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Wide-Area Monitoring of Power Systems Using
Principal Component Analysis and k-Nearest
Neighbor Analysis

Lianfang Cai ', Nina F. Thornhill

Abstract—Wide-area monitoring of power systems is important
for system security and stability. It involves the detection and lo-
calization of power system disturbances. However, the oscillatory
trends and noise in electrical measurements often mask distur-
bances, making wide-area monitoring a challenging task. This
paper presents a wide-area monitoring method to detect and lo-
cate power system disturbances by combining multivariate analy-
sis known as Principal Component Analysis (PCA) and time series
analysis known as k-Nearest Neighbor (kNN) analysis. Advantages
of this method are that it can not only analyze a large number of
wide-area variables in real time but also can reduce the masking ef-
fect of the oscillatory trends and noise on disturbances. Case studies
conducted on data from a four-variable numerical model and the
New England power system model demonstrate the effectiveness
of this method.

Index Terms—Wide-area monitoring, electrical measurements,
power system disturbances, security, stability, detection, localiza-
tion, k-nearest neighbor, principal component analysis, real time.

NOMENCLATURE
Alpe Monitoring statistic built by applying kNN on T72.
AI%2 Detection threshold with confidence level o for
Alp.
AlS, » pth value of Al calculated online.
Alg Monitoring statistic built by applying £NN on Q.
Alg) Detection threshold with confidence level « for
Alg.
Alg rth value of Al calculated offline.
Alg , pth value of Al calculated online.
a Number of principal components.
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Covariance matrix of normalized variables.
Vector of contributions of variables to Al at the
pth sampling time point online.

Vector of contributions of variables to Al at the
pth sampling time point online.

Ratio percentage of sum of Ay, Ao, -
sum of Ay, Ag, -, Ay,

Square of Euclidean distance between two win-
dows.

Derivative operator.

Vector of residual variables obtained by PCA.

ith residual variable.

Number for a data window formulated offline.
Vector of principal components obtained by PCA.
ith principal component.

Identity matrix with dimension as m x m.
Parameter for kNN.

Length of data window.

Temporary variable for counting from 1 to L.
Number of measured variables.

Size of modelling dataset.

Sampling time point for offline data.

Sampling time point for online data.

Squared Prediction Error (SPE) statistic calculated
based on residual variables.

nth value of @ calculated offline.

pth value of @) calculated online.

Number for a data window formulated offline, and
r#g.

Specific values of r (constants).

ith sinusoidal signal.

Value of s; at the time of ¢.

Hotelling’s statistic calculated based on principal
components.

nth value of T? calculated offline.

pth value of 72 calculated online.

Continuous time.

Matrix with columns as w; us - -+ U,,.

Matrix with columns as w; us - -+ u,.

ith eigenvector of C.

Vector of measured variables.

nth vector value of  for offline modelling.

ith measured variable.
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Zin nth value of z; for offline modelling.

Tiy Value of z; at the time of ¢.

x Vector of normalized variables.

z, nth vector value of Z calculated offline.

z, pth vector value of & calculated online.

T; ith normalized variable.

Zin nth value of Z; calculated offline.

VA Embedding matrix of () formulated offline.

Z rth data window formulated offline (rth row of
Z).

Zy gth data window formulated offline (gth row of
Z).

z, pth data window formulated online.

«@ Confidence level for detection thresholds.

A Diagonal matrix with diagonal elements as
AAay e A

Xi 1th eigenvalue of C.

Q Diagonal matrix with diagonal elements as

—1 -1 -1
AT A A

I. INTRODUCTION

IDE-AREA monitoring of power systems plays a crucial
W role in understanding the system behavior and improv-
ing the system operating stability margin. It usually places much
emphasis on the detection and localization of disturbances, be-
cause disturbances pose an increasingly severe threat to the
system security and stability [1].

Generally, disturbances deteriorate the system health by mak-
ing a power system deviate from the normal operating status.
With more and more advanced measuring devices such as Phasor
Measurement Units (PMUs) spreading across power systems,
abundant measurements containing the information of the sys-
tem operating status are available for analysis. How to extract
such information from the measured data for disturbance de-
tection and localization is an important issue for power system
researchers [2]. Generally, the existing data-driven methods can
be divided into three categories according to the applications: (1)
for the protection of power system equipment, e.g., the wavelet
coefficient energy based method [3] and the hidden Markov
model based method [4]; (2) for the analysis of power quality
especially the waveform of alternate voltage, e.g., the Hilbert-
Huang transform based method [5] and the power quality state
estimation based method [6]; (3) for the assessment of the sys-
tem security and stability, typically by multivariate statistical
analysis based methods [7]-[10].

Usually, the first two categories of methods take a univariate
approach to analyze electrical variables separately. In contrast,
the third category of methods use a multivariate approach to
handle variables together, particularly suitable for wide-area
monitoring of power systems where many variables need to be
analyzed simultaneously. This work focuses on the latter.

Principal Component Analysis (PCA), one of the classical
multivariate statistical analysis techniques, is well-known for
its capability of compressing high-dimensional and correlated
data without significant loss of information. It obtains Principal
Components (PCs) that are uncorrelated and Residual Variables
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(RVs) by projecting physical variables onto a low-dimensional
subspace that retains most of the variances of the projected vari-
ables [11]. To measure the variation of PCs within the PCA
model and the variation of RVs not accounted for by the PCA
model, two popular monitoring statistics were used respectively,
that is, the Hotelling’s 7" statistic calculated as the sum of the
squares of normalized PCs and the companion Squared Pre-
diction Error (SPE or (Q) statistic calculated as the sum of the
squares of RVs [11]. The PCA model together with the 72
and () statistics, known as the PCA-based statistical monitoring
method, have been widely applied for process monitoring in the
chemical industry [11].

In 2013, Barocio et al. [7] introduced the PCA-based sta-
tistical monitoring method for the detection and visualization
of power system disturbances and discussed its potential for
wide-area monitoring of power systems. Subsequently, Liu et al.
[8] focused on the geometric interpretation of T2 and (), and
showed that by using frequency measurements 7> detects gener-
ation mismatch events and () detects islanding events. Recently,
Rafferty et al. [9] considered the changing nature of frequency
in a power system and developed a moving window PCA based
statistical monitoring method updating the PCA model as well as
T? and () after obtaining a new window of frequency measure-
ments. Although the existing works have led to some success in
wide-area monitoring of power systems, one issue that affects
the monitoring has not been considered.

Specifically, the above works require the amplitude of electri-
cal measurements recorded before and after disturbances to be
markedly different so that the amplitude of the T2 values and that
of the () values calculated before and after disturbances can also
be distinct and thus can be made use of to detect disturbances
at the system-wide level. In practice, such a requirement cannot
be met all the time, especially for the cases in power systems
where electrical measurements often have oscillatory trends and
noise [12], [13]. As exemplified in [14], the oscillatory trends
and noise in measurements often mask disturbances, making
the difference in the amplitude of measurements recorded be-
fore and after disturbances not distinguishable. As a result, there
is also not much difference in the amplitude of the 7 values
and that of the ) values calculated before and after disturbances,
and therefore it is difficult for 72 and Q to detect disturbances
using electrical measurements with oscillatory trends and noise.

k-Nearest Neighbor (kKNN) analysis is a time series analysis
method for the detection of anomalous data windows [15]-[18].
As stated in [14], kNN does not require the amplitude of mea-
surements recorded before and after anomalies to be distinct
while detecting anomalies. In a recent paper of the authors [19],
kNN was introduced and adapted for real-time detection of
power system disturbances. However, the method presented in
[19] operates in a univariate manner to analyze variables sepa-
rately and the online computational burden increases with the
number of variables increasing.

Against this background, the motivation of this work is to in-
tegrate kNN with the PCA-based statistical monitoring method
in order that a large number of variables can be analyzed in real
time for wide-area monitoring of power systems, and at the same
time, the masking effect of the oscillatory trends and noise in
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electrical measurements on disturbances can be reduced. More
specifically, kNN is applied on 77 and @) to obtain two new
monitoring statistics for detecting disturbances. This paper will
show that a kNN analysis in real time of 72 and @ leads to more
rapid detection of disturbances. The real-time implementation
of kNN is achieved by building a recursive calculation strategy
for the distance measure of kNN and a fast selection strategy
for the kth smallest distance value. Finally, disturbance local-
ization is performed by developing a contribution plot strategy
which can quantify the contributions of variables to the new
monitoring statistics. Case studies conducted on a four-variable
numerical model and the New England power system model are
used to demonstrate the effectiveness of the proposed method. It
is worth noting that the proposed method is not relevant to pro-
tective relays since they fall into different categories, as stated
previously.

The paper is organized as follows. Section II gives a brief
description of wide-area monitoring based on PCA. Section III
presents the wide-area monitoring method based on PCA and
kNN. The application results and analysis of the two case studies
are provided in Section IV. Discussions about the proposed
method are given in Section V, while our conclusions are drawn
in Section VL.

The following notational conventions are used throughout
this contribution. Boldface capital and lower-case letters stand
for matrices and column vectors respectively, while R denotes
the field of real numbers. The transpose and inverse operators
are denoted by ()T and (-)~! respectively.

II. WIDE-AREA MONITORING BASED ON PCA

In this section, wide-area monitoring based on PCA [7]-[9],
referred to as WAM-PCA here, is briefly introduced.

The symbol ' = [z; 25 --- x,, ] denotes a vector of m
electrical variables measured for monitoring, e.g., frequency,
voltage amplitude, active power, reactive power. Historical mea-
surements from the ambient condition are used to form the mod-
elling data {x,, }V _,, where N denotes the dataset size and x,,
denotes the nth vector value of . In what follows, PCA is used
to analyze the measured variables together and to obtain PCs
and RVs through multivariate analysis.

Firstly, the variables in the vector o are normalized with the
sample means and sample variances calculated from {x,, }\ _,
to make the obtained variables independent of their engineering
units. The symbol & = [#; @9 --- &,,] denotes a vector of
the m normalized variables. The covariance matrix of Z* can
be estimated based on the normalized data {%, })' _, and the
eigenvalue decomposition of C' can be implemented as:

]V m
1 ~ ~ T T T
C = N1 E z, %, = UAU = i:E 1 Aiwgug (1)

where A € R”*™ is a diagonal matrix with diagonal elements
as the eigenvalues A1, A, - - - , A, of C' in the descending order,
while U € R™*™ is the eigenvector matrix with the column
vectors as the eigenvectors uy us --- u,, of C.
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Then, a vector of PCs can be obtained by:

BT =[hyhy - h) = (U, &) )

where a is the number of PCs satisfying a < m, and U,,' =
[u ug -+ u,]T € R*™ is called loading matrix. The sample
covariance matrix of PCs is a diagonal matrix with the diagonal
elements as Ay Ay - -+ A,.

Concurrently, a vector of RVs can be obtained by:

eT:[61 €y -

em} = (53 - Ul:aUlzaT-'i)T 3)

The variation of PCs within the PCA model can be measured
by the T statistic:

T =h" Qh =" (hi/Vii) @)
i=1
where €2 € R*** is a diagonal matrix with the diagonal ele-
ments as A; ' Ap o AL
Moreover, the variation of RVs not accounted for by the PCA
model can be measured by the @ statistic:

m

Q:eTe:Ze? ®)

i=1

III. WIDE-AREA MONITORING BASED ON PCA AND KNN

Both T? and @ make use of the difference in their ampli-
tude before and after disturbances for disturbance detection,
requiring the amplitude of electrical measurements recorded
before and after disturbances to be distinct. However, the oscil-
latory trends and noise in electrical measurements often have
a masking effect on disturbances, making it difficult to satisfy
this requirement. Thus, the detection performance of T and @
will be adversely affected. In this section, kNN is introduced
and applied on 77 and () to build two new monitoring statis-
tics for improving the detection performance. The reason why
kNN gives the improvement is because kNN does not require
the amplitude of a time series before and after disturbances to
be distinct [14]. Then, disturbance localization is performed by
quantifying the contributions of variables to the new monitoring
statistics. Both disturbance detection and localization constitute
the subject of wide-area monitoring based on PCA and kNN,
referred to as WAM-PCALNN here. In the following, WAM-
PCAKNN is presented in detail.

A. Disturbance Detection of WAM-PCAKNN

kNN adopts a certain type of distance measure to assess
the similarity of two data windows in a time series, where a
data window refers to a segment of data with the fixed length.
Data windows with similar sequences of samples are called near
neighbors. The similarity assessment is achieved by defining
an Anomaly Index (AI) for each data window. Following the
definition of AI in [14]-[16], this paper uses the distance of
a data window to its kth nearest neighbor as Al of that data
window. Anomalous data windows are those distinct from the
underlying trend of the time series and the Al value for an
anomalous data window will be much higher than that of any
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normal data window, which is the reason why £NN can be used
for anomaly detection. A common distance measure to assess
the similarity between data windows is Euclidean Distance (ED)
[14]-[19], which can be written as:

= \/ZJL1 (¢;

where @' = [p1 s -+ ] and @7 = [¢1 d - f1] de-
note two data windows with L measurements in each one,
D (¢, ¢) = 0 indicates the maximum similarity.

This paper also uses ED to assess the similarity of two data
windows. The reason why ED is used here instead of other
types of distance measures such as Mahalanobis Distance (MD)
is because the calculation of ED is much simpler which can
facilitate the recursive calculation for the online detection.

If the T? or (Q values obtained by (4) or (5) are viewed as a
time series, the detection of power system disturbances can be
achieved by detecting anomalous windows in this time series.
Without loss of generality, () is taken to illustrate the detec-
tion process, which also applies to 7. The detection process
includes: 1) the offline modelling; 2) the online detection.

1) The Offline Modelling: The offline modelling calculates a
sequence of the Al values by using kNN to analyze the () values.
It then calculates a detection threshold based on the obtained Al
values for determining whether disturbances occur or not.

Specifically, based on the modelling data {,}N_,, the Q
values {Q,}Y _ | are calculated by (5) and a matrix Z is
built as:

>0 (©)

2t Q1 Qo Qr
z" Qo Qs Qry1
7Z = =
ZN_L+1" Qn-r+1 QN-L+2 QN
@)

where Z is the embedding matrix of @, its row z,. T denotes
the rth data window of {Q,}» _ |, and L denotes the win-
dow length. Two rows can be compared by the Square of ED
(SED) as:
L
D? (zg,2,) = > (Qgutrr — Quorsr)’ ®)
1=1
The reason for using SED instead of directly using ED is due
to the consideration of the calculation efficiency. This can be
observed later in Section III-A2. For the rth row z, T, its Al
value is calculated as the kth smallest SED value between it and
all other rows except its near-in-time rows. The near-in-time
rows of z, T are those having at least one sample in common
with z, T, e.g., z; T is the last near-in-time row of z;T. The
exclusion of the SED values between z, T and its near-in-time
rows during the calculation of Al is to avoid treating such near-
in-time rows as near neighbors of z,.T.
When all rows of Z obtain their corresponding Al values,
a threshold is needed for the online detection. Based on the
sequence of the obtained Al values { A, , }2Y 5! where Al
denotes the new monitoring statistic built by applying ANN
on the () statistic and Aly , denotes the rth value of Alg, a
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threshold AT, ¢ with the confidence level a can be calculated as
the dth highest value of this sequence, where ¢ is the integer
nearest to (1 — «)(N — L+ 1) [11].

Similar with Al, another new monitoring statistic A2 can
be built by applying kNN on the T? statistic and the related
detection threshold AI‘T‘2 can also be determined.

2) The Online Detection: Next is the online detection, for
which real-time calculation of Al is required. To meet this re-
quirement, strategies for recursively calculating SED and for
fast selecting the kth smallest SED value are built below.

The symbol 25" = [Q5 ;, Q5 1,5 -+ Q;] denotes the
data window of the L continuous () values calculated based on
the new measurements, where p denotes the sampling time point
for the online data and the symbol “o” is used to distinguish the
online data from the offline data. Because all rows of Z in (7)
are normal windows with the ambient characteristic, they can
be taken as the reference data to test whether z;T deviates from
normal or not. If zp is anomalous, the SEDs between it and all
rows of Z will be large. Accordingly, the Al value AIj)  for

T which is the kth smallest SED value will also be large and
will go beyond the threshold Al(). For the rth row z, T of Z,

the SED between it and z‘jT can be calculated as:

L
p? Z p —1+1 _Q'r’—l+L)2 )
=1
The calculation of (9) needs (2L — 1) additions and L mul-
tiplications. So, the online computation load relies largely on
the window length L. To reduce the number of mathematical
operations needed in (9), a recursive calculation strategy, called
Strategy I here, is built using the result previously calculated.
I) Strategy I for recursively calculating SED
For the window 23", =[Qp ; Qp ;- @p_1] ob-
tained a sampling tlme point earlier than zOT the SED between
it and the row z,_1 T of Z can be calculated as:

-y (@

=1

D* (z5_y,2,-1) —Qr71+L71)2 (10)

Zp-1>

Using (9) and (10), a recursive equation can be obtained as:

D2 ( p 1?27"—1) + (Q; - Qr—l+L)2

2
D? (23,z,) = —(Qyp —Qr1) T >=2
2
YOt ( p—l+1 QerL) sr=1
(11)
In comparison to (9), the calculation of DQ(z;, z,) in (11)

only requires four addition and two multiplication operations
for r >= 2, which is beneficial to the real-time requirement.
Here, the reason why SED instead of ED is used can be seen,
which is due to the need of the recursive calculation.

Using (11), the sequence of the SED values {D2(z;’7

z) A,Lﬁl can be calculated more efficiently. Then, the Al

value A} o p for z;T can be determined as the kth smallest SED
value. A strategy for fast selection of the kth smallest element
from a sequence is built and described below.

II) Strategy I'T for fast selection of the kth smallest SED
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If k£ elements from a sequence are smaller than the rest,
the maximum one of these k elements is the kth small-
est element of the entire sequence. Strategy I'T" is built
based on such consideration. Firstly, the first k£ elements of
{D*(z, 2,) NZL+1 are sorted in the ascending order, denoted
as DQ(I),DZ(Q), e 7Dz’(k). Then, the (k + 1)th element, de-
noted as DQ(*), is compared with the %k elements. If D2 s
larger than DQ(M, DQ(*)
main unchanged; otherwise, D>
put into p2W ,D? <2) ,D? (k=1) ensuring the reserved & el-
ements are stlll in the ascending order. After each element of
{D?(25, )} "%} is handled by such comparison, the maxi-
mum one of the ultimately reserved k elements is the kth small-
est element of the entire SED sequence.

For the best case, p2™ only needs to be compared with
D2 For the worst case, D2*) needs to be compared with
all k elements, e.g., p2EY <=2 <= p2® ang D2
is compared with D2, D2 p2®) D2 4h i be-
sides D2"). To reduce the number of comparisons, the binary
search is introduced to search the target position for D% 1t

is removed and the k£ elements re-

*) is removed and D2 is

begins by comparing D> with the middle one of the k el-

ements. If D?'") is not larger than the middle one, the search
continues on the former half of the k elements; otherwise, the
search continues on the latter half. The search continues, elimi-
nating half of the elements, and comparing D> (o the middle
one of the remaining elements, until the target position is found.
The number of comparisons is log, (k) at most, smaller than k.

In addition, the binary search is also used to sort the first &k
elements of the SED sequence in the ascending order by putting
them into target positions one by one. The only difference is that,
when one of the first k& elements is put into the target position,
the maximum element does not need to be removed. The number
of comparisons is log, (k!) at most. Thus, the total number of
comparisons for Strategy T'T is logy(k!) + (N — L+ 1 —k) -
log, (k) at most. Through this strategy, the Al value Al , for
z;’,T can be obtained as the maximum one of the ultimately
reserved k elements and can be compared with the threshold
AT for the online detection.

Similarly, the Al value AI:‘;g can also be obtained by Strat-
egy I and Strategy I'T’, and can be compared with the threshold
AIT2 . Thus, disturbance detection of WAM-PCAANN has been
developed, which is summarized in Fig. 1.

B. Disturbance Localization of WAM-PCAkKNN

Once a disturbance is detected, it needs to be located. Since
the variables nearest to a local disturbance are usually affected
most, identifying the variables affected most by the detected
disturbance can provide a meaningful reference for disturbance
localization. In the present study, contribution plots display the
effectiveness in identifying such variables [20]. Usually, vari-
ables with largest contributions to monitoring statistics are the
ones affected most by disturbances. In the following, a con-
tribution plot strategy that can quantify the Contributions of
Variables (CVs) to Al and Al is built.
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Offline modelling Online detection

Historical ambient
measurements are used to
form modelling data {x,,}¥_,

New measurements Xx,, are scaled
with the sample means and sample ]
variances of modelling data

v v
Normalized data {%,}Y_, New values of PCs and RVs
are obtained are calculated
v 2

New values of T2 and Q
are calculated
2
New values of Al72 and Al are
calculated using Strategy T and
Strategy I'T

Sample covariance matrix C
of {¥,}N_, is calculated and
eigenvalue decomposition of
C is implemented
v
Values of PCs and RVs
are calculated

Values of T2 and Q
are calculated
v
Values of Al 72 and Al
are calfulated
Detection thresholds Al
and Al§ are determined

Alr2 2 Alp,
or
Al = Al§

An alarm about the anomaly of x;,
is given at the system-wide level

Fig. 1. Disturbance detection of WAM-PCAANN.

When the online detection is implemented, the Al value
Al , for z;T is obtained as the kth smallest element

of the SED sequence {D*(z},z,)}) -, which can be
calculated as:
L
o 2
AT, =D* (z5,20) =Y (@ 111 — Qr 1) (12)
=1
where 2z, T = [Q;, Qr,+1 -+ Qr,+1_1] and 1y is a constant

denoting a specific value of 7.

Similar with Al . the Al value AJ °2_p can be
calculated as:
2 2
AI%Q,;} = Z (T2p I+1 — T2r2 —l+L) (13)

=1

where 1 is also a constant denoting a specific value of .
Then, the CVs to Al can be obtained by:

L (@ - Qi)

Z dx

=1 p—I+1

o p—
cony, , =

= Z 2(Qp 111 — Qr111) d~f R
=1 p—l+1
L

= Z 14(Qp 141 — Quy—141)

X (L~ UraUra) &

where con Iow € R™*! is a column vector with the ith ele-
ment as the contribution of the ith electrical variable to Al
at the pth sampling time point online, I,, denotes the m x m
identity matrix, and d denotes the derivative operator.

(14)
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Meanwhile, the CVs to Alp» can be obtained by:

d(T2p I+1 — T2T2—1+L)2

M=

[}
ConAI»‘z.p =
! 1=1 dwp I+1
L 20
dr
— 2° 2 p—l+1
= E 2(T° 1 — T*ivr) P
1=1 p—I+1
L
— 2° 2
- § :‘4 (T p-it1 =T fz*HL)
=1
X Up.,QU 1., & (15)
1:a 1:a mp—lJrl

where confy; , , € R™ *1 is a column vector with the ith ele-
ment as the contrlbutlon of the ith electrical variable to Al at
the pth sampling time point online.

Thus, a contribution plot strategy has been developed which
quantifies the CVs to Alp and Alr2 by (14) and (15) for
identifying variables affected most by the detected disturbance.
Through this strategy, a significant reference can be provided to
locate the detected disturbance.

C. Parameter Settings for WAM-PCAKNN

1) Parameter k and Window Length L: For the parameter k,
arelatively small value can better meet the real-time requirement
from the online detection, because the total number of compar-
isons for selecting the kth smallest SED value in strategy I'T"
will increase with k increasing. As stated in [14], a typical value
of k is 3, which is also used in this paper. The reason why k
is not set to be even smaller, e.g., & = 1, is for avoiding ex-
cess false alarms in the normal condition. The window length L
depends on specific applications. Here, L relates with the oscil-
lation period. To be sufficient for characterizing all oscillations,
L is supposed to be not smaller than the number of samples in
the maximum oscillation period. This requires having an idea
of typical oscillations in advance which can be achieved from
the past system experience.

2) Number of PCs: To determine the number a of PCs,
the Cumulative Percentage Variance (CPV) criterion, which is
widely used in multivariate statistical monitoring [21], [22], is
adopted. For the specific case here, it can be expressed as:

A
CPV (a) = %;”1 )\’
i=17i

where @ can be determined at the time when CPV (a) exceeds
a certain constant. Usually, CPV (a) > 90% is sufficient to sig-
nify that most variances of variables are captured by PCs while
the remaining tiny variances are captured by RVs [23].

x 100% (16)

IV. CASE STUDIES

In this section, WAM-PCAKNN is evaluated and compared
with WAM-PCA in two case studies, involving data from a four-
variable numerical model and the New England power system
model.
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-2 . .
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Fig.2. The total simulation data in the first case study.

A. Four-Variable Numerical Model

A four-variable numerical model which was also studied in
[13] is given by:

1, = 0.581; +0.359; +0.253 (17)
Ty = 0.751; +0.259; +0.1s3; (18)
23, = 0.4s1; +0.352; +0.353; (19)
x4y = 0.251; +0.489; +0.4s3 20)

where s, ; = sin (2rf;t) denotes the value of the sinusoidal
signal s; at the time of ¢ for: = 1,2,3,and f; = 0.1 Hz, f5 =
0.5 Hz, f3 = 0.9 Hz are the oscillation frequencies of the three
sinusoidal signals sy, s2, s3 respectively.

Suppose a disturbance occurs near x; at t = 200 seconds.
The disturbance causes a local oscillation s, ; = sin (27 f4t)
with f; = 1.5 Hz, affecting 1 much but x5, x3, x4 little as:

21, = 0.581,; +0.350; +0.253 4 + 0.654 ¢ (21)
2o = 0.781,; +0.289  + 0.153 4 + 0.0254 4 22)
23, = 0.4s1; +0.3s2; +0.3s3,; +0.01s4, 23)
24y = 0.251; +0.4s9; + 0.4s3 ; + 0.01554 (24)

The total simulation time is 300 seconds and data are sam-
pled with the sampling frequency of 10 Hz. Thus, the first 2000
data points are from (17)—(20) representing the measurements
under the ambient condition and the last 1000 data points are
from (21)—(24) representing the measurements under the distur-
bance condition. The signal-to-noise ratios (SNRs) in the mea-
surements of x1,xo,x3, x4 are 2 dB, 10 dB, 4 dB and 2.5 dB
respectively. The ith SNR is calculated as

3000 3000
SNR; = 10log,, <Z i / > wm2> (25)
n=1 n=1

where w; ,, denotes the value of the ith white noise variable w;
at the nth sampling time point. The complete data are shown
in Fig. 2. Among them, the first 1000 data points are used for
modelling since they are ambient data, and the remaining 2000
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Fig. 3. The detection chart of WAM-PCA in the first case study, with values
of T2, Q as solid lines and detection thresholds as dashed lines.
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Fig. 4. The detection chart of WAM-PCAANN in the first case study, with
values of Al , Al as solid lines and thresholds as dashed lines.

data points are used for testing since they contain data subject
to the disturbance effect highlighted in the rectangle of Fig. 2.

The window length L is set to 100 according to the sinusoidal
component s; that has the maximum oscillation period with
100 samples. The number a of PCs is set to 2 by (16). The
thresholds are determined with the confidence level of 99%.

The detection charts of WAM-PCA and WAM-PCAANN are
shown in Figs. 3 and 4 respectively. To facilitate the observation,
the monitoring statistic values (solid lines) are normalized by
their thresholds so that the thresholds (dashed lines) are equal
to one. In Fig. 3, after the disturbance occurs at the 2000th sam-
pling time point, most of the 72 and () values are still below the
thresholds and thus WAM-PCA fails to detect the disturbance.
By contrast, in the rectangle of Fig. 4, most of the Al; val-
ues significantly exceed the threshold after the disturbance and
WAM-PCAKNN detects the disturbance at the 2026th sampling
time point. The reason for such improvement of detection is
that the overlap between the probability density values of Al
before and after the disturbance is much less than the overlap
between the probability density values of () before and after the
disturbance, as illustrated in Fig. 5.

To evaluate the efficiency of the online detection, the time in
calculating Alp» and Al for each testing data sample is stored.
The computations are carried out on an Intel(R) Core(TM) i7-
4770 (3.40 GHz) with 16.0 GB RAM, Windows 7 Enterprise
and MATLAB version R2014a. The maximum time in calcu-
lating Alr2 and Alg are 0.003 seconds and 0.001 seconds
respectively, small enough for the online detection in real time.
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Fig. 7. The contributions of variables to Al;> and Al averaged over the
period from the detection time of Al until the end in the first case study.

To identify the variables affected most by the detected dis-
turbance, the contributions of variables to Al;» and Al at the
detection time of Al and those averaged over the period from
the detection time of Al to the end of simulation are shown in
Figs. 6 and 7 respectively. It can be seen from the right contri-
bution plots of Figs. 6 and 7 that the contribution of x; to Al
is largest, suggesting that z; is the variable contributing most
to the anomaly of Al . This is in accordance with the fact that
the disturbance occurs near x; and affects x; much more than
the other variables. Thus, the contributions of variables to Al
provide a meaningful reference for localizing the disturbance.
In comparison, the left contribution plots of Figs. 6 and 7 do
not identify x; as the variable contributing most to Alr. This
is reasonable, since Alr» behaves normally from the detection
time of Alg until the end of simulation and thus the largest
contribution to Al at this time period is not supposed to come
from x;.

B. New England Power System Model

The New England power system model was described in [24]
based on a single line diagram of the test system. The sys-
tem is a 16-machine 68-bus system with 16 generators serving
five geographical areas and eight tie lines connecting the areas
to one another. The data used here were provided by authors
of [24], which are 20 Hz samples comprising measurements
of active power (MW) and reactive power (MVAR) from the
16 generators (G1 ~ G16) and the sending terminals of the § tie
lines (LOL, L16, L61, L62, L74, L76, L77, L86).
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TABLE I
THE ACTIVE AND REACTIVE POWER FOR THE WIDE-AREA MONITORING

Variables Description

x1 ~ x16/T25 ~ g0  Active/Reactive power of G1-G16

r17/T41 Active/Reactive power of sending terminal of LO1
18 /%42 Active/Reactive power of sending terminal of L16
T19/T43 Active/Reactive power of sending terminal of L61
290 /%44 Active/Reactive power of sending terminal of L62
21 /%45 Active/Reactive power of sending terminal of L74
22 /T46 Active/Reactive power of sending terminal of L76
a3 /T4t Active/Reactive power of sending terminal of L77
o4 /48 Active/Reactive power of sending terminal of L86
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Fig. 8. The normalized trends of the first 1200 samples of Data I (reactive
power measurements from G2, G3 and G14) in the second case study.

Two data sets were provided, one for the ambient condition
(Data I) and another for the disturbance condition (Data II).
According to the supplier of the data, Data I was generated
by running the New England power system model normally
with no disturbance, while Data II was generated by running
the model with a local disturbance simulated. The disturbance
is due to the step change in the voltage reference input of the
automatic voltage regulator of the excitation system in G3. Four
inter-area oscillations are present in both Data I and Data II,
reflecting the property of the whole system. In addition, one
local oscillation caused by the disturbance is present in Data II.
The local oscillation is observable in the power measurements
of G3 and G2 that is nearest to G3.

Table I lists the active and reactive power for the wide-area
monitoring. The first 1000 samples of Data I are taken as mod-
elling data, and the remaining 29000 samples of Data I are
taken as testing data from the ambient condition. The 30000
samples of Data II are taken as testing data from the disturbance
condition. To provide a compact demonstration, the normalized
trends of the first 1200 samples of Data I (one-minute simulation
episode) and those of Data II are shown in Figs. 8 and 9 respec-
tively. Also for a compact demonstration, only reactive power
measurements from representative generators G3, G2 (nearest
to G3) and G14 (farthest from G3) rather than all power mea-
surements are shown in Figs. 8 and 9. It can be observed from the
comparison between Figs. 8 and 9 that the disturbance affects
G3 and G2 much but it affects G14 little.

The simulated disturbance is difficult to detect and locate
because the inter-area oscillatory trends in the data exhibit
a masking effect on the local oscillation and thus on the
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Fig. 9. The normalized trends of the first 1200 samples of Data II (reactive
power measurements from G2, G3 and G14) in the second case study.
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Fig. 10.  The detection chart of WAM-PCA on Data I in the second case study,
with values of 72, @ as solid lines and thresholds as dashed lines.

disturbance. To detect and locate this disturbance can not only
provide increased situational awareness of generators to the sys-
tem operators but also give some reference about the time and
the variables suitable for estimating the frequencies and damp-
ing ratios of different oscillations. Here, the expected detection
result is that alarms should be rarely triggered for Data I whereas
alarms should be constantly triggered for Data II. Besides, the
expected localization result is that the active power and reac-
tive power of G2 and G3 should be identified as the variables
affected most by the detected disturbance.

Using the oscillation analysis method presented in [24] on the
modelling data, it is found that the maximum oscillation period
contains about 36 samples. Accordingly, the window length L
is set to 36. The number a of PCs is set to 11 according to (16).
The 99% confidence thresholds are also determined.

The detection charts of WAM-PCA and WAM-PCAANN on
Data I are shown in Figs. 10 and 11, respectively. Again, to
facilitate the observation, the monitoring statistic values (solid
lines) are normalized by their corresponding detection thresh-
olds so that the thresholds (dashed lines) are equal to one. It
can be observed from Figs. 10 and 11 that most of the values
of T%,Q, Aly:, Al stay below their corresponding detection
thresholds. These are the expected detection results, because
Data I are from the ambient condition with no disturbance and
few continuous alarms should be triggered for ambient data.

The detection charts of WAM-PCA and WAM-PCAANN on
Data II are shown in Figs. 12 and 13, respectively. Observ-
ing from Figs. 12 and 13, a large number of the values of
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Fig. 11.  The detection chart of WAM-PCAANN on Data I in the second case
study, with values of Alp2, Al as solid lines and thresholds as dashed lines.
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Fig. 12. The detection chart of WAM-PCA on Data II in the second case
study, with values of 72, @ as solid lines and thresholds as dashed lines.
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Fig. 13.  The detection chart of WAM-PCAANN on Data II in the second case
study, with values of Al7>, Alg as solid lines and thresholds as dashed lines.

T?,Q, Alp:, Al exceed their related detection thresholds.
These are also the expected detection results, because Data II is
from the disturbance condition and alarms are supposed to be
constantly triggered for data subject to the disturbance effect.
Moreover, by comparing the 72 chart of Fig. 12 with the Alp»
chart of Fig. 13, it can be found that the number of the Al:
values exceeding the detection threshold is much larger than the
number of the T values exceeding the threshold. Similarly, by
comparing the () chart of Fig. 12 with the Al chart of Fig. 13,
it can also be found that the number of the A1) values exceeding
the detection threshold is much larger than the number of the )
values exceeding the threshold.
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TABLE II
THE ALARM RATES OF WAM-PCA AND WAM-PCAANN
ON DATA T AND DATA IT
Method WAM-PCA WAM-PCAANN
Data T? Q Al 2 Al
I 0.52% 2.17% 1.83% 1.64%
1T 26.63% 62.60% 69.47% 91.45%

To quantify the results observed in Figs. 10 and 11 as well as
the results observed in Figs. 12 and 13, Table II lists the alarm
rates of WAM-PCA and WAM-PCAANN on Data I and Data II.
An alarm rate is calculated as the ratio percentage of the number
of the triggered alarms over the dataset size. Taking the value
“69.47%” in Table II as an example, it is obtained by dividing
the number of the triggered alarms (that is, the number of the
Alp» values exceeding the detection threshold in the A7 chart
of Fig. 13) by the dataset size which is 30000. It can be seen
from Table II that almost all of the alarm rates calculated on
Data I except for the alarm rate of @) are smaller than 2% and
acceptable against the given confidence level 99%. Besides, by
comparing the alarm rates calculated on Data II, Al achieves
a much higher alarm rate than T2, and AIQ achieves a much
higher alarm rate than Q.

The detection results in Figs. 10—13, and Table I demonstrate
that WAM-PCAANN can significantly enhance the sensitivity of
WAM-PCA in detecting disturbances by reducing the masking
effect of the oscillatory trends on disturbances while behaving
reliably in the ambient condition by triggering the appropriate
quantity of false alarms acceptable against the given confidence
level. Moreover, WAM-PCAKNN is suitable for the online de-
tection in real time, since the maximum time on the calculation
of Aly» and Al is 0.003 seconds and 0.0021 seconds respec-
tively, far smaller than the sampling interval of 0.05 seconds.
Based on the above results and analysis, WAM-PCAANN has a
good potential for practical application, because its Alp» and
Al are system-wide monitoring statistics and the practical im-
plementation of disturbance detection in a control room usually
takes the form as a real-time traffic light with green or red indi-
cators for the overall state of power systems.

After the disturbance is detected by A2 and Alg, nextis to
identify the variables affected most by the detected disturbance
so that a meaningful reference can be provided to locate the de-
tected disturbance. The contributions of variables to Aly» and
Al at the 500th sampling time point of Data II and those aver-
aged over a whole time period of Data II are shown in Figs. 14
and 15, respectively. It can be observed from both Figs. 14 and
15 that the 2nd, 3rd, 26th and 27th variables which are the active
and reactive power of the generators G2 and G3 contribute most
to the anomaly of Alr2 and Al and they are identified as the
ones affected most by the detected disturbance. By observing
the trends of reactive power measurements from the generators
G2 and G3 in Figs. 8 and 9, it can be found that new oscilla-
tions arise in the disturbance condition, making the trends quite
different from those in the ambient condition. Thus, the contri-
bution plots in Figs. 14 and 15 correctly identify the variables
affected most by the detected disturbance. This identification
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result can provide a meaningful reference for finally locating
the detected disturbance.

A point worth mentioning is that the ordinates in Figs. 8-15
and the abscissas in Figs. 8-13 have no unit, because
Figs. 815 show the results obtained based on the normal-
ized power measurements and the abscissas in Figs. 8—13 rep-
resent the sequence number of sampling with the interval of
0.05 seconds.

V. DISCUSSIONS

An issue that can affect the performance of the proposed
method in detecting and locating disturbances is limited sensor
coverage, which has already been pointed out in [25] and [26].
Due to limited sensor coverage, the measured data may contain
little disturbance information, making it difficult to detect and
locate disturbances. Fortunately, this issue has been much re-
lieved by the widespread PMUs. Besides, a feasible solution to
this issue, as suggested in [25], is optimal sensor placement.

Another issue is the automatic update of a previously built
detection model for new ambient conditions. To automatically
identify the time when power systems enter new ambient con-
ditions rather than relying on the experience of the system op-
erators is a solution to this issue worth considering.

These two issues are outside the scope of the present work,
but will make interesting topics for future study.

VI. CONCLUSION

A wide-area monitoring method (WAM-PCAAKNN) has been
proposed by combining Principal Component Analysis (PCA)
with k-Nearest Neighbor (kKNN) analysis to detect and locate
power system disturbances in real time. The contribution is
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three-fold. Firstly, kNN has been combined with multivariate
analysis PCA to build new system-wide monitoring statistics
Alp» and Alg, which can not only monitor a large number
of variables for the detection of disturbances but also reduce
the masking effect of the oscillatory trends and noise in electri-
cal measurements on disturbances. Secondly, the application of
kNN has been extended from the offline analysis to the online
analysis by developing Strategy I' for recursively calculating
the Square of Euclidean Distance (SED) and Strategy I'T" for
fast selection of the kth smallest SED value. With the online
kNN analysis, the real-time detection of disturbances can be
achieved. Thirdly, a contribution plot strategy quantifying the
contributions of variables to the anomaly of Alp> and Al has
been developed, which can identify the variables affected most
by the detected disturbance and thus can provide a significant
reference for finally locating the detected disturbance.

The analysis on the data from a four-variable numerical model
and the New England power system model has illustrated that
WAM-PCAKNN significantly improves the performance of the
traditional wide-area monitoring method based on PCA (WAM-
PCA) in detecting disturbances, e.g., Alr> of WAM-PCAANN
achieves the alarm rate of 69.47% under the disturbance con-
dition whereas T2 of WAM-PCA only achieves the alarm rate
of 26.63%. Moreover, WAM-PCAKNN correctly identifies the
variables affected most by the detected disturbance for guiding
disturbance localization through the developed contribution plot
strategy.
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