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Derivative-Free Kalman Filtering Based Approaches
to Dynamic State Estimation for Power Systems

With Unknown Inputs
Georgios Anagnostou, Member, IEEE, and Bikash C. Pal , Fellow, IEEE

Abstract—This paper proposes a decentralized derivative-free
dynamic state estimation method in the context of a power system
with unknown inputs, to address cases when system linearization is
cumbersome or impossible. The suggested algorithm tackles situa-
tions when several inputs, such as the excitation voltage, are char-
acterized by uncertainty in terms of their status. The technique
engages one generation unit only and its associated measurements,
and it remains totally independent of other system wide measure-
ments and parameters, facilitating in this way the applicability of
this process on a decentralized basis. The robustness of the method
is validated against different contingencies. The impact of param-
eter errors, process, and measurement noise on the unknown input
estimation performance is discussed. This understanding is fur-
ther supported through detailed studies in a realistic power system
model.

Index Terms—Dynamic state estimation, Kalman filters, pha-
sor measurements, power system dynamics, state estimation, syn-
chronous generator, unscented transformation.

NOMENCLATURE

α Difference between rotor angle and stator voltage phase
in rad

χ State sigma point
χb Biased predicted state sigma point
χu Unbiased predicted state sigma point
Δ Linear regression model error term
δ Rotor angle in rad
γb Biased predicted measurement sigma point
γu Unbiased predicted measurement sigma point
d̂ Unbiased predicted unknown input
x̂b Biased predicted state estimate
x̂u+ Unbiased a posteriori state estimate
x̂u− Unbiased a priori state estimate
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ŷb Biased predicted measurement
ŷu Unbiased predicted measurement
κ Scaling parameter of sigma point spread
n Number of states in the augmented state vector
P Augmented state error covariance
Q Augmented additive process noise covariance
ω, ωB Rotor speed in p.u. and its base value in rad/s
φI Stator current phase with respect to stator voltage phase

in rad
φIy Measured stator current phase
φ Difference between stator voltage and stator current

phases in rad
ψ1d Subtransient emf due to d-axis damper coil in p.u
ψ2q Subtransient emf due to q-axis damper coil in p.u
0α×β Zero matrix of size (α× β)
x Augmented state variables vector
θ Stator voltage phase in rad
ỹ Measurement innovation
υf Measurement noise associated with fsysy
υI Measurement noise associated with Iy
υP Measurement noise associated with Py
υQ Measurement noise associated with Qy

υφI Measurement noise associated with φIy
υ Column vector of measurement noise
c Measurement equation approximation constant vector
D Rotor damping constant in p.u
d Column vector of system unknown inputs
e Measurement equation linearization error
E ′dc Transient emf due to flux in q-axis dummy coil in p.u
E ′d Transient emf due to flux in q-axis damper coil in p.u
E ′q Transient emf due to field flux linkages in p.u
Efd Generator field excitation voltage in p.u
f Discrete form of system differential equations
fθ Rate of change of the stator voltage phase in p.u
fυ Noise term of the measured value of fθ in p.u
fy Measured value of fθ in p.u
fsysy Measured system frequency
fsys System frequency in p.u
G Discrete form of unknown input distribution matrix
h Column vector of system measurement equations
Hm Measurement equation linear approximation
I Stator current magnitude in p.u
i ith generator
Id d-axis component of the stator current in p.u
Iq q-axis component of the stator current in p.u
Iy Measured stator current magnitude
K Kalman gain matrix
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k kth time step
Kd1 Ratio (X ′′d −Xls) / (X ′d −Xls)
Kd2 Ratio (X ′d −X ′′d ) / (X ′d −Xls)
Kq1 Ratio

(
X ′′q −Xls

)
/
(
X ′q −Xls

)

Kq2 Ratio
(
X ′q −X ′′q

)
/
(
X ′q −Xls

)

l lth sigma point
M Inertia constant in p.u
m Number of measurements
n Number of state variables
p Number of unknown inputs
Pb Biased predicted state error covariance
Pu+ Unbiased a posteriori state error covariance estimate
Pu− Unbiased a priori state error covariance estimate
Px State error covariance
Pu
y Unbiased predicted measurement error covariance
Pwp x Cross-correlation between the nonlinear process noise

and the states
Pwp

Estimated nonlinear process noise covariance
Pb
xy Biased cross-covariance between x̂b and ŷb

P u
xy Unbiased cross-covariance between x̂u− and ŷu

Py Measured active power value
Q Constant additive process noise covariance
Qp Constant nonlinear process noise covariance
Qy Measured active power value
R Measurement noise covariance
r Number of (known) inputs
Rs Armature resistance in p.u
T Matrix transpose
T ′d0 d-axis transient time constant
T ′q0 q-axis transient time constant
T0 Simulation time step
Te Electrical torque input in p.u
Tm Mechanical torque input in p.u
T ′′d d-axis subtransient time constant in s
T ′′q q-axis subtransient time constant in s
u Column vector of system inputs
V Stator voltage magnitude in p.u
Vυ Noise term of the measured value of V in p.u
Vy Measured value of V in p.u
W Sigma point weight
w Discrete form of process noise vector
wp Nonlinear process noise
x Column vector of system state variables
X ′d d-axis transient reactance in p.u
X ′q q-axis transient reactance in p.u
Xd d-axis synchronous reactance in p.u
Xq q-axis synchronous reactance in p.u
X ′′d d-axis subtransient reactance in p.u
Xls Armature leakage reactance in p.u
X ′′q q-axis subtransient reactance in p.u
y Column vector of system measurements

I. INTRODUCTION

MODERN power systems are facing major operational
challenges [1], driven by the rapid deployment of

renewable energy based new generation technologies, in-
creasing power consumption and limited investments in
transmission level, leading to system operation close to its
limits [2]. The arising complexity, as well as the experience
from the 1996 North American Power Blackouts in WECC

system [3] resulted in more sophisticated tools of capturing
the system stability conditions and security margins, based on
methods belonging to the area of dynamic security assess-
ment (DSA) [4]. Operators’ awareness of the power system
state is very much dependent on wide area monitoring sys-
tems (WAMS). Dynamic state estimation (DSE), supported by
WAMS, always provides useful outputs. In this context, Kalman
filtering and its variants, such as the Extended Kalman filter-
ing (EKF) and the Unscented Kalman filtering (UKF) have
gained much popularity, since they can be applied to power
systems, which are inherently characterized by nonlinearity
[5], [6].

Kalman filtering based DSE requires good knowledge of the
power system dynamic model. However, a centralized dynamic
state estimation scheme would necessitate accurate information
about all the states and devices of the system, as well as the
phasor measurement unit (PMU) measurements across all the
network, which is practically infeasible, especially for real-time
implementations [7]. This fact has driven research in decentral-
ized state estimation approaches [7]–[9]. Nevertheless, even in
this case, the generation unit model is subjected to uncertain-
ties. For instance, although excitation voltage measurement is
possible through PMUs [5], [10], this is difficult to be applied in
brushless excitation systems [6]. Moreover, under stressed con-
ditions, the excitation voltage is likely to be dictated by timer-
based overexcitation limiters, dramatically affecting the system
stability margin [11]. Therefore, to tackle the cases of inaccessi-
ble or uncertain inputs in power system models, several dynamic
state estimation algorithms have been employed, based on EKF
[6], [9].

UKF has a proven superiority compared to EKF in terms
of estimation accuracy in nonlinear systems [12]. In addition,
contrary to EKF, this method does not involve Jacobian based
linearisation, which can be rather complicated with regard to
highly nonlinear systems, such as power networks [7]. Fur-
thermore, system linearisation might be impossible when there
are functions which are not smooth. In this context, this re-
search study deals with the development of a derivative-free
Kalman filtering based power system dynamic state estima-
tion method with unknown (or inaccessible) inputs, assuming
no prior knowledge of the unknown input models or distri-
butions, in contrast with [7] for instance, where, in the pro-
posed decentralized UKF algorithm, all system inputs were
known. There have been similar research efforts in other fields,
such as health assessment of structural systems [13], or con-
trol systems [14], [15], where linear relationship is inferred
between the state variables and measurements. In [16], the
nonlinear measurement equations are approximated using both
linearisation and derivative-free techniques, but in this study
there is a direct relationship between the unknown inputs and
the measurement equations, which is not always the case in
power systems. Here, this research effort leads to the following
contributions:

1) to establish a decentralized derivative-free Kalman filter-
ing based dynamic state estimation framework for power
systems with unknown inputs;

2) to introduce a new synchronous generator model in the
decentralized context, without any knowledge required
from the network, apart from the information obtained by
measurements at its terminal bus;

3) to tackle nonlinearity in system measurement equations;
4) to shed light on techniques to minimize the impact of

measurement noise.
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The remainder of this paper is organised as follows: In
Section II, the proposed dynamic state estimation method is
developed and analysed. Section III presents the generation
unit model used in the decentralized state estimation context.
Section IV includes the case studies evaluating the performance
of the proposed method in a model power system: the IEEE
benchmark 68-bus 16-machine system, representing the inter-
connected New England (NETS) and New York (NYPS) power
systems, which are connected to other three geographical re-
gions [17], [18]. Section V discusses the effect of parameter er-
rors, process and measurement noise on the state and unknown
input estimation results, and this part also discusses techniques
addressing the impact of measurement noise. Section VI con-
cludes the paper.

II. SIGMA-POINT BASED KALMAN FILTERING WITH

UNKNOWN INPUTS

It assumed that the power system is described by the fol-
lowing set of discrete nonlinear differential-algebraic equations
(DAEs):

xk = f (xk−1 , uk−1 , wk−1) +Gdk−1

yk = h (xk , uk ) + υk (1)

where x and w are n-dimensional vectors of state variables
and process noise, respectively, u is a r-dimensional vector of
system (known) inputs, d is a p-dimensional vector of unknown
inputs, y and υ arem-dimensional vectors of measurements and
measurement noise, respectively, whereas, f and h denote the
system dynamic and measurement equations, respectively, G is
the unknown input distribution matrix, showing the relationship
between the dynamic states and the unknown inputs, and k is
the time step.

In this model, process and measurement noise vectors are
supposed to be Gaussian, zero-mean, white, and uncorrelated to
each other. This means that:

E[wkυTk ] = E[υkwT
k ] = 0 for all k

E[wkwT
j ] = E[υkυTj ] = 0 for k �= j

E[wkwT
k ] = Qk

E[υkυTk ] = Rk (2)

The formulation of the unknown input estimation procedure
is very similar to the ones used in [14] and [15]. However,
in these cases, the state variables of the systems are linearly
related to the measurement outputs. Nonetheless, this is very
difficult to appear in power system dynamic models. In order to
overcome this bottleneck, the statistical linearisation approach is
employed, which does not involve any calculation of derivatives
[19]. The proposed method aims at joint state (xk ) and unknown
input (dk−1) estimation at every time step k. It has to be noted
that at every time step, the unknown input of the previous time
step is estimated (in contrast with the state variables’ case), since
there is no direct relationship between the unknown inputs and
the measurement output equations.

The suggested algorithm is developed as follows:

A. Biased State Estimation

The starting point of every step is the biased dynamic state
estimation, since there is no prior information regarding the

unknown input of the previous step. The states are predicted as
shown below:

1) Sigma point generation: Sigma point filters are based on
the creation of a collection of points, capturing the several sta-
tistical properties of a random variable, and here the target is to
obtain a good approximation of the mean and the covariance of
x [20], [21]. Besides, the unscented transformation relies on a
concept according to which it is easier to approximate a proba-
bility distribution than it is to approximate a nonlinear function
[20]. The standard UKF employs the following set of sigma
points [20]:

χ
(l)
k−1 =

[
x̂u+
k−1 x̂u+

k−1 + x̃(l) x̂u+
k−1 − x̃(l)

]

x̃(l) =
(√

(n+ κ)Pu+
k−1

)

l

, l = 1, 2, . . . , n (3)

where x̂u+
k−1 and Pu+

k−1 are the unbiased dynamic state estimate
and the unbiased a posteriori state error covariance estimate of
the previous time step, respectively, and κ is the scaling pa-
rameter of the spread of sigma points around x̂u+

k−1 [20]. Here,

κ = 3− n. Also, (
√

(n+ κ)Pu+
k−1)l is the lth column of the

lower triangular matrix resulting from the Cholesky decompo-

sition: (n+ κ)Pu+
k−1 =

√
(n+ κ)Pu+

k−1

√
(n+ κ)Pu+

k−1

T

.
2) Biased state prediction: Here, the sigma points are in-

stantiated through the process model (i.e the dynamic state
equations), and the biased state prediction is obtained, taking
into account the associated weights for each sigma point [20].
The state prediction is biased, since the unknown inputs are not
taken into account:

χ
b(l)
k = f

(
χ

(l)
k−1 , uk−1

)
(4)

x̂bk =
2n∑

l=0

W (l)χ
b(l)
k (5)

where

W (0) =
κ

n+ κ

W (l) =
1

2 (n+ κ)
, l = 1, 2, . . . , 2n (6)

3) Biased state error covariance calculation:

Pb
k =

2n∑

l=0

W (l)
(
χ
b(l)
k − x̂bk

) (
χ
b(l)
k − x̂bk

)T
(7)

4) Biased measurement prediction: Here, the sigma points
are instantiated through the measurement model, so as to obtain
the biased predicted measurements (ŷbk ):

γ
b(l)
k = h

(
χ
b(l)
k , uk

)
(8)

ŷbk =
2n∑

l=0

W (l)γ
b(l)
k (9)

5) Calculation of the biased cross-covariance between the
states and the predicted measurements:

Pb
xyk =

2n∑

l=0

W (l)
(
χ
b(l)
k − x̂bk

)(
γ
b(l)
k − ŷbk

)T
(10)
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B. Unknown Input Estimation

As previously stated, the unknown input estimation proce-
dure is very similar to the ones in [14] and [15], but, in those
cases, a linear relationship was assumed between the states
and the measurements. To address the nonlinear measurement
function case, Jacobian based linearisation could be one option,
but this would defeat the purpose of the derivative-free sigma
point based method utilization. Therefore, the statistical lineari-
sation approach is used [19], [21]. This relies on the following
concept: The sigma points are instantiated through the measure-
ment model, and the two sets of sigma points (i.e the ones corre-
sponding to the dynamic state - χb(l)k - and the ones correspond-

ing to the predicted measurement - γb(l)k ) are used so as to for-
mulate a least square linear regression problem, in order to find
a linear approximation of the nonlinear measurement function
[19], [21]:

h(xk ) ≈ Hmkxk + ck + ek

Hmk = (Pb
xyk )

T (Pb
k )−1

ck = ŷbk −Hmk x̂
b
k (11)

where ek is a zero mean random variable. Therefore, the un-
known input vector can be estimated through a linear regression
model, as shown below [14]:

ỹk = yk − ŷbk = HmkGdk−1 + Δk (12)

where

Δk = Hmk

(
f (xk−1 , uk−1 , wk−1)− x̂bk

)
+ υk

E(Δk ) = 0

E(ΔkΔT
k ) = HmkP

b
kH

T
mk +Rk = R̃k (13)

Thus, the unknown input vector is calculated through weighted
least squares, to obtain the unbiased estimate [22]:

d̂k−1 =
(
GT HT

mkR̃
−1
k HmkG

)−1
GT HT

mkR̃
−1
k ỹk (14)

The unknown input estimation equation above requires that
rank(HmkG) = rank(G) = m, meaning that the number of
measurement outputs (m) has to be at least equal to the number
of unknown inputs (p), in contrast to [9], where, in the mentioned
method, the number of measurement outputs has to necessarily
be greater than the number of unknown inputs.

C. Unbiased State Estimation

Since the unknown inputs have been estimated, the standard
UKF procedure can be followed, so as to obtain the state esti-
mates. The formerly unknown inputs are now known and they
are considered as normal inputs. The UKF algorithm can be
summarized as follows:

1) Unbiased (a priori) state prediction:

χ
u(l)
k = f

(
χ

(l)
k−1 , uk−1

)
+Gd̂k−1 (15)

x̂u−k =
2n∑

l=0

W (l)χ
u(l)
k (16)

2) Unbiased a priori state error covariance calculation:

Pu−
k =

2n∑

l=0

W (l)
(
χ
u(l)
k − x̂u−k

)(
χ
u(l)
k − x̂u−k

)T
(17)

3) Unbiased measurement prediction:

γ
u(l)
k = h

(
χ
u(l)
k , uk

)
(18)

ŷuk =
2n∑

l=0

W (l)γ
u(l)
k (19)

4) Unbiased predicted measurement covariance estimation:

Pu
yk =

2n∑

l=0

W (l)
(
γ
u(l)
k − ŷuk

)(
γ
u(l)
k − ŷuk

)T
+Rk (20)

5) Calculation of the unbiased cross-covariance between the
states and the predicted measurements:

Pu
xyk =

2n∑

l=0

W (l)
(
χ
u(l)
k − x̂u−k

) (
γ
u(l)
k − ŷuk

)T
(21)

6) Measurement update of the state estimate (or a posteriori
state estimate):

Kk = Pu
xyk

(
Pu
yk

)−1
(22)

x̂u+
k = x̂u−k +Kk (yk − ŷuk ) (23)

Pu+
k = Pu−

k −KkP
u
ykK

T
k (24)

The steps (3)–(24) constitute the proposed UKF based al-
gorithm for dynamic state and unknown input estimation in
the context of power systems, henceforth termed as UKF-
UI method. All these calculations are repeated at every time
step.

D. Remarks

1) Different set of sigma points: Apart from the aforemen-
tioned set of sigma points, several variants have also been pro-
posed in literature [12]. When κ = 0, this results in 2n sigma
points (instead of 2n + 1 of the standard UKF case, since the
estimate x̂u+

k−1 is no longer regarded as part of the sigma points).
This corresponds to the Cubature Kalman filter (CKF), whose
algorithm coincides with the UKF one, using the set of sigma
points as defined below [23], [24]:

χ
(l)
k−1 =

[
x̂u+
k−1 + x̃(l)

]
, l = 1, 2, . . . , 2n

x̃(l) =
(√

nPu+
k−1

)

l

, l = 1, 2, . . . , n

x̃(n+ l) = −
(√

nPu+
k−1

)

l

, l = 1, 2, . . . , n (25)

Substituting κ = 0 in (4)–(24), the algorithm for joint dynamic
state and unknown input estimation will be henceforth termed as
CKF-UI method, to distinguish from the aforementioned UKF-
UI algorithm.
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2) Augmented state: The system equations (1) are formu-
lated in such a way so as to accommodate cases when there
is nonlinear process noise driving the system. In general, pro-
cess noise accounts for the mismatch between the true gener-
ator model, and the inferred one which is used for estimation
purposes. Process noise is associated with numerical integra-
tion errors, modelling uncertainty, and noise of measurements
which are used as inputs, driving the dynamic system [12], [25],
[26]. It can be additive or nonlinear, depending on what it rep-
resents. Additive process noise usually accounts for modelling
uncertainty and numerical integration errors, whereas nonlin-
ear process noise is often associated with noise coming from
measured inputs, which have a nonlinear relationship with the
dynamic states [12], [26]. Nonlinear process noise is handled
by augmenting the state vector with the nonlinear noise terms
[7], [12], [20]:

x =
[
x

wp

]
(26)

In this case, the augmented state error covariance has the fol-
lowing form [7], [12], [20]:

P =
[
Px PT

wp x

Pwp x Pwp

]
(27)

where Px is the state error covariance, and Pwp x is the cross-
correlation between the states and the nonlinear process noise
terms. The nonlinear process noise covariance (Pwp

) is consid-
ered to be constant, equal toQp . It has to be noted that the vectors
and matrices in bold associated with the augmented state vector
x. It has to be noted that, although the state vector can be further
augmented in order to include the additive process noise terms
[12], this approach is not followed here, for two reasons: First,
to avoid dealing with large covariance matrices, which could
negatively contribute to the computational time. Secondly, in
this way, the additive process noise is not included in the sta-
tistical linearisation procedure, so as for the linearisation error
not to encompass its effect, resulting in better approximation
of the measurement function [19], [27]. Therefore, the additive
process noise covariance matrix has to be added to the state
covariance matrices related to additive process noise, after the
statistical linearisation procedure [19].

III. SYNCHRONOUS GENERATOR MODEL

A. Model Development

Synchronous generators constitute the core of a power sys-
tem. Depending on each study’s targets and the modelling detail,
various models have been reported in literature [28], [29]. The
decentralization procedure is based on system partitioning (in
the context of the estimation calculations) and requires some
measurements on the assumed ‘boundary’ to be treated as in-
puts [7], [30]. There are several approaches in terms of which
measurements to be used as inputs, and whether these mea-
surements, which are corrupted with noise, are decoupled [7],
[31] or not [6], [9], [32] with their associated noise term. In
addition, different models have been utilized to represent the
synchronous generator and its associated equations [6], [7], [9],
[31], [32]. Here, the synchronous generator subtransient model
is used for the UKF-UI/CKF-UI algorithm and it is described

by the following equations [17], [28]:

α̇ = ωB (ω − 1− fθ ) (28)

ω̇ =
1
M

[Tm − Te −D (ω − 1)] (29)

where α is the generator’s internal voltage angle with respect
to the terminal voltage phasor, ω is the p.u. rotor speed, ωB
is the base value for ω, fθ is the rate of change of the angle
of the terminal voltage phasor, M is the inertia characterizing
the rotor’s mass, Tm is the mechanical torque, coming from
the turbine driving the generator, Te is the electrical torque,
associated with the power which the generator is required (by
the network) to supply, and D is the damping coefficient, to
smoothenω oscillations in transient conditions. These equations
(called ‘swing’ equations) are important from the stability point
of view. ω is conceptually tied with power system frequency
[33], and any changes in the power network are reflected on
fθ , driving changes on Te . The generator’s rotor includes coils
and flux to produce voltage in the stator, given by the following
equations:

Ė ′q =
1
T ′d0

{
Efd − E ′q − (Xd −X ′d)

[
− Id

− Kd2

X ′d −Xls

(
ψ1d − (X ′d −Xls) Id − E ′q

)
]}

(30)

Ė ′d =
1
T ′q0

{
−E ′d −

(
Xq −X ′q

)
[
Iq

− Kq2

X ′q −Xls

(−ψ2q +
(
X ′q −Xls

)
Iq − E ′d

)
]}

(31)

ψ̇2q =
1
T ′′q0

[−ψ2q −E ′d +
(
X ′q −Xls

)
Iq

]
(32)

ψ̇1d =
1
T ′′d0

[−ψ1d + E ′q + (X ′d −Xls) Id
]

(33)

and

Te = Kq1E
′
dId +Kd1E

′
q Iq

+
(
X ′′d −X ′′q

)
IdIq +Kd2ψ1dIq −Kq2ψ2q Id (34)

[
Id

Iq

]
=

[
Rs X ′′q
−X ′′d Rs

]−1[Kq1E
′
d −Kq2ψ2q − Vd

Kd1E
′
q +Kd2ψ1d − Vq

]
(35)

Vq = V cosα (36)

Vd = −V sinα (37)

V = Vy − Vυ (38)

fθ = fy − fυ (39)

All these equations formulate the subtransient generator
model, which has been thoroughly analysed in literature (for
instance [17], [28], [29]). The equations have been given in
continuous form, but they can be discretized assuming that
ẋ = (xk − xk−1)/T0 , where T0 is the simulation time step. This
model is built based on the principle that d-axis leads q-axis. It
can be noticed that the rotor angle (δ) is not part of the state vari-
able used here, but the internal rotor angle (α) is utilized instead.
The notion behind this choice is that, in a multi-machine power
system model, the rotor angle (δi) and the stator voltage phase
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(θi) of each generator i, which are significant for the genera-
tor’s internal parameters, are defined with respect to a common
reference frame. However, in the context of decentralization,
the knowledge of the values of these quantities would require
knowledge of the common reference frame, which would defeat
the purpose of decentralization [31]. To handle this, we can use
the internal rotor angle as a state variable, as carried out in [9],
but defined as α = δ − θ and employing (28) to describe its dy-
namics [31]. The rate of change of the stator voltage phase can
be approximated by the equation below (here divided by ωB , to
obtain the p.u. value) [28]:

fθk ≈ θk − θk−1

ωBT0
(40)

Assuming that in the beginning of the simulation the system is
in steady state operation, the initial internal rotor angle value can
be given by the following equation (with ‘0’ subscripts denoting
initial conditions) [34]:

α0 = arctan

(
XqI0 cosφ0 +RsI0 sin φ0

V0 +XqI0 sinφ0 −RsI0 cosφ0

)
(41)

Following the procedure described in [31], the measurements
of the stator voltage magnitude (Vy ) and the rate of change of its
phase (fy ) are considered as inputs, whereas their noise terms
(Vυ and fυ ) are regarded as part of the augmented state vector
[7]. This means that the measurement noise of these quantities
are considered as ‘pseudo process noise’ (using the same termi-
nology as in [7]), showing that this form of nonlinear noise is
assumed to drive the estimation model here. Additionally, pro-
cess noise, representing consideration of modelling uncertainty,
is added to each state variable. Therefore, the synchronous ma-
chine state-space model includes the state vector as follows:

xa =
[
α ω E ′q E

′
d ψ2q ψ1d Vυ fυ

]T
(42)

Also, the input vector is:

u = [Vy fy ]
T (43)

Whereas the unknown input vector is:

d = [Tm Efd ]
T (44)

The unknown input distribution matrix is given by:

G =

⎡

⎢
⎢
⎣

0
T0

M
0 0 0 0 0 0

0 0
T0

T ′d0
0 0 0 0 0

⎤

⎥
⎥
⎦

T

(45)

The nonlinear relationship between the states is clear from the
Eqs. (28)–(39).

Given the presence of both additive and nonlinear process
noise in our generator estimation model, in the context of the
discussion in Section II-D regarding the consideration of an
augmented state vector, the following additive process noise
covariance matrix is added to the additive process noise related
state covariance matrices, in Eqs. (14), (17):

Q =
[
Q 06×2

02×6 02×2

]
(46)

The proposed UKF-UI/CKF-UI (depending on the set of sigma
points used) algorithm, for the generator estimation model used
here, is summarized in Appendix A.

B. Rank Requirement and Measurement Quantities Selection

Following the practice in [7] and [31], the stator current mea-
sured magnitude (Iy ) and its measured phase with reference to
the voltage phasor (φIy ) are the measurements which are treated
as system outputs. These are given by the following equations:

Iy =
√
I2
q + I2

d + υI (47)

φIy = α+ arctan

(
Id
Iq

)
+ υφI (48)

and Iq , Id are given by (35), whereas υI , υφI are the measure-
ment noise terms, associated with Iy and φIy , respectively.

However, careful attention has to be paid to the rank require-
ment of the unknown input estimation procedure, according to
which rank(HmG) = m. With regard to (14), in mathematical
terms, this means that, the matrix inversion which is involved
in this equation is not possible when the rank requirement is
violated, due to singularity which arises, and the unknown in-
put estimation is impossible. In practical terms, this is closely
related to the measurement variables chosen as system outputs.
More specifically, given matrices G, x and d, the unknown in-
puts are reflected on ω and E ′q . In turn, the rank requirement of
HmG is violated when at least one of columns 2, 3 of matrix
Hm is a column of zeros, since this would result in a column
of zeros in HmG. Given the state vector x, columns 2, 3 of
matrix Hm correspond to ω and E ′q , respectively. This means
that these two states have to be able to be viewed from the
measurements/outputs. Using just I and φI as outputs, given
Eqs. (47), (48), (35), it is clear that ω is not reflected on the
measurements. Therefore, frequency measurement (fsysy ) has
also been considered, since it is closely related to speed [33],
and its p.u. value is:

fsysy = ω + υf (49)

where υf is the associated measurement noise. This is the reason
why frequency measurement is considered in [9] as well. Thus,
the measurement vector is the following:

y =
[
fsysy Iy φIy

]T
. (50)

C. Model Initialization

The synchronous generator model is initialized assuming that
the system operates in steady state. Since the terminal voltage
and current magnitudes, along with their phase difference, can
be obtained from the PMU at the terminal bus [9], and the global
reference frame is unknown, the reference frame is considered to
coincide with the position of the terminal voltage phasor. There-
fore, if V 0 = V ∠0 and I0 = I∠−φ0

0 , the initial conditions of all
states and unknown inputs can be derived from the following
equations (with subscripts ‘0’ denoting initial conditions) [35]:

E∠α0
q0 = V ∠0

0 + (Rs + jXq ) I
∠−φ0
0 (51)

Id0 = −I0 sin (α0 − (−φ0)) (52)

Iq0 = I0 cos (α0 − (−φ0)) (53)

Vd0 = −V0 sin (α0) (54)

Vq0 = V0 cos (α0) (55)
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Fig. 1. NETS-NYPS 68-bus, 16-machine system.

Efd0 = Eq0 − (Xd −Xq ) Id0 (56)

E ′q0 = Efd0 + (Xd −X ′d) Id0 (57)

E ′d0 = − (
Xq −X ′q

)
Iq0 (58)

ψ2q0 = −E ′d0 +
(
X ′q −Xls

)
Iq0 (59)

ψ1d0 = E ′q0 + (X ′d −Xls) Id0 (60)

Tm0 = Te0 (61)

and Te0 is given by (34).

IV. CASE STUDIES

The UKF-UI/CKF-UI algorithm has been implemented in a
68-bus 16-machine system model, shown in Fig. 1, the details
of which can be found in [18]. It has to be highlighted that,
in this model, the synchronous generator subtransient model
is used for all the machines, and, therefore, the synchronous
generator is characterized by the subtransient model for the
purpose of estimation. However, in the context of power sys-
tem model, an additional state variable is used as part of the
synchronous generator model, the transient emf (E′dc ) due to
flux linkage of a dummy coil in the q-axis [35]. But, this is
utilized to facilitate the multi-machine system simulation [35],
thus it is not needed in the synchronous machine decentral-
ized model for UKF-UI/CKF-UI. Power system modelling is
MATLAB/Simulink based, and all simulations continue for
10 s. Measurements are obtained by PMUs having reporting
rate of 120 frames per second, according to IEEE Standards
[36], [37]. The standard deviation concerning the process and
measurement noise is assumed to be 10−6 . Two case studies
have been considered:

1) Case Study 1A: A three-phase to ground fault occurs at
bus 25 at the time instant t = 2 s, it is cleared after 100
ms and the line connecting buses 25 and 26 is tripped at
the same time.

2) Case Study 1B: A step increase by 1 p.u. in Tm of Gen. 5
occurs at the time instant t = 2 s and lasts for 1 s, returning
to its previous value afterwards.

As previously stated, an EKF based state estimation method
for power systems with unknown inputs has been recently pro-
posed (termed as EKF-UI) [6], [9]. Thus, it would be inter-
esting to assess the performance of that method and the ones
developed here (i.e. UKF-UI and CKF-UI) in the context of
the aforementioned case studies. The main differences between
UKF-UI/CKF-UI and EKF-UI can be summarized as follows:

1) In order to apply EFK-UI, the Jacobians for state and mea-
surement equations have to be calculated. This procedure
is not needed in UKF-UI/CKF-UI;

2) In UKF-UI/CKF-UI, the unknown inputs are calculated at
every time step, based on a linear regression model as ex-
plained earlier, without any relationship to arise between
their values at two successive time steps. In EKF-UI, the
estimation procedure is based on a different approach,
where the unknown input estimation is based on a formula
dependent on the unknown input’s estimated value of the
previous time step [6], [9];

3) In EFK-UI, the number of measurements has to be greater
than the number of unknown inputs at every time step [6],
[9], whereas in UKF-UI, the number of measurement is
required to be at least equal to the number of unknown
inputs.

Therefore, here, all techniques are utilized, based on the same
measurements and models developed in the context of this re-
search effort and analysed in earlier sections, so as to eval-
uate all estimation algorithms under the same conditions and
assumptions.

As far as the case study 1A is concerned, the state and un-
known input estimation results are illustrated in Figs 2 and 3
regarding Gen. 8. In addition, the state and unknown input es-
timation results are depicted in Figs. 4 and 5 for the case study
1B concerning Gen. 5. The effectiveness of UKF-UI and CKF-
UI methods can be clearly noticed, as all algorithms are reveal
highly accurate results.

V. ROBUSTNESS ASSESSMENT

A. Sensitivity to Parameter Errors

Uncertainty is present in power system operation, and system
operators are likely to consider erroneous data in power system
analysis, due to various reasons, such as ageing components [1].
Therefore, it is interesting to assess the performance of UKF-UI
and CKF-UI methods, when there is 10% error inXq andX ′q of
the generator studied in each case study. Here, case study 1A has
been revisited, and the results for Gen. 8 are illustrated in Figs. 6
and 7. It can be noticed that the estimation model dynamics are
excited to a small extent before the contingency occurrence,
reflecting the incorrect system initialization considering the er-
roneous parameters. Also, unknown input estimation results are
accurate towards the end of the transient period, whereas state
estimation results are characterized by a small steady state error
apart from rotor speed, which is highly viewable through system
frequency measurements. Similar observations have been noted
in [9], under similar sensitivity analysis. Therefore, good knowl-
edge of the local machine parameters under study is required to
achieve highly accurate estimation results.

B. Sensitivity to Process and Measurement Noise

As discussed in Section II-D, process noise is associated with
model integration errors, model uncertainty and noise com-
ing from measured inputs. The success of the UKF-UI/CKF-
UI algorithm has been validated in the previous case studies,
but these are based on the assumptions that system modelling
approximations are low and PMUs give highly accurate mea-
surements. However, in practice the measurement noise can
be higher. According to the IEEE Standard C37.118.1-2011
and its recent amendment C37.118.1a-2014, the basic time



ANAGNOSTOU AND PAL: DERIVATIVE-FREE KALMAN FILTERING BASED APPROACHES TO DYNAMIC STATE ESTIMATION 123

Fig. 2. Case Study 1A: Dynamic state estimation of Gen. 8.

synchronisation accuracy is 0.2 μs [11], [36], [37], which corre-
sponds to phase measurement error of±0.08 mrad, for a 60-Hz
system. Also, the frequency error has to be up to 0.005 Hz [36],
[37]. Furthermore, the current and voltage magnitude measure-
ments are limited by the accuracy of the instrument transformers
[38], and the IEEE Standard C57.13-2008 specifies the instru-
ment transformers’ accuracy within the range of 0.1% and 0.3%
[11], [39].

Taking these into account, the estimation procedure has been
re-examined against high process noise levels. This consists
of high measurement noise levels for the measured inputs (i.e.
standard deviation of 10−3 p.u. for voltage and 0.08 mrad for its
phase), which correspond to nonlinear process noise, as well as
high levels of additive process noise, corresponding to standard
deviation of 10−3 for all states, in a similar approach followed
in [25], accounting for 10% of the largest state changes in one
time step. High value of additive noise covarianceQmeans that
‘fictitious’ noise is added to the estimation model, so as for the
filter to include a larger emphasis on the measurement correc-
tion part, which is important when unmodelled dynamics are
present, as explained in [12]. The results for the previous case
studies are shown in Figs. 8 and 9 for the case study 1A and

Fig. 3. Case Study 1A: Unknown input estimation of Gen. 8.

Fig. 4. Case Study 1B: Dynamic state estimation of Gen. 5.

Gen. 8, and in Figs. 10 and 11 for the case study 1B and Gen. 5.
The robustness of the proposed methods is evidently showcased
with respect to the dynamic state estimation, whereas the un-
known input estimation is greatly affected by the high process
noise levels. This is due to the fact that the UKF-UI/CKF-UI
algorithm is optimized for the estimation of the dynamic states,
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Fig. 5. Case Study 1B: Unknown input estimation of Gen. 5.

Fig. 6. Case Study 1A: Dynamic state estimation in the presence of 10% error
in Xq and X ′q of Gen. 8.

whose behaviour is described by known equations. Similar per-
formance has been observed for EKF-UI.

The proposed algorithm has also been tested against high
measurement noise levels for the measurements obtained (i.e.
the ones forming the measurement vector y), considering low
process noise levels. The results are illustrated in Figs. 12 and

Fig. 7. Case Study 1A: Unknown input estimation in the presence of 10%
error in Xq and X ′q of Gen. 8.

Fig. 8. Case Study 1A: Dynamic state estimation of Gen. 8 under high process
noise levels.

13 for the case study 1A and Gen. 8, and in Figs. 14 and 15
for the case study 1B and Gen. 5. It can be observed that they
are similar to the ones with high process noise levels, meaning
that the dynamic state estimates are highly accurate, as opposed
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Fig. 9. Case Study 1A: Unknown input estimation of Gen. 8 under high
process noise levels.

Fig. 10. Case Study 1B: Dynamic state estimation of Gen. 5 under high
process noise levels.

Fig. 11. Case Study 1B: Unknown input estimation of Gen. 5 under high
process noise levels.

Fig. 12. Case Study 1A: Dynamic state estimation of Gen. 8 under high
measurement noise levels.
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Fig. 13. Case Study 1A: Unknown input estimation of Gen. 8 under high
measurement noise levels.

Fig. 14. Case Study 1B: Dynamic state estimation of Gen. 5 under high
measurement noise levels.

Fig. 15. Case Study 1B: Unknown input estimation of Gen. 5 under high
measurement noise levels.

to the unknown input estimates, showing higher sensitivity to
measurement noise increase.

Since highly noisy measurements affect the unknown input
estimation performance from both process and measurement
noise related points of view, it is required to search for noise
impact mitigation strategies. This has been done in two ways:
Finding ways of obtaining more accurate measurements, and
increasing the number of measurable quantities in our model.

1) Discussion on measurement noise reduction: Noise re-
duction has been thoroughly tackled in the context of other
fields, such as signal processing. As far as power systems are
concerned, the advent of PMUs and their significance in wide
area monitoring has triggered research studies on measurement
noise mitigation. Various techniques have been reported in lit-
erature, such as:

1) Empirical mode decomposition (EMD) methods [40],
[41];

2) Singular value decomposition (SVD) based algorithms
[42];

3) Wavelet shrinkage procedures [40], [43], [44];
4) Integrated calibration techniques [45], [46];
5) Multiple measurement averaging processes (also termed

as ‘data buffering’) [47], [48].
However, these methods mainly aim at offline denoising.

Real-time denoising’s importance has been recently highlighted
in power systems [40]. Online measurement noise reduction al-
gorithms include Kalman filtering based approaches [49], and
methods including autoregressive models, which has been re-
ported in the field of real-time glucose monitoring [50]. Further-
more, novel algorithms, integrated within PMUs’ software have
the capability to report measurements with increased accuracy
[51]–[55]. In addition, PMU algorithms have been employed so
as to minimize their execution time, enabling the existence of
PMUs with reporting rates as high as 5000 frames per second
[56]. This capability can be found useful in the context of data
buffering as well.

2) Consideration of additional measurements: Attempting
to enhance the unknown input estimation accuracy, additional
measurements can facilitate this purpose [9]. This depends
on the decentralized model used, in terms of the measurable
quantities, and the model used here enables the use of more
quantities as measurements (in contrast with the model in [9],
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Fig. 16. Case Study 1A: Dynamic state estimation of Gen. 8 under high pro-
cess and measurement noise levels, using measurement noise impact reduction
measures.

for instance). PMUs have the capability of measuring active and
reactive power [9], thus, the previous case studies have been
re-examined, considering these additional measurements, since
this can be accomplished through the decentralized model used
here. The measurement functions for these are given as follows:

Py = Kq1E
′
dId +Kd1E

′
q Iq +

(
X ′′d −X ′′q

)
IdIq

+Kd2ψ1dIq −Kq2ψ2q Id −
(
I2
d + I2

q

)
Rs + υP (62)

Qy = Kq1E
′
dIq −Kq2ψ2q Iq

−X ′′q I2
q −X ′′d I2

d −Kd1E
′
q Id −Kd2ψ1dId + υQ (63)

wherePy andQy are the active and reactive power, respectively,
measured at the generator’s terminal bus. The measurement
vector is then the following one:

y =
[
fsysy Iy φIy Py Qy

]T
. (64)

Fig. 17. Case Study 1A: Unknown input estimation of Gen. 8 under high pro-
cess and measurement noise levels, using measurement noise impact reduction
measures.

Fig. 18. Case Study 1B: Dynamic state estimation of Gen. 5 under high pro-
cess and measurement noise levels, using measurement noise impact reduction
measures.

Here, considering the worst case scenario, same high process
and measurement noise levels as earlier are considered, but as-
suming 1800 Hz PMU reporting rate (in accordance with the
research findings listed previously), while the UKF-UI/CKF-
UI algorithm runs twice per cycle, and, therefore, 15 measure-
ments of every output are averaged every time that the algorithm
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Fig. 19. Case Study 1B: Unknown input estimation of Gen. 5 under high pro-
cess and measurement noise levels, using measurement noise impact reduction
measures.

TABLE I
COMPUTATIONAL SPEED ASSESSMENT

Method Average execution time for one iteration (ms)

EKF-UI 0.41
CKF-UI 0.54
UKF-UI 0.71

iterates. The results are depicted in Figs. 16 and 17 for the case
study 1A regarding Gen. 8, and in Figs. 18 and 19 for the case
study 1B concerning Gen. 5. The results are acceptable in terms
of unknown input estimation.

VI. COMPUTATIONAL FEASIBILITY

As previously stated, in all cases the UKF-UI/CKF-UI algo-
rithm runs twice per cycle, in the context of a 60 Hz system.
Therefore, the algorithm is repeated at a frequency of 120 Hz.
As a result, it is important for the whole procedure to be com-
pleted within a shorter time frame than the simulation time
step (which is 1/120 ≈ 8.33 ms). It has to be mentioned that
this study has been conducted on MATLAB/Simulink, using a
personal computer with Intel Xeon E5-1650, 3.20 GHz CPU
and 16 GB RAM. The average time required for one iteration
for all methods are depicted in Table I. The proposed UKF-UI
and CKF-UI appear to require more time to be executed than
EKF-UI, which is expected, since they include more equations.
CKF-UI is also proven to be faster than UKF-UI, which can be
justified by considering that UKF-UI engages one more sigma
point for each state, resulting in larger matrices. Most impor-
tantly, all methods require less amount of time than 8.33 ms,
thus, they can be implemented in real time.

VII. CONCLUSION

A derivative-free Kalman filtering based decentralized dy-
namic state estimation algorithm with unknown inputs has been
demonstrated, to tackle cases when linearisation is burdensome.
The dynamic state estimation process is performed without
any prior knowledge or assumptions regarding unknown input

Algorithm 1: UKF-UI/CFK-UI.
1: The augmented state vector, known inputs, and

unknown inputs are given by the vectors in Eqs. (42),
(43), and (44), respectively. State equations f are given
by the discrete form of Eqs. (28)–(39), whereas
measurement equations h are given by Eqs. (49), (47),
(48), considering 3 measurements, or Eqs. (49), (47),
(48), (62), (63), considering 5 measurements. The

length of the augmented state vector is n = n+ 2.
2: while k ≥ 1 do
3: STEP 1: Initialization
4: if k == 1 then
5: Initialize x̂u+

0 according to Eqs. (51)–(61), and
ŵp0 = 02×1 , therefore x̂u+

0 = [(x̂u+
0 )T 0T2×1 ]

T .
6: Initialize Px0 = Q, Pwp x0 = 02×n , Pwp 0 = Qp ,

forming P u+
0 , in accordance with Eq. (27).

7: else
8: Reinitialize ŵp(k−1) = 02×1 , and Pwp (k−1) = Qp ,

while the rest of the elements in x̂u+
k−1 , P u+

k−1
remain unchanged.

9: end if
10: STEP 2: Sigma point generation
11: Obtain the sigma points from Eq. (3) for UKF-UI,

or Eq. (25) for CKF-UI.
12: STEP 3: Biased state prediction
13: χ

b(l)
k = f(χ(l)

k−1 , uk−1)
14: x̂b

k =
∑2n

l=0 W
(l)χ

b(l)
k

15: P b
k =

∑2n
l=0 W

(l)(χb(l)
k − x̂b

k )(χ
b(l)
k − x̂b

k )
T

16: STEP 4: Biased measurement prediction
17: γ

b(l)
k = h(χb(l)

k , uk )
18: ŷbk =

∑2n
l=0 W

(l)γ
b(l)
k

19: P b
xyk =

∑2n
l=0 W

(l)(χb(l)
k − x̂b

k )(γ
b(l)
k − ŷbk )T

20: STEP 5: Unknown input estimation
21: Hmk = (P b

xyk )
T (P b

k )
−1

22: R̃k = Hmk (P b
k + Q)HT

mk +Rk

23: d̂k−1 = (GT HT
mkR̃

−1
k HmkG)−1GT HT

mkR̃
−1
k

(yk − ŷbk )
24: STEP 6: Unbiased state prediction
25: χ

u(l)
k = f(χ(l)

k−1 , uk−1) +Gd̂k−1

26: x̂u−
k =

∑2n
l=0 W

(l)χ
u(l)
k

27: P u−
k =

∑2n
l=0 W

(l)(χu(l)
k − x̂u−

k )(χu(l)
k − x̂u−

k )T
+ Q

28: STEP 7: Unbiased measurement prediction
29: γ

u(l)
k = h(χu(l)

k , uk )
30: ŷuk =

∑2n
l=0 W

(l)γ
u(l)
k

31: Pu
yk =

∑2n
l=0 W

(l)(γu(l)
k − ŷuk )(γu(l)

k − ŷuk )T +Rk

32: P u
xyk =

∑2n
l=0 W

(l)(χu(l)
k − x̂u−

k )(γu(l)
k − ŷuk )T

33: STEP 8: Kalman update
34: Kk = P u

xyk (P
u
yk )
−1

35: x̂u+
k = x̂u−

k + Kk (yk − ŷuk )
36: P u+

k = P u−
k −KkP

u
ykK

T
k

37: STEP 9: Output and time update
38: Output x̂u+

k and P u+
k

39: k ←− (k + 1)
40: end while
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models or distributions. The decentralization procedure neces-
sitates voltage magnitude and phase measurements to be treated
as inputs, and the consideration of the internal rotor angle as
a state variable leads to useful results. This method has been
tested on a realistic large power system model, under low and
high process and measurement noise levels, as well as against
parameter errors in the estimation model, and it has been proven
to be robust. The differences between the proposed methods and
an Extended Kalman filtering based decentralized dynamic state
estimation approach with unknown inputs have also been high-
lighted. Measurement noise impact reduction techniques have
been proposed in order to further enhance the unknown inputs’
estimation accuracy. This suggested methodology constitutes a
step forward towards the enhanced accuracy of power system
dynamic state estimation, which is significant in terms of stabil-
ity margin computation and security assessment, in the context
of modern power networks, characterised by stochasticity and
uncertainty.

APPENDIX A
UKF-UI/CKF-UI ALGORITHM

The UKF-UI/CFK-UI algorithm is presented in a pseudo-
code form in the right column of the previous page.
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