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Influence of Stochastic Dependence on
Small-Disturbance Stability and

Ranking Uncertainties
Kazi N. Hasan , Member, IEEE and Robin Preece , Member, IEEE

Abstract—A high level of stochastic dependence (or correlation)
exists between different uncertainties (i.e., loads and renewable
generation), which is nonlinear and non-Gaussian and it affects
power system stability. Accurate modeling of stochastic depen-
dence becomes more important and influential as the penetration of
correlated uncertainties (such as renewable generation) increases
in the network. The stochastic dependence between uncertainties
can be modeled using 1) copula theory and 2) joint probability
distributions. These methods have been implemented in this pa-
per and their performances have been compared in assessing the
small-disturbance stability of a power system. The value of model-
ing stochastic dependence with increased renewables has been as-
sessed. Subsequently, the critical uncertainties that most affect the
damping of the most critical oscillatory mode have been identified
and ranked in terms of their influence using advanced global sensi-
tivity analysis techniques. This has enabled the quantification and
identification of the impact of modeling stochastic dependence on
the raking of critical uncertainties. The results suggest that multi-
variate Gaussian copula is the most suitable approach for modeling
correlation as it shows consistently low error even at higher levels
of renewable energy penetration into the power system.

Index Terms—Copula, correlation, probabilistic assessment,
small-disturbance stability, sensitivity analysis, stochastic depen-
dence, uncertainty.

NOMENCLATURE

BVC Bivariate Clayton copula.
BVF Bivariate Frank copula.
BVG Bivariate Gumbel copula.
C(•) Copula function.
cd f Cumulative distribution function.
Ind Independent probability distributions.
JN Joint normal distribution.
MVG Multivariate Gaussian copula.
MVT Multivariate Student’s t copula.
N Number of Monte Carlo simulations.
p Number of uncertain (input) parameters.
pd f Probability density function.
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Rw Weighted correlation coefficients.
Si Index of Sobol 1st order effect.
STi Index of Sobol total effect.
T (•) Multivariate student’s t distribution.
X All input parameter set.
Xi i th input parameter.
X Mean value of input parameter samples.
ϒ All output parameter set.
ϒi i th output parameter.
εARM S Average root mean square error.
ρ Index of Pearson correlation coefficient.
�(•) Multivariate normal distribution.

I. INTRODUCTION

INCREASED proportions of renewable energy sources
(RES) lessen the flexibility of power system operation due to

the intermittent nature and spatiotemporal dependence among
the RES sources. The inherent variations of RES in combina-
tion with the variation in system load bring more challenges in
system operation in terms of balancing supply-demand, main-
taining stability and minimizing RES curtailment. A high level
of stochastic dependence (or correlation) exists between differ-
ent loads and RES and these dependencies are nonlinear and
non-Gaussian [1]. With the increased penetration of RES in the
network, this stochastic dependence within loads and RES is
becoming more prominent [1], [2].

Independent probability distributions or random sample gen-
eration techniques do not take account of correlation and may
lead to notable error, and hence consideration of dependence
structure is necessary [2]–[7]. Linear correlation among param-
eters does not reflect the true stochastic dependence among
parameters and subsequently may lead to non-optimum solu-
tions for real systems. Copula theory provides one effective
way of modelling stochastic dependence between random vari-
ables. The stochastic dependence can be modelled using (a)
copula theory (i.e., bivariate and multivariate copula), as well
as through (b) joint probability distribution (such as multivari-
ate joint normal distribution). All of these methods have been
implemented and thoroughly analyzed in this study.

Different copula families reveal different dependence struc-
tures among correlated uncertainties. The most widely used
copula families are Archimedean and elliptical copula [8].
Archimedean (i.e., Clayton, Frank, Gumbel) is suitable for rep-
resenting complicated dependence structure, though restricted
to two dimensions only. Elliptical copula (i.e., Gaussian, Stu-
dent’s t) can be extended to higher dimensions, representing

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/

https://orcid.org/0000-0002-7315-5754
https://orcid.org/0000-0003-1224-0397


3228 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 33, NO. 3, MAY 2018

multiple marginal distributions. A detailed discussion and study
of the relevance of these methodologies and underlying the-
ory with respect to power system applications are presented in
Section II-D.

The suitability of copula modelling techniques varies depend-
ing on the structure of the dependence among parameters (such
as symmetry, asymmetry, tail dependence etc.). The stochas-
tic dependence within load, wind, and PV has been previously
modelled through bivariate methods, using Clayton [7], [9],
Frank [7], [9], and Gumbel [7], [9], [10] copulas. Multivariate
methods such as Gaussian [2], [7], [9], [11] and Student’s t [7]
copulas have also been applied to power systems studies. Ad-
ditional techniques which have also been used to capture cor-
relation include joint (Gaussian) distribution [12], vine copula
[6], pair copula [4], and dependent discrete convolution (DDC)
[3]. The complexity and computational burden of the imple-
mentation of these later methods (i.e., vine and pair copula,
and DDC) limit their widespread application [13]. Hence this
paper implements and compares the most commonly used bi-
variate and multivariate copulas and multivariate joint normal
distribution.

These modelling techniques have been previously applied to
model the dependence between two sets of variables, such as
wind-wind [1], [9], [11], [14], load-wind [2], load-load [7], load-
PV [10], wind-PV [15] and PV-PV [4]. The level and structure
of the stochastic dependence within the abovementioned inter-
dependence and intra-dependence can vary significantly as will
be shown in Section II. Though valuable, these previous works
are limited to modelling two-factor dependence only. There is
no work which assesses the impact of load-wind-PV stochastic
dependence on a multivariate platform.

The stochastic dependence modeling techniques have pre-
viously been applied to load flow [9], generation schedul-
ing [11], transmission planning [2], demand response [7], and
load LVRT (low-voltage ride-through) applications [10]. Cop-
ula theory and joint probability distribution have had lim-
ited applications in power systems as mentioned above due
to their complexity. In particular, the application of stochas-
tic dependence is rare in power system stability assessment,
despite a growing focus on probabilistic analysis. There is
no work in the existing literature which models stochas-
tic dependence of load-wind-PV (through copula theory and
joint distribution) to assess their impact on power system
stability.

Some earlier works by the author contributed to the iden-
tification of efficient computational techniques for modelling
system uncertainties. An efficient computational technique
based on Latin hypercube sampling to estimate the probability
of small-disturbance instability has been presented in [16].
Implementation of a wide range of local and global sensitivity
analysis techniques to identify the most important uncertainties
in a power system has been presented in [17]. A comparison
of three efficient estimation methods namely, point-estimate,
Cumulant-based and probabilistic collocation methods to
assess their performance in power system stability has been
documented in [18]. However, none of these works have
considered stochastic dependence among system uncertainties.

This is the first study to model stochastic dependence using
a variety of methods in order to assess their impact on the ac-
curacy of system stability measures (specifically the pd f s of

critical mode damping). Additionally, this research performs a
rigorous check of the stochastic dependence modelling by us-
ing parameter ranking with sensitivity analysis as an additional
measure of the accuracy of the methods.

The impact of higher penetrations of renewable energy
sources (RES) has been analyzed with respect to the impact
on critical mode damping. The accuracy of stochastic depen-
dence modeling at diverse levels of RES is presented, which
highlights the importance of modelling stochastic dependence
and using the right method for low/high RES penetration into
the network. Following the modelling of stochastic dependence
during the sampling procedure, the priority ranking of criti-
cal uncertainties to identify those having the greatest impact
on small-disturbance stability has been completed using the
global Sobol sensitivity analysis technique [19]. This has re-
vealed how the stochastic dependence among uncertainties and
their modelling approaches affects parameter ranking and can
lead to (in)accurate results. An accuracy measure based on the
correlation coefficients among ranking matrices has also been
presented to determine the robustness of the ranking.

This paper makes the following novel contributions:
1) A clear demonstration of modelling stochastic dependence

among system uncertainties using six different techniques
to explicitly capture correlation.

2) A comparison of the accuracy of stochastic dependence
modelling through bi-variate and multi-variate copula and
joint normal distribution.

3) Assessment of the significance of modelling stochastic de-
pendence for variable levels of RES penetration and iden-
tification of appropriate modelling tools.

4) The evaluation of critical uncertainties through power sys-
tem stability indicators considering the impact of stochas-
tic dependence.

5) Identification of the most appropriate method for mod-
elling stochastic dependence for small-disturbance stabil-
ity studies based on thorough error analysis against realistic
data.

II. MODELLING STOCHASTIC DEPENDENCE

In order to assess the accuracy of different methods for mod-
elling stochastic dependence, a benchmark data set is required.
A data set has been collected from various sources which in-
cludes system loads at different substations, as well as wind
speeds and solar irradiation at different weather stations. This
benchmark raw data has been re-generated using:

1) (i) independent probability distributions (Ind) where the
correlation is ignored (current common practice);

2) Some multivariate copulas: (ii) Gaussian (MVG) (iii) Stu-
dent t (MVT);

3) A number of bivariate copulas: (iv) Clayton (BVC), (v)
Frank (BVF), (vi) Gumbel (BVG); and

4) (vii) multivariate joint normal distribution (JN).

A. System Uncertainties

Hourly power system load, wind and solar profile have
been obtained across the entire annual cycle to capture the
weather pattern and spatio-temporal dependence [20], [21].
Fig. 1 presents the correaltion coeficient matrix representing
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Fig. 1. Stochastic dependence pattern of power system load, wind speed and solar irradiance, in different timeframes of a (a) day, (b) month and (c) year.

the intra-dependence and interdependence among load demand,
wind speed and solar irradiance, detailed further below.

B. Correlation Among System Uncertainties

Fig. 1 is a 49 × 49 matrix of Pearson correlation coeffi-
cients between the 49 considered system uncertainties within
this work. A similar figure could be produced for any data set
and any test system. In Fig. 1, row/column 1–35 are loads, 36–42
are wind speeds and 43–49 are solar irradiance. It can be
seen that a high level of correlation exists between some sets
of system uncertainties, such as load-load and PV-PV within
row/column 1–35 and 43–49 respectively. The yearly corre-
lation has been used in this study for stochastic dependence
modelling, however, the method would not change if different
durations of (daily, weekly, monthly etc.) correlation parameters
were selected.

The correlation coefficients are changing with the duration of
data samples as shown in Fig. 1, which represents data for a (a)
day, (b) month and (c) year. The levels of intra-dependence and
interdependence within some sets of system uncertainties vary
as the duration of the system uncertainties changes. Similarly,
the different granularity of the data samples may change the
correlation coefficients (which cannot be produced due to the
unavailability of the data). Hence, by changing the granularity
and duration of the data samples, there could be either lower or
higher levels of dependence among system uncertainties. These
lower or higher levels of dependence do not change the focus
and scope of the paper. Rather, the paper emphasizes the value
of correlation modelling by appropriate approaches.

1) Intra-Dependence Within Parameter Groups: Intra-
dependence among parameters is mainly linked through the spa-
tiotemporal factors. The load-load intra-dependence is affected
by the weather pattern, locality, temperature variation, and daily
routine or personal lifestyle of the consumers. Closely located
and similar types of (i.e., domestic or commercial or industrial)
loads are highly correlated due to the same consumption pat-
tern. The correlation pattern is moderate among different types
of (i.e., domestic or commercial or industrial) consumers. The
wind-wind intra-dependence could be high if they are closely
located. As the distance between the wind farms increases, their
intra-dependence tends to decrease. The same is true for PV-PV

intra-dependence as in wind. But, when the sampling rate and
time scale is longer the PV-PV correlation becomes increasingly
high as, in this case, it becomes mainly dependent on day-time
duration.

2) Interdependence Among Parameter Groups: The load-
wind interdependence is very low for obvious reasons as the
consumption pattern of the customers is not related to the spatio-
temporal variability of the wind [22]. On the other hand, the
load-PV interdependence is at a moderate level as temperature
increases (due to high solar irradiance) can result in air condi-
tioning load increase accordingly [23]. It can be seen from Fig. 1
that the wind-PV interdependence is very low which means there
is low correlation between the wind speed and solar irradiance
across the year [24].

C. Non-Correlated Sampling

Independent modelling refers to the probabilistic modelling
of load, wind and PV data ignoring the stochastic dependence
among these parameters. This represents the true marginal dis-
tribution of the load, wind, and PV, which is obtained by trans-
forming the system uncertainties to the unit square using a kernel
estimator of the cumulative distribution function [25].

D. Correlation Modelling by Copula Theory

Copula theory provides an effective way of modeling stochas-
tic dependence (or correlation) between random variables. Ac-
cording to Sklar’s theorem: any multivariate joint distribution
can be written in terms of univariate marginal distribution func-
tions and a copula which describes the dependence structure
between the variables [26].

In copula modelling, correlated samples are generated by
four consecutive stages form the raw data sets: (i) transforming
the data to the unit square using a kernel estimator of the
cumulative distribution function, (ii) fitting a selected copula
to the data and obtaining the copula parameter (i.e., matrix
of linear correlation and degrees of freedom), (iii) generating
random samples from the selected copula, and (iv) transforming
the random sample back to the original scale of the data. The
steps (i) and (iv) are the same for all copula and represents
a normalization of the data, and subsequent re-scaling, while
steps (ii) and (iii) are copula-dependent.
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The copula function C can be represented by the multivariate
cd f F (cumulative distribution function) and marginal cd f Fi ,
as in (1) [27]. The different copulas considered in this work will
be described one by one.

C [F1 (x1) , F2 (x2) , . . . ., Fn (xn)] = F (x1, x2, . . . ., xn) (1)

1) Multivariate Gaussian Copula: Multivariate Gaussian
copula is extensively used in financial modelling, which is given
by (2) [8].

C (u1, u2, ..., un ; �) = ��

(
�−1(u1),�−1(u2), ..., �−1(un)

)

(2)
In (2), � denotes a symmetric, positive definite matrix with

diag(�) = 1, �� is the standard multivariate normal distribu-
tion with correlation matrix �, and �−1(•) is the inverse of the
normal cd f . This copula is known to have radial symmetry.

2) Multivariate Student’s t Copula: The multivariate Stu-
dent’s t copula is given by (3) [8].

C (u1, u2, ..., un ; �, v)=T�,v

(
tv

−1(u1), tv
−1(u2), ..., tv

−1(un)
)

(3)
In (3), � denotes a symmetric, positive definite matrix with

diag(�) = 1, v is the degree of freedom, T�,v (•) is the standard
multivariate student distribution with correlation matrix �, and
t−1
v (•) is the inverse of the student cd f . This copula is also

known to have radial symmetry.
3) Bivariate Clayton Copula: Clayton copula is defined as

in (4) [8].

Cθ (u, v) = [
max{u−θ + v−θ − 1; 0}]−1/θ

(4)

In (4), Cθ (•) represents Clayton copula, θ ∈ [−1,∞)\{0},
and u, v are two corresponding variables. Clayton copula is
known to have strong lower tail dependence.

In this work, all bivariate copulas are modelled with respect
to load 1. This is an arbitrary choice and other selections for
bivariate modelling could be made.

4) Bivariate Frank Copula: Frank copula can be presented
as in (5) [8].

Cθ (u, v) = −1

θ
log

[

1 +
(
e−θu − 1

) (
e−θv − 1

)

(
e−θ − 1

)

]

(5)

In (5), Cθ (•) represents Frank copula, θ ∈ �\{0}, and u, v

are two corresponding variables.
5) Bivariate Gumbel Copula: Gumbel copula is another bi-

variate copula and is defined as in (6) [8].

Cθ (u, v) = exp
[
−(

(− log(u))θ + (− log(v))θ
)1/θ

]
(6)

In (6), Cθ (•) represents Gumbel copula, θ ∈ [1,∞), and u, v

are two corresponding variables. Gumbel copula is asymmetric
and puts more weight in the right tail. It has previously shown
superior performance in modelling correlated wind data [11].

E. Multivariate Joint Normal Distribution

The multivariate joint normal distribution (JN) considers the
dependence among uncertainties assuming all parameters fol-
low a normal distribution. The probability density function of
the p-dimensional JN can be written as (7) [28].

�� =
[
1
/√

|�| (2π )p
]

· e−(1/ 2)(x−μ)′�−1(x−μ) (7)

In (7), x and μ are data series and mean, respectively,
both are 1 × P vectors, � is the covariance matrix, a p × p
vector, and (•)´ denotes transpose matrix. The diagonal ele-
ments of � contain the variance of each variable, while the
off-diagonal elements of � contain the covariance between
variables.

F. Summary of Alternative Sampling Techniques

The discussion of the abovementioned methods provides an
insight of the methodologies, underlying theory, and applicabil-
ity areas. Fig. 2 shows the stochastic dependence pattern (shown
in the unit square) of two arbitrary system uncertainties (load 1
and load 2) when modelled using different sampling techniques.
This paper revolves around 3 types of modelling techniques,
which consider either ‘probability distribution’ or ‘stochastic
dependence’, or both, or none of them. These methods are:
(1) independent distribution, which considers probability distri-
butions, but neglects the stochastic dependence among uncer-
tainties, (2) joint normal distribution, which considers (normal)
probability distributions and stochastic dependence among un-
certainties, but neglects non-normal probability distributions,
and (3) copula techniques, which considers both probability
distributions and stochastic dependence among uncertainties.
The yearly correlation has been used in this study for stochastic
dependence modelling, however, the method would not change
if different time span were selected. The differences in how the
stochastic dependence is captured by the different modelling
approaches are clearly evident from Fig. 2. This data is used as
an input to OPF and subsequent modal analysis to assess system
small-disturbance stability.

III. TEST NETWORK AND SIMULATION DETAILS

All techniques for stochastic dependence modelling
discussed above are illustrated and analyzed using OPF
simulation and small-disturbance stability analysis of the
NETS-NYPS test power system [29]. Probabilistic mod-
elling of the input parameters and calculations have been
performed in MATLAB using OPF solvers from MATPOWER
[30]. Modal analysis has been conducted in DIgSILENT
PowerFactory.

A. NETS-NYPS Test System

The simulation network is a substantially modified version of
the NETS-NYPS test system (New England Test System – New
York Power System) with a high amount of RES penetration.
The network has 5 areas, 16 large synchronous machines and
68 buses, as shown in Fig. 3, as well as the addition of variable
capacity of RES (as will be discussed in Section IV). Network
data, component modelling and more information of the test
system are available in [29].

B. Probabilistic Modelling

A sufficient number of Monte Carlo samples is determined
through a stopping rule as in (8) [16].

E >

[{
�−1(1 − δ

/
2) ·

√
σ 2(X)

/
N

}/
X

]
(8)
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Fig. 2. An illustrative example of modelling stochastic dependence (between load 1 and load 2) through alternative techniques including raw data, (i) independent
samples (Ind), (ii) multivariate Gaussian copula, (iii) multivariate Student’s t copula, (iv) bivariate Clayton copula, (v) bivariate Frank copula, (vi) bivariate Gumbel
copula and (vii) multivariate joint normal distribution.

Fig. 3. Modified NETS-NYPS (New England Test System – New York Power
System) network with a high amount of wind and solar generation.

TABLE I
NUMBER OF SIMULATIONS REQUIRED USING THE MC STOPPING RULE TO

OBTAIN E = 0.3% WITH 99% CONFIDENCE

Simulation
techniques

Raw Ind MVG MVT BVC BVF BVG JN

Number of
simulations

1000 2600 980 1390 910 923 918 958

Computational
time (min)

31 57 32 33 32 32 32 37

In (8), �−1(•) represents the inverse normal cd f with a mean
of zero and standard deviation of one, σ 2(•) is the variance of
a sample, and δ is the desired confidence level. As presented in
(8), simulations can be stopped if the calculated sample mean
error falls below a specific threshold, E.

For the raw data, a 0.3% sample mean error is obtained
with N = 1000 simulations with a required simulation time of
31 minutes. Table I presents the number of simulations and com-
putational time for various techniques to obtain the same 0.3%
error according to the MC stopping rule presented by (8). These
simulation numbers will be used for the remainder of the work
to ensure the sampling error is consistent.

C. Global Sensitivity Analysis Method - Sobol Total Indices

Sensitivity analysis determines how the input variations prop-
agate through the system to cause variations in the output [31].
A global sensitivity analysis considers the whole range of varia-
tion of inputs on the system output. Sobol method is a variance-
based method, which is very useful in case of non-linear and
non-monotonic models. Sobol total indices are the sum of all the
sensitivity indices involving all uncertain factors as presented
by (9) [17], [31].

ST = Si +
∑

i< j

Si j+
∑

i �= j,i �=k, j<k

Si jk + ... (9)

Where, Si is the 1st-order sensitivity index for i , Si j is the 2nd-
order sensitivity index describing the interactions between two
uncertainties i and j( �= i). In (9), Si is the first order sensitivity
index and can be expressed by (10), with variance of output with
respect to a particular input i by (11).

Si = Di (ϒ)/V ar (ϒ) (10)

Di (ϒ) = V ar [E(ϒ |Xi)] (11)

Similarly, the 2nd order sensitivity index and variance can be
presented by (12) and (13), respectively.

Si j = Di j (ϒ)/V ar (ϒ) (12)

Di j (ϒ) = V ar
[
E(ϒ |Xi, Xj)

] − Di (ϒ) − D j (ϒ) (13)

Subsequently, Si jk is the 3rd-order sensitivity index for three
uncertainties, i, j, k (i �= j �= k). These interactions will con-
tinue up to pth order for p parameters.

Si is the Sobol 1st order effect which models the change in
variance that is seen when one parameter is no longer considered
as uncertain. This is determined by obtaining the correlation
coefficient of the output vector from two model runs in which
all values for variables in Xi are common, but all other inputs
use independent samples. In determining the Sobol total indices,
input data set X is partitioned into X∼i and Xi , where X∼i is
the set of all input variables which include a variation in the i th
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Fig. 4. Kernel smoothing density pd f of critical mode damping (with up to
15% renewable generation).

index of X . The total effect is then calculated by (14).

STi = 1 − S∼i (14)

where, S∼i is the sum of the all terms that include the varia-
tion in Xi . The Sobol method has been efficiently implemented
previously in environmental and hydrological models [32] and
recently in power system studies [17], [19].

IV. RESULTS AND ANALYSIS

This section discusses the simulation results obtained by a
multi-level approach consisting of the correlation modelling,
optimal power flow, modal analysis, and subsequent sensitivity
analysis. Firstly, the pd f s of oscillation damping will be pre-
sented for 15% RES with system input data generated through
different techniques discussed in Section II. Secondly, the pd f s
of oscillation damping will be presented for 30% RES. These
results will compare the accuracy of stochastic dependence mod-
elling techniques by highlighting the impact of increased RES
on the accuracy of stochastic dependence modelling techniques.

Thirdly, expanded accuracy measures of stochastic depen-
dence modelling techniques will be presented for 10%, 20%,
30% 40% and 50% RES penetration. These will highlight the
impact of increased RES on the accuracy of stochastic depen-
dence modelling techniques for a wider range of considered
penetrations. Fourthly, the most influential parameters affecting
the oscillation damping will be ranked through the sensitivity
analysis technique (as a demonstration for 30% RES). Finally,
the accuracy measures of the ranking of uncertainties by alter-
native modelling techniques will be quantified using a weighted
correlation coefficient measure. This will identify the stochastic
dependence modelling technique that most accurately captures
the true importance ranking of uncertainties.

A. Probabilistic Modal Analysis

Probabilistic modal analysis has been performed with the
data sets generated through alternative methods (as discussed
in Section II). Fig. 4 presents the obtained pd f of critical os-
cillation damping with 15% RES. The pd f s from the original
raw data set have been compared with the results obtained from
copula theory (i.e., bivariate and multivariate copula) and joint
probability distribution.

It can be seen from Fig. 4 that the MVG and JN approaches
produce the closest results compared to the original raw data. As
expected, the independent samples, which ignore the stochastic
dependence among uncertainties show the worst performance
followed by bivariate copulas. The MVT shows better perfor-
mance compared to bivariate copulas.

Fig. 5. Kernel smoothing density pd f of critical mode damping (with up to
30% renewable generation).

A high amount of normally distributed parameters (i.e., sys-
tem loads) and relatively low RES penetration (15%) (as pre-
sented in Fig. 4) make the JN a suitable option for modeling
stochastic dependence among system uncertainties in this case.
However, there is a need to further study the impact of higher
non-synchronous penetration.

The spread of the critical mode damping represents the
stability indication for the simulated system. It can be seen that
the system stability is low with the non-correlated samples. If a
system is designed and controllers are tuned based on the stabil-
ity indicators obtained with non-correlated uncertain samples
that may lead to poorly designed and non-optimal solutions.
The prior discussion in Section II reveals a strong correlation
among input parameters considered. Hence, correlated system
inputs reflect the true performance indicators. In such cases,
appropriate resources can be allocated and design parameters
can be selected for secure and optimal operation of the
system.

B. Impact of High Amount of Wind and Solar Power

The impact of 30% penetration of RES (non-normally dis-
tributed wind and solar power) has been presented in Fig. 5.
It can be seen from the estimated pd f of damping that the
independent sample has the worst performance followed by
bi-variate (Clayton and Frank) copula. The most noticeable dif-
ference compared to the 15% RES case is that the performance
of JN has deteriorated (contrast with Fig. 4). On the other hand,
the performance of bivariate Gumbel copula, which explicitly
models tail dependence, is better than the previous case. The
multivariate Student’s t copula remains unchanged with this in-
crease of RES. Still, the performance of multivariate copulas is
better than the bivariate copulas.

To represent a comparison of estimated pd f s, the average
root mean square error given by (15) has been calculated [18].

εARM S =
√[

1

N

∑N

i=1

(
Fo

i − F X
i

)2
]

(15)

In (15), F O
i is the i −th value of the pd f obtained using

the original samples, F X
i is the i-th value of the pd f obtained

through other approaches, and N is the number of samples
considered calculating the εARMS.

The impact of 15% and 30% penetration of RES on the
accuracy of the pd f s of damping produced using the differ-
ent sampling methods is presented in Table II. According to
the numerical values of εARM S , the methods are ranked in the
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TABLE II
AVERAGE ROOT MEAN SQUARE ERROR OF PDF OF CRITICAL MODE DAMPING

Simulation
techniques

Ind MVG MVT BVC BVF BVG JN

15% RES 11% 0.5% 3% 7.3% 7% 6.5% 1.2%
30% RES 11% 0.5% 2.8% 7.5% 7.5% 6% 2.8%

Fig. 6. Variation of εARMS of pd f s of critical mode damping for various
stochastic dependence modelling approaches.

following order for accuracy for a 15% penetration level: MVG,
JN, MVT, BVG, BVF, BVC and Ind. MVG maintains its ac-
curacy at both penetration levels having the lowest εARM S of
0.5%. As the level of RES penetration increases to 30%, the
performance of JN becomes worse with εARM S increasing from
1.2% to 2.8%, whereas independent (non-correlated) sampling
is always the worst possible choice with εARM S at 11%.

To further explore the accuracy of the methods at different
levels of RES penetration, a rigorous analysis is performed using
a wide range of RES penetration from 10% to 50%.

C. Accuracy of Stochastic Dependence Modelling

Fig. 6 shows the calculated εARM S of the pd f of oscilla-
tion damping obtained through different stochastic dependence
modelling approaches and different levels of RES penetration.
According to the numerical values of εARM S , the methods are
ranked in the following order for accuracy for a 10% penetra-
tion level: MVG, JN, MVT, BVG, BVF, BVC, and Ind. The
performance of JN deteriorates significantly with the increased
levels of RES, whereas Ind always remains the worst possible
choice. On the other hand, the performances of bivariate and
multivariate copulas are generally maintained across all levels
of RES penetration, with the bivariate Gumbel copula which is
known to capture wind correlation well becoming better with
increased levels of penetration.

The bivariate copulas are less accurate than the multivariate
copulas, due to the bivariate nature of modelling dependence
with respect to a single system uncertainty (i.e., load 1 in this
study). On the other hand, the multivariate Gaussian copula uses
the covariance matrix which considers stochastic dependence
between all system uncertainties. The multivariate copulas

perform particularly well with low error across all levels of
RES penetration.

This is a key result, not only highlighting the importance of
modelling stochastic dependence, but also the importance of us-
ing the right method to model the stochastic dependence and not
simply assuming that a JN distribution will be applicable. It has
been shown that as the proportion of non-normally distributed
uncertainties increases, more advanced techniques (which suit-
ably capture the stochastic dependence as well as accurately
representing the marginal distribution) for modelling stochastic
dependence must be used.

The changes in power system topology have been imple-
mented in the paper by using 10% to 50% levels of RES (re-
newable energy sources) penetration into the system. It can be
seen from the results that the accuracy of the methods changes
slightly, but the trend and the ranking of the accuracy of the
methods (as shown in Fig. 6) remain the same.

D. Uncertainty Importance Measures

It has been shown that accurate modelling of correlated un-
certainties is vital, this section will now further explore how
the priority of system uncertainties is affected by stochastic
dependence modelling. This study evaluates the importance of
system uncertainties in the assessment of critical mode oscil-
lation damping. Sobol sensitivity analysis technique has been
implemented to obtain the parameter ranking.

A heatmap of the ranking of uncertain parameters through the
Sobol technique is shown in Fig. 7 (for 30% RES). The columns
in Fig. 7 show the importance of individual input parameters on
small-disturbance stability through the measure of damping of
critical eigenvalues. The rows of Fig. 7 compare the ranking of
input parameters by different techniques of stochastic depen-
dence modelling. A general overview of the heat map reveals
that the MVG, MVT, and JN have a similar pattern in the dark-
ness of the color shades – this means that they produce similar
values of parameter importance. These values are similar to raw
data ranking. On the other hand, the three bivariate copula tech-
niques, Clayton, Frank, and Gumbel have similar color spreads
which are closer to independent sampling methods.

When loads are modelled with the accurate representation of
their stochastic dependence, top ranking loads appear as groups
instead of as single parameters (for MVG and MVT). This is an
important feature of correlation modeling that can be identified
from Fig. 7. The most important parameters are L17 ∼ L24 and
L41 ∼ L49 (looking at the results for MVG and MVT). Herein
lies the significance of modelling them as correlated parame-
ters. The independent modeling of parameters loses correlation
features of the data and may ignore an important parameter of
a power system, which might have a high correlation with an
influential parameter and subsequent high importance (such as
L17 ∼ L24 and L41 ∼ L49 in Fig. 7). The previous heat map
of uncertainty correlation in Fig. 1 revealed high correlation
among groups of loads which emphasizes the need for correla-
tion modelling.

Fig. 7 presents a visual representation of the sensitivity mea-
sures of the ranking of important parameters. To determine
the accuracy of the ranking of system uncertainties by alter-
native methods to the ranking based on the raw data, a math-
ematical measure is required. For that purpose, the weighted
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Fig. 7. Heatmap of uncertainty importance measures representing the performance comparison among alternative correlation modelling approaches.

Fig. 8. Weighted correlation coefficients of ranking matrices generated
through different stochastic dependence modelling approaches.

correlation coefficients among the ranking matrices of alterna-
tive approaches have been obtained by (16) [33].

Rw =
∑k

i=1 wi
(
ρx

i − ρx
) (

ρo
i − ρo

)

√∑k
i=1 wi

(
ρx

i − ρx
)2 · ∑k

i=1 wi
(
ρo

i − ρo
)2

(16)

Weighted correlation coefficients have been used in this
process to represent different degrees of importance [34]. For
example, among 49 parameters (as ranked in Fig. 7 by eight
alternative methods), the most important parameter has the
maximum weight which is 49 and the least important parameter
has the minimum weight which is 1. Hence, the weight vector,
w, is taken as uniformly distributed from 1 to 49 (in ascending
order) according to ranking. The rationale behind the ascending
weight vector is logical and is used to reflect the fact that
accurately identifying and capturing the rank order of the most
important and influential parameters is more valuable than the
least important parameters. Of course, a standard correlation
analysis could also be used.

Fig. 8 presents the weighted correlation of ranks compared
to the raw data set for the alternative stochastic dependence
modelling methods. A value of 1 would represent identical rank
orders between the raw data and a given modelling approach.
It is clear that the MVG copula method is again confirmed as
the best approach as its ranking most closely resembles that
obtained from the raw data set. This is followed by the MVT
copula and JN distribution. As expected, the independent sample
generation technique performs extremely poorly. While the bi-
variate copula techniques, namely Clayton, Frank, and Gumbel,
remain in the middle, where they have moderate performance
(measured through Rw). The analysis of uncertainty ranking fur-
ther confirms the previously obtained results with respect to the

performance of the different stochastic dependence modelling
methods.

V. CONCLUSION

Inherent intra-dependence and interdependence among in-
put parameters have been incorporated within the probabilistic
modal analysis and priority ranking of uncertainties. Analysis
of real data reveals a high level of correlation within the system
parameters i.e., within load-load and PV-PV. There is a negligi-
ble correlation between system load-wind and wind-PV. These
correlation patterns need to be accurately incorporated into the
power system analysis.

This study demonstrates the modelling of stochastic depen-
dence among system uncertainties using six different tech-
niques. The impact of the stochastic dependence is assessed
by using a system stability indicator represented by the criti-
cal mode oscillation damping. The accuracy of all correlation
modelling techniques has been presented.

It has been shown that joint normal distribution (JN) is ad-
equate for modelling stochastic dependence of system uncer-
tainties when system RES penetration is low (∼15%). With an
increase in RES (>15%), the advantages of modelling stochastic
dependence through copula theory can be observed. The perfor-
mance of multivariate Gaussian copula is better than all other
methods across all levels of RES penetration.

The results demonstrate that independent modelling, which
ignores the existing correlation among uncertainties may lead
to very inaccurate solutions. Bivariate copula methods provide
moderate accuracy and multivariate copulas are more accurate.
With the increased RES, the performance of JN gets worse with
increased non-Gaussian uncertainties and the performance of
bivariate Gumbel copula gets better.

The yearly correlation has been used in this study for stochas-
tic dependence modelling, however, the method would not
change if different time span were selected. The changes in
the granularity and duration of the data samples may result in
lower or higher levels of dependence among system uncertain-
ties. Varying levels of interactions among system uncertainties
and topological changes in the network have been simulated by
introducing varying levels of RES penetration into the network
and these results have demonstrated the benefits of the copula
approaches.

This study, for the first time, has mapped through the stochas-
tic dependence of uncertainties to the uncertainty importance
measures. Earlier studies generated the correlated samples and
completed stability simulation with the generated samples but
did not validate the dependence structure again to the sensitivity
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analysis. This enables the tracking of propagation of stochas-
tic dependence throughout the power flow, modal analysis and
sensitivity simulation processes.

As the proportion of intermittent resources and correlated un-
certainties are increasing in power networks, appropriate mod-
elling of stochastic dependence will remain a vital issue in the
performance analysis of power systems.
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