma-
trices T N and T N s generated by SOD-LMS/IRK, where the
rotation-and-multiplication preconditioning technique and the
sparse eigenvalue algorithm IRA are applied.

A. Rotation-and-Multiplication Preconditioning

To efficiently compute critical oscillation modes of DCPPS
by SOD-based methods, the rotation-and-multiplication precon-
ditioning technique presented in [16] is indispensable. The pre-
conditioning enhances the dispersion of the eigenvalues μ of
T (h), leading to an accelerated convergence rate of IRA used
to compute them. It is achieved by first rotating the complex
plane in the anti-clockwise direction by θ (= arcsin(ζ)) radian
and then multiplying the plane by 1

α (α > 1). By using the pre-
conditioning, the eigenvalues of DCPPS with damping ratios
less than the threshold are mapped to those of T (h) located
outside the unitary circle and can be computed with priority.
The preconditioned eigenvalue λ′ relates to λ of DCPPS by:

λ′ = αλe−jθ . (20)

Correspondingly, the preconditioned characteristic equation
of DCPPS can be obtained by substituting λ in (4) with 1

α ejθλ′.
(

Ã
′
0 +

m∑

i=1

Ã
′
ie

−λ′τ ′
i

)

v = λ′v (21)

where
⎧
⎪⎨

⎪⎩

Ã
′
0 = αÃ0e−jθ , Ã

′
i = αÃie−jθ (22)

τ ′
i =

τiejθ

α
≈ τi

α
, i = 1, . . . , m. (23)

Considering the delay approximation made in (23), λ′ is es-
sentially an approximant to the true solution to (21). It should
be noted that the impact of delay approximation on accurately
estimating λ′ has been analyzed in [16].

B. Explicit Expressions of T N ′ and T N ′s

After the preconditioning, T N and T N s become T N ′ and
T N ′s , respectively.

T N ′ =

[
ΓN ′

I(N ′+k−1)n 0

]

, T N ′s =

[
ΓN ′s

I(N ′−1)sn 0

]

(24)

where N ′ = 	τmax/(αh))
, T N ′ ∈ C(N ′+k)n×(N ′+k)n and
T N ′s ∈ CN ′sn×N ′sn .

The block rows ΓN ′ ∈ Cn×(N ′+k)n and ΓN ′s ∈ Csn×N ′sn

are obtained by replacing Ãi in (12)–(14) and (16)–(18) by
Ã

′
i (i = 0, . . . , m). In addition, �i (i = 0, . . . , m + 1) and

Lj (j = 0, . . . , m) are updated as �′i ∈ R(N ′+k)×1 and L′
j ∈

RN ′s×1 respectively by taking (23) into consideration.

ΓN ′ = R−1
N ′Σ′

N ′ (25)

RN ′ = αkIn − hβkÃ
′
0 (26)

ΣN ′ = (�′m+1)
T ⊗ In +

m∑

i=0

(�′i)
T ⊗ Ã

′
i (27)

ΓN ′s = R−1
N ′sΣN ′s (28)

RN ′s = Isn − A ⊗ (hÃ
′
0) (29)

ΣN ′s = L′
0 ⊗ In +

m∑

i=1

(hAL′
i) ⊗ Ã

′
i . (30)

The eigenvalue μ′ of T N ′ or T N ′s relates λ′ by:

μ′ = μαe−jθ
= eλ′h , λ′ =

1
h

ln μ′. (31)

C. Sparse Eigenvalue Computation Using IRA

Here IRA [26] is employed to compute a given number of
eigenvalues μ′ with the largest moduli from T N ′ and T N ′s .

1) Overview of Efficient Implementation of SOD-LMS: In
application of IRA to SOD-LMS, the most computationally
expensive operation is iteratively generating Krylov sequences.
Let qj ∈ C(N ′+k)n×1 be the jth Krylov sequence. Then, qj+1
is computed as:

qj+1 = T N ′ · qj . (32)

Since the sub-diagonal blocks of T N ′ are In , the last
(N ′ + k − 1)n entries of qj+1 can be readily obtained by for-
ward shifting n entries of qj . Thus, the key to compute qj+1 is
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identified as determination of its first n entries.

z = ΣN ′ · qj (33)

qj+1(1 : n, 1) = R−1
N ′ · z. (34)

where z ∈ Cn×1 is an intermediate vector.
In the following, (33) and (34) are efficiently implemented

by exploiting the sparsity in augmented system matrices.
2) Compute z = ΣN ′ · qj : First, qj is converted to a matrix

Q ∈ Cn×(N ′+k) by taking every n entries as columns.

qj = vec(Q). (35)

Then z can be efficiently computed by transforming the
memory-consuming Kronecker products into ordinary MVPs.

z = ΣN ′ · qj =

(

(�′m+1)
T ⊗ In +

m∑

i=0

(�′i)
T ⊗ Ã

′
i

)

vec(Q)

= Q�′m+1 + Ã
′
0(Q�′0) +

m∑

i=1

Ã
′
i(Q�′i). (36)

The cost of calculating z is dominated by Ã
′
0(Q�′0) �

αe−jθz0 , where z0 = Ã0(Q�′0) can be efficiently solved from
the following augmented equation by taking (3) into account.

[
z0

0

]

=

[
A0 B0

C0 D0

][
Q�′0

w

]

(37)

where w is an l × 1 ancillary vector.
3) Compute qj+1(1 : n, 1) = R−1

N ′ · z: First, RN ′ is refor-
mulated by inserting (22) and (3) into (26).

RN ′ = A′
0 − B′

0D
−1
0 C0 (38)

where A′
0 and B′

0 have identical sparsity with A0 and B0 ,
respectively.

{
A′

0 = αkIn − hβkαA0e−jθ

B′
0 = −hβkαB0e−jθ .

(39)

Accordingly, qj+1(1 : n, 1) can be directly solved from the
following augmented equation.

[
A′

0 B′
0

C0 D0

][
qj+1(1 : n, 1)

w

]

=

[
z

0

]

. (40)

In summary, the computational complexity of one IRA itera-
tion in SOD-LMS is characterized by an MVP in solving (33)
and an MIVP in solving (34), which is almost the same as the
EIGD method presented in [15].

4) Efficient Implementation of SOD-IRK: Considering the
structure similarity in the discretized matrices T N ′ and T N ′s ,
it is straightforward to generalize the sparse implementation of
SOD-LMS as presented in the above subsections to SOD-IRK.
The difference lies in the variant of (34), i.e.,

qj+1(1 : sn, 1) = R−1
N ′s · z. (41)

Unlike RN ′ , the direct inversion of RN ′s is unavailable since
it is essentially the sum of two Kronecker products [25]. Thus,

(41) can only be computed by iterative solvers [27] until the
convergence is reached.

RN ′s · q(k)
j+1(1 : sn, 1) = z (42)

where q
(k)
j+1(1 : sn, 1) denotes the solution to qj+1(1 : sn, 1)

after the kth iteration. Here the left-hand-side of (42) can be
efficiently implemented by applying the unique property of
Kronecker product [15], resulting in a matrix product
Ã

′
0(QA) � Ã

′
0 [q̃1 , . . . , q̃s ]. The ordinary MVPs Ã

′
0 q̃i (i =

1, . . . , s) can be efficiently computed in the same way as (37).

D. Restore λ From μ′

Once an eigenvalue μ′ is obtained from T N ′ or T N ′s by IRA,
the estimate to eigenvalue of DCPPS can be transformed back
from the inversion of (20) and (31) by:

λ̂ =
1
α

ejθλ′ =
1

αh
ejθ ln μ′. (43)

The corresponding eigenvector v̂ can be directly estimated by
the first n entries of the corresponding Krylov sequence. Actu-
ally, λ̂ and v̂ are still estimates of the true solution {λ,v}. The
roots of the estimation errors and the corresponding counter-
measures are as follows.

1) Solution Operator Discretization: The accuracy of T N ′

or T N ′s in approximating T (h) determines the accuracy of
λ̂ and v̂, which can be guaranteed by fine granularity of the
discretization, i.e., small h and large N .

2) Delay Approximations in Rotation-and-Multiplication
Preconditioning: The estimation error introduced by (23) can
only be eliminated by utilizing the Newton’s method [14], where
λ̂ and v̂ are taken as the initial guesses. The true solution pair
{λ,v} of (5) are accordingly obtained.

VI. CASE STUDIES

In this section, the accuracy, efficiency and scalability of
time integration-based SOD-LMS/IRK methods are intensively
studied on the 16-machine 68-bus test system and two real-life
large transmission systems.

A. Case 1: The 16-Generator 68-Bus Test System

The details on the test system and two WADCs installed on
G2 and G5 can be found in [16], [28]. The feedback and output
time delays are assumed to be τf1 = 150 ms, τo1 = 90.5 ms,
τf2 = 70 ms and τo2 = 37.4 ms. The number of state variables
is n = 200. All tests are carried out on a 3.4 GHz desktop
computer with 8 GB RAM. The convergence tolerances for
IRA and Newton correction are 10−6 .

Firstly, the basis of SOD-LMS/IRK, i.e., the accuracy of T N

and T N s in approximating T (h), is validated. Fig. 3 shows the
eigenvalues μ̂ of T N and T N s with the largest moduli against
the accurate eigenvalues μ of T (h), which are computed by
SOD-PS in [16] and corrected by Newton iterations. Parameter
settings are: h = 0.0075 s, N = 20, α = 1 and θ = 0; SOD-
LMS with BDF of k = 3; SOD-IRK with Radau-IIA of s = 2;
SOD-PS with p = q = 3.



5974 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 33, NO. 6, NOVEMBER 2018

Fig. 3. Estimates μ̂ to accurate eigenvalues μ of T (h) computed from TN

by SOD-LMS (left) and from TN s by SOD-IRK (right). μ are obtained by
SOD-PS in [16] with Newton correction and (9).

Fig. 4. Estimates λ̂ to accurate eigenvalues λ of DCPPS computed by SOD-
LMS and SOD-IRK. Figure (b) is a zoomed-in view of figure (a). λ are obtained
by SOD-PS in [16] with Newton correction.

It can be seen from Fig. 3 that SOD-LMS and SOD-IRK
can accurately compute a subset of μ, which are located out-
side the inner circles. The radii of the inner circles are 0.8006
and 0.6854, respectively. All spurious eigenvalues with smaller
moduli are located inside the inner circles. Since the largest
modulus is 0.9999, the DCPPS can be determined to be stable.
The eigenvalue estimations of DCPPS are obtained by substitut-
ing μ̂ into λ̂ = 1

h ln μ̂, as depicted in Fig. 4. It can be seen that λ̂

computed by SOD-IRK is in close proximity to λ in the whole
depicted region. In contrast, SOD-LMS can accurately capture
eigenvalues located on the right of Re(λ) = −37.2, which are
sufficient for small signal stability analysis of DCPPS.

Secondly, by applying the rotation-and-multiplication pre-
conditioning with α = 2 and θ = 8.63◦, SOD-based meth-
ods are capable of estimating all electromechanical oscillation
modes with priority, as shown in Fig. 5. Due to delay approxi-
mations made in (23), some estimates λ̂ with large sensitivities
to time delays slightly differ from their true values λ. By apply-
ing Newton correction, the biases between the estimations and
the accurate eigenvalues can be readily removed. The estimates
converge to their accurate counterparts.

Thirdly, the accuracy and efficiency of SOD with differ-
ent LMS/IRK methods are intensively investigated. Part of the

Fig. 5. Estimates λ̂ to accurate eigenvalues λ of DCPPS computed by SOD-
LMS and SOD-IRK with α = 2 and θ = 8.63◦. λ are computed by SOD-PS in
[16] with Newton correction.

Fig. 6. Estimates λ̂ to accurate eigenvalues λ of DCPPS computed from TN ′
by SOD-LMS and from TN ′s by SOD-IRK. In figures (a) and (b), SOD-LMS
methods are AB, AM and BDF with k = 2 and 4, respectively. In figures (c)
and (d), SOD-IRK methods are Radau-IIA, Radau-IA and Gauss with s = 2
and 3, respectively. λ are computed by SOD-PS in [16] with Newton correction.

results are given in Fig. 6 and Table I. In all cases, N ′ = 15,
h = 0.005 s, α = 2 and θ = 8.63◦. The number of eigenvalues
required to be computed is r = 15. It can be seen from Fig. 6(b)
that AB with k > 2 cannot capture any eigenvalue of the sys-
tem. Due to small step-length used to discretize the solution
operator, μ of T (h) are closely distributed, which causes about
40–50 IRA iterations in eigenvalue computation, as can be seen
in column 10 of Table I. Nevertheless, in all cases, SOD-LMS
consumes less than 3 s. It is the most efficient method because:
1) MIVP in IRA iterations is directly solved; 2) The dimensions
of the discretized matrix T N ′ to T (h) are much smaller when
comparing with SOD-IRK/PS.

Fourthly, efficiencies of SOD-LMS/IRK in this paper and
in [17] are compared. The CPU time consumptions in cases
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TABLE I
EFFICIENCY COMPARISON BETWEEN DIFFERENT SOD METHODS (N ′ = 15,

h = 0.005 S, α = 2, θ = 8.63◦)

1The GPU-based parallelization of QR is substituted by single-core CPU-based IRA,
accompanying with LU factorization to directly solve (34) and (41).
2The sparsity in the lower block rows of T N ′ and T N ′s , i.e., identity matrices, are
utilized in the implementation, resulting in improved efficiency.

18–23 are listed in Table I. By comparing cases 18–21 with
cases 1–4, it is clear that the computational burdens in solving
(34) by SOD-LMS in the paper and in [17] are nearly the same.
However, in cases 22 and 23, SOD-IRK in [17] consumes about
5 and 10 times of CPU time of the presented SOD-IRK in cases
10 and 11. It means that the iterative solution of (41) by the
presented SOD-IRK is more efficient than SOD-IRK in [17].

Lastly, in the case of system without delay, IRA with Cayley
transform (Cayley-IRA) [26], which has the similar rationale to
the rotation-and-multiplication preconditioning, is used to com-
pute r = 15 eigenvalues with the damping ratios less than 15%.
As can be seen from case 24 in Table I, the computation costs
less than 0.3 s. Nevertheless, the CPU time per iteration is almost
the same as SOD-LMS, indicating comparative computational
burden.

In summary, SOD-LMS/IRK/PS can accurately find a set of
stability-determining eigenvalues μ of T (h) with the largest
moduli, corresponding to the eigenvalues λ of DCPPS with
the smallest damping ratios. SOD-LMS features in its high ef-
ficiency. SOD-IRK/PS can capture more eigenvalues λ with
greater real parts. However, the extra eigenvalues captured by
SOD-IRK/PS provide no more useful information for small sig-
nal stability analysis of DCPPS.

B. Case 2: A 516-Bus Real-Life Transmission System

In this section, the scalability of SOD-LMS/IRK in analyzing
large DCPPS is studied on the Shandong power grid with 516
buses, 114 generators, 936 transformers and transmission lines,

Fig. 7. Estimates λ̂ of the system computed by SOD-LMS with BDF of k = 2
and SOD-IRK with Radau-IIA of s = 2. (a) r = 120, θ = 17.46◦, ζ = 30%.
(b) r = 12, θ = 2.87◦, ζ = 5%. The dashed lines in red, blue and black are
with identical slope of ζ and with the smallest Y-intercepts determined by three
clusters of eigenvalues computed by SOD-LMS, SOD-IRK and SOD-PS in [16]
with Newton correction.

and 299 loads [16]. The total delays in two wide-area damping
control channels are 90 ms and 100 ms, respectively. The number
of state variables of the system is 1128.

The criterion of scalability adopted here is the inexistence
of any spurious eigenvalues located on the right-hand side of
the desired electromechanical oscillation modes. With the aim,
SOD methods with different LMS and IRK schemes, including
AB, AM, BDF, Radau-IIA, Radau-IA and Gauss, are intensively
studied. In all studies, h = 0.005 s, N ′ = 10, α = 2. The accu-
rate eigenvalues computed by SOD-PS in [16] with p = q = 3
are taken as benchmarks.

Considerable numerical studies reveal that SOD-LMS meth-
ods with BDF of k = 2–4 and all SOD-IRK methods are capable
of accurately analyzing the real-life large system. As shown in
Fig. 7(a), all electromechanical oscillation modes of the sys-
tem are estimated by applying θ = 17.46◦ (i.e., ζ = 30%) and
computing r = 120 eigenvalues. The red dashed line has the
smallest Y-intercept because 5 eigenvalues near from the origin
are captured by SOD-LMS. In contrast, SOD-IRK and SOD-
PS obtain 4 and 5 spurious eigenvalues located to the left of
Re(λ) = −35, respectively. In Fig. 7(b), all eigenvalues with
damping ratios less than ζ = 5% (i.e., θ = 2.86◦) are captured
for reliably and fast determining the system’s stability against
time delays. The small biases between the estimates and the ac-
curate eigenvalues, as shown in Fig. 7, can be readily removed
by the Newton’s method.

Fig. 8 shows 120 estimates λ̂ computed by SOD-LMS with
AB of k = 2 and with AM of k = 4. It is clear that besides
the desired low frequency oscillation modes, some spurious
eigenvalues are also computed by the two SOD-LMS methods.
Therefore, SOD-LMS methods with AM and AB are not suitable
for reliably analyzing the small signal stability of large DCPPS.

Table II summarizes the computational time of different test
cases. It can be concluded that SOD-LMS is always the most
efficient method among various SOD methods. In addition, it
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Fig. 8. r = 120 estimates λ̂ of the system computed by SOD-LMS with AB
and AM. (a) AB with k = 2. (b) AM with k = 4. λ are computed by SOD-PS
in [16] with Newton correction.

TABLE II
EFFICIENCY COMPARISON IN ANALYZING THE 516-BUS SYSTEM

is noted that in cases of θ = 2.87◦ and ζ = 5%, all three SOD
methods need a great number of IRA iterations due to sev-
eral eigenvalues closely located on the negative real axis (see
Fig. 7(b)). It also can be found from Table II that the SOD-LMS
methods in the paper and in [17] consume nearly the same CPU
time, while the presented SOD-IRK consumes 1

6 to 1
3 CPU time

of SOD-IRK in [17]. Compared with the no delay cases 33 and

Fig. 9. Illustrative diagram of the ultra-high-voltage (UHV) North China-
Central China interconnected power grid.

Fig. 10. r = 20 estimates λ̂ to the unstable plant/local modes of the system
by SOD-LMS, SOD-IRK and SOD-PS in [16], respectively. λ are computed by
SOD-PS with Newton correction.

34, SOD-LMS costs 1 to 4 times of CPU time per iteration of
Cayley-IRA.

C. Case 3: A 33028-Bus Real-Life Interconnected System

The scalability and efficiency of SOD-LMS/IRK are further
studied on the ultra-high-voltage (UHV) North China-Central
China interconnected power grid, as illustrated in Fig. 9. The
grid has 33028 buses, 2405 generators, 1991 induction motors
and 16 HVDC transmission systems. The feedback and output
time delays of two WADCs are assumed to be τf1 = 120 ms,
τo1 = 100 ms, τf2 = 100 ms and τo2 = 80 ms. The number of
system state variables is n = 80577.

Fig. 10 shows three sets of r = 20 estimates to unstable
plant/local modes of the system by SOD-LMS with BDF, SOD-
IRK with Radau-IIA and SOD-PS in [16]. The modes are dom-
inated by hydraulic generators which are with small rated ca-
pacities in Mountain areas of Central China and connected to
the main grid through long distance transmission lines. It can



YE et al.: EIGEN-ANALYSIS OF LARGE DCPPS BY TIME INTEGRATION-BASED SOLUTION OPERATOR DISCRETIZATION METHODS 5977

TABLE III
EFFICIENCY COMPARISON IN ANALYZING THE 33028-BUS SYSTEM

be seen from the figure that the estimates obtained by SOD-
LMS coincide with SOD-IRK and SOD-PS except those with
Im(λ̂) > 15.

Table III summarizes the CPU time consumed by the three
methods. It can be concluded that SOD-LMS is the most ef-
ficient, followed by SOD-IRK and then SOD-PS. Specifically,
SOD-LMS and SOD-IRK respectively spend about 1

6 and 1
2

CPU time of SOD-PS. On the contrary, neither SOD-LMS nor
SOD-IRK in [17] is capable of handling the system in this case
because the inherent sparsity in the augmented state matrices is
not exploited. Compared with the system without delay, SOD-
LMS spends about 5 times of CPU time while it is 13 times the
matrix dimension of Cayley-IRA.

VII. CONCLUSIONS

This paper presents scalable and efficient SOD-LMS and
SOD-IRK for efficiently analyzing large DCPPS. The presented
methods improve the scalability and efficiency of existing SOD-
LMS/IRK in [17] and SOD-PS in [16]. Important conclusions
are summarized as follows.

1) The SOD-LMS/IRK are endowed with scalability in effi-
ciently analyzing large DCPPS by fully utilizing the in-
herent sparsity in augmented system state matrices. The
methods feature in efficiently calculating critical eigen-
values of DCPPS with damping ratios less than a pre-
specified threshold by one run of the methods.

2) SOD-LMS/IRK generate highly structured approximate
matrices to the solution operator. Exploitation of the struc-
ture ensures high efficiency of the methods. SOD-LMS is
provided with the highest efficiency by directly solving
the matrix-inversion-vector product (MIVP) involved in
sparse eigenvalue computation. SOD-IRK gains higher
efficiency than SOD-PS by cutting down the burden of
iteratively solving the involved MIVP.

3) The backward differentiation formulas (BDF) LMS meth-
ods of k = 2–4 are recommended in analyzing the small
signal stability of large DCPPS. The unbounded stability
regions of these methods almost cover the whole left-half
complex plane, leading to smaller dimensions of the dis-
cretized matrices to the solution operator and hence less
computational burden in eigenvalue computation.

Application of SOD-LMS for designing WADCs with con-
sideration of time delay impacts is part of our future research.
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