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Uncertainty Tracing of Distributed Generations
via Complex Affine Arithmetic Based
Unbalanced Three-Phase Power Flow
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Abstract—Variations of load demands and generations bring
multiple uncertainties to power system operation. Under this
situation, power flows become increasingly uncertain, especially
when significant distributed generations (DGs), such as wind
and solar, are integrated into power systems. In this paper, a
Complex Affine arithmetic based unbalanced Three-phase For-
ward-Backward Sweep power flow model (CATFBS) is proposed
to study the impacts of uncertainties in unbalanced three-phase
distribution systems. An index of Relative Influence of Uncertain
Variables on Outcomes (RIUVO) is proposed for quantifying the
impacts of individual uncertain factors on power flows and bus
voltages. The CATFBS method is tested on the modified IEEE
13-bus system and a modified 292-bus system. Numerical results
show that the proposed method outperforms the Monte Carlo
method for exploring the impacts of uncertainties on the operation
of distribution systems. The proposed CATFBS method can be
used by power system operators and planners to effectively mon-
itor and control unbalanced distribution systems under various
uncertainties.
Index Terms—Affine arithmetic, forward-backward sweep, un-

balance power flow, uncertainty.

NOMENCLATURE

Indices and Sets:

Set of buses that are directly connected to bus .
Bus.
Line.
Set of real numbers.

Variables:

Noisy symbol that lies in the interval .
Affine form current injection of phase ( , B,
or C) at bus (A).
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Affine form current of phase ( , B, or C) on
branch (A).
Affine form power injection of phase ( , B,
or C) at bus (kW).
Affine form voltage of phase ( , B, or C) at
bus (kV).
Wind speed (m/s).
Crisp scalar, or a degenerate interval .
Interval scalar.
Affine scalar.
Central value of an affine variable.
Partial deviation of an affine variable.

Parameters and Functions:

Weight coefficient of bus .
Cross-section through which the air mass is
streaming ( ).
Total array area ( ).
Coefficient for modeling the operation temperature
of solar panels, which usually takes the value around
0.03.
Power coefficient.
Tolerance error.
Solar radiation outside the atmosphere ( ).
Solar radiation on panels ( ).
Cloud cover interval index.
Air density ( ).
Photoelectric conversion efficiency of a PV array
(%).
Ambient air temperature ( ).
Operation temperature of solar panels ( ).

I. INTRODUCTION

T HE needs for more flexible, efficient, and environmental
friendly electric power systems have been pushing the re-

search and development on smart grid. As an important part of
smart grid, distributed generations (DGs) have been widely de-
ployed in power systems. DGs have advantages of low invest-
ment costs, low power losses, environment friendly, and flex-
ible operation [1], [2]. However, variability and intermittency of
DGs, such as wind turbine generators and photovoltaic panels,
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have profound impacts on the security of power grid planning
and operation [3]–[5]. Power flow analysis is a commonly used
tool for investigating power distribution system planning and
operation decisions. As uncertainties will be more significant
with the increasing penetration of DGs, it is important to con-
sider their impacts in power flow analysis.
Various methodologies have been explored in literature for

solving power flows with uncertainties. These methodologies
fall into three main categories: probabilistic load flow (PLF),
fuzzy power flow, and interval power flow. PLF [6], [7], first
proposed in the early 1970s [8], is a well-received approach
for dealing with uncertainties in power flow calculations. The
accuracy of the PLF method depends on the preciseness of the
presumed probabilistic distribution functions (PDFs) [9]. How-
ever, it is usually difficult for planners and operators to obtain
precise PDF parameters for describing various uncertainties.
Alternatively, fuzzy power flow [10] has been proposed to
quantify the impacts of uncertainties on power flow solutions,
which models uncertain data via fuzzy numbers and needs
limited statistical information [11]. The interval arithmetic (IA)
[12], [13] is another method for power flow calculation when
statistical information is unavailable or insufficient. Various
literatures have reported the interval power flow studies for
power flow calculations for transmission [14] and distribution
networks [15]–[18]. However, IA presents drawbacks including
“dependency problem” and “wrapping effect”, which make
bounds of power flow results much wider and unpractical. The
conservative property in IA is one of the main issues when
applied for the interval power flow calculation. In comparison,
affine arithmetic (AA) could keep track on the dependencies
of variables throughout the calculation procedure and limit the
overestimation on the bounds of power flow results [19]. In
[20], a new methodology was proposed for analyzing the reli-
able power flows based on AA, where uncertain variables were
presented in affine forms. However, these methods [20], [21]
transform the interval power flow problem into optimization
problems. This transformation process would lose information
regarding the interdependency of parameters. As a result,
methods in [20] and [21] cannot trace the impacts of individual
input uncertainties on outputs. Reference [22] demonstrated
that the AA-based power flow method returns tighter bounds
on power flow results than those obtained via IA and has a
better computational performance. Reference [23] proposed an
AA method to solve the optimal power flow (OPF) problem
with uncertain generation sources. Reference [24] presented
an algorithm based on AA for balanced three-phase radial
distribution system power flow in the presence of uncertainties.
However, when multiple DGs are connected to a distribution

system, the above methods can only illustrate the overall effect
of all DGs on power flow results, but not the impacts of in-
dividual DGs. Uncertainty analysis has a significant effect on
many fields [25], including DG planning as well as optimal op-
eration and control. Thus, studying the impacts of individual
DGs is important, which could help determine the best loca-
tions for installing DGs. In addition, the above methods do not
work for unbalanced power flow calculations, which is usually
the case when multiple DGs are connected in distribution sys-
tems. The main contributions of this paper are twofold.

1) A Complex Affine arithmetic based unbalanced
Three-phase Forward-Backward Sweep power flow
method (CATFBS) is discussed for analyzing the impacts
of uncertainties on distribution systems.

2) An index of RIUVO is proposed to quantitatively analyze
the impacts of individual DGs on distribution power flow
results.

The rest of the paper is organized as follows. Section II de-
scribes the interval and affine arithmetic. In Section III, an
affine form of DG output is proposed. Section IV presents
the CATFBS method and RIUVO. The modified IEEE 13-bus
case study and a modified 292-bus case study are discussed in
Section V to test the proposed CATFBS algorithm and compare
with the results from the Monte Carlo simulation based power
flow. Finally, Section V summarizes the main conclusions.

II. INTRODUCTION OF INTERVAL AND AFFINE ARITHMETIC

A. Interval and Affine Arithmetic
An interval number is defined as a compact set

. IA is a general term for numerical
methods that are used to produce intervals for bounding all pos-
sible outputs, when parameters in a system are not known ex-
actly but expressed as interval numbers within certain ranges.
Considering two interval numbers and ,
the elementary IA operations are given as (1)–(4) [13]:

(1)
(2)
(3)

(4)

One disadvantage of IA is that the solution may be too conser-
vative. That is, the boundary results calculated by IA are often
much larger than their actual ranges, especially after a long com-
putational process. As compared to IA, AA keeps track on the
correlations between input and output quantities, which could
help reduce the likelihood of error explosion in a long IA com-
putational process. In AA, a quantity is represented as an
affine form (5). Considering two affine form quantities and ,
addition, subtraction, and multiplication of the two affine forms
are given as (6)–(9) [26]:

(5)
(6)

(7)

(8)

(9)
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If and are complex numbers, the real affine arithmetic
can be extended to the complex space. Considering two complex
affine quantities and , addition and subtraction operations
of and follow the same rules in (6), and the multiplication
is defined as (10), where and are the real and the
imaginary approximation error partial deviations. More details
on the complex affine arithmetic operators can be found in [27]:

(10)
The affine form and the interval form of a quantity can be

converted from one to the other. Given an interval rep-
resenting the quantity in IA, the corresponding affine form
can be expressed as (10), where and

. Given an affine form in (5), the corresponding in-
terval form is given as (11), where . It is noticed
that although the conversion from the affine form to the interval
form (11) is straightforward, all information regarding the cor-
relations between input and output quantities are lost during the
conversion, and the boundary results calculated by the IA are
often much larger than those of the AA. For instance, consid-
ering and
(dependency exists between and due to ), AA derives the
results and . How-
ever, in the IA, the results are [ , 4] and [ , 8]. Apparently,
the results of the AA are much more compact and accurate than
those of the IA:

(11)
(12)

B. Impacts of Uncertain Variables on Outcome
AA can keep track on the correlations between input and

output variables, thereby is capable of recording the impacts of
individual input uncertainties on the outputs along with the cal-
culation procedure. For a system with independent uncertain
input variables , the output can be calculated in
(12), where is the extra error approximation term incurred
during the AA calculation procedure:

(13)

Coefficients of individual input uncertainties represent their
magnitude, which reflect their individual contributions to the
output uncertainties. The index of Relative Influence of Uncer-
tain Variables on Outcome (RIUVO) is defined in (13) for eval-
uating the impact of each input uncertainty to the uncertainty of
output , where :

(14)

The following example is used to illustrate the RIUVO. Con-
sidering the function , where

, , and . Thus, based on
(6)–(9), .

Fig. 1. Relative influence of uncertain variables on output.

RIUVOs of the three input uncertainties and the error approxi-
mation term are 28% (i.e., 16/57), 42% (i.e., 24/57), 21% (i.e.,
12/57), and 9% (i.e., 5/57), respectively. Fig. 1 visually shows
the RIUVO of the three input uncertainties and the error approx-
imation term, which indicates that has the highest impact on
the uncertainty of output .

III. AFFINE MODELING FOR DISTRIBUTED GENERATIONS

A. Affine Model for PV Output
Photovoltaic (PV) arrays can convert solar radiation into DC

power and then into AC power via PV inverters. For a PV array,
its maximum DC power output can be calculated via (15). In
(15), the area of the PV array is fixed for a specific photo-
voltaic power generation system. In addition, PV inverters are
usually operated in the maximum power point tracking (MPPT)
mode with relatively constant power conversion efficiency .
On the other hand, the operation temperature of solar panels
and the solar radiation on panels are variant. Several fac-
tors, such as the ambient air temperature, the atmospheric pres-
sure, and the wind speed, may impact the operation temperature
of solar panels. The operation temperature of solar panels can
be calculated via the ambient temperature in (16). Substituting
(16) into (15), the output power of a PV array can be calculated
in (17). Equation (17) shows that the power output of a photo-
voltaic cell is mainly determined by the solar radiation and the
ambient temperature. The ambient temperaturesmay not change
dramatically in a very short time period. Thus, the cloud cover
is considered as the dominant uncertain factor that affects the
PV output:

(15)
(16)
(17)

An interval cloud model is introduced to describe uncertain-
ties of the cloud cover. The solar radiation effect on the panels
can be calculated by the solar radiation outside the atmosphere
and the corresponding cloud cover index as shown in (18) and
Table I:

(18)

Given the interval cloud cover model in (17), the affine PV
output model can be formulated via the following three steps:
1) Predict the next-day solar radiation outside the atmosphere

at the photovoltaic location. Based on the weather forecast
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TABLE I
CLOUD COVER INDEX

Fig. 2. Wind speed variety during one day.

and the solar radiation forecast, the solar radiation interval
is calculated as via (18).

2) Evaluate the interval of the PV output
using the photovoltaic power output function (17).

3) The affine form of the PV output is determined as

(19)

B. Affine Model for WTG Output
Wind turbine generators (WTGs) can convert kinetic energy

from wind into electricity. The mechanical power generated by
the wind turbine can be calculated via (20):

(20)

The real power injected into electric power systems by a
WTG is mostly affected by wind speed. Fig. 2 shows a one-day
wind speed profile of a wind farm located in Qingdao, China. It
illustrates that wind speed varies drastically in a single day as
shown in the black line. Because accurate forecast on instan-
taneous wind speed is difficult, average wind speeds for each
30 min are usually used to approximate wind power outputs as
shown in the red curve.
As the wind power is proportional to the cubic of wind speed,

the wind speed forecast error will lead to considerable errors. To
accurately quantify uncertainties of wind speed, an affine WTG
output model is formulated as follows:
1) Predict the wind speed interval for the

next day [28].
2) The wind power output interval is calculated as

via (20).
3) The affine form of the wind turbine output is represented

as

(21)

Fig. 3. Typical series components model of a distribution network.

IV. PROPOSED CATFBS POWER FLOW METHOD

A. Distribution Power Flow Based on Affine Arithmetic
Unlike transmission systems, distribution systems typi-

cally have radial topologies with high resistance/reactance
( ) ratio of lines, which makes the commonly used power
flow methods, such as the fast decoupled Newton method,
unsuitable for most distribution power flow problems. The
Newton-Raphson method sometimes also fails to converge
when used in distribution power flow calculation. Therefore,
the forward-backward sweep method which could better handle
the radial structure has been widely used in distribution power
flow calculation.
Fig. 3 shows a typical model of series components in a

distribution network. Equation (22) describes the mathematical
model of distribution transformers, and (23)–(24) describe the
model of lines used in the paper, where , , , ,

, and are 3 3 matrices, which are determined by the
connection topology of three-phase transformers and lines.
Models for other system components can be found in [29]:

(22)

(23)

(24)

In a power distribution system, net power injections, which
are calculated as power supplies minus load demands, have un-
certainties related to DGs. In this paper, net power injections are
modeled by complex affine numbers as shown in (25):

(25)

The procedure of the proposed CATFBS method is similar
to the traditional unbalanced three-phase forward-backward
sweep power flow method [30], [31], which includes the fol-
lowing three steps. The flowchart of the proposed CATFBS
method is shown in Fig. 4.
1) Nodal Current Calculation: First, we set initial three-

phase voltages at each bus, which usually can be set as nominal
voltage values. Starting from the end bus, the complex affine



WANG et al.: UNCERTAINTY TRACING OF DISTRIBUTED GENERATIONS 3057

Fig. 4. Flowchart of the proposed CATFBS algorithm.

form of current injections in each phase at each bus can be cal-
culated via (26):

(26)

2) Backward Sweep: This step aims at updating current
values towards the root bus. Starting from the end bus and
using the Kirchhoff's current law, the branch current can
be calculated via (27). For each branch, the current injection

can be calculated by (28), where and are 3 3
matrix, which are determined by the connection topology of
three-phase transformers or lines [29]:

(27)

(28)

3) Forward Sweep: This step aims at updating nodal volt-
ages. Starting from the root bus and moving towards the end
bus, the downstream voltage can be calculated via (29), where

and are 3 3 matrix, which are determined by the con-
nection topology of three-phase transformers or lines [29]:

(29)

The iterative procedure between the forward sweep 2 and the
backward sweep 3 continues until voltage values in two succes-
sive iterations are close enough as determined via (30), where

is the upper bound of , is the lower bound of , and
is the iteration index, . is the node number of

the distribution system, :

(30)
In order to illustrate the effectiveness of the proposedmethod,

a Monte Carlo method based stochastic three-phase power flow
is used for comparison. Procedures of the Monte Carlo simula-
tion based stochastic three-phase power flow are summarized as
follows.
1) Generate random numbers using Mersenne twister [32]

that follow the uniform distribution [0, 1], and use the
inverse transform algorithm [33] to generate random DG
power outputs following the uniform distribution, which
yield a reliable solution intervals [20].

2) Run the deterministic unbalanced three-phase for-
ward-backward sweep power flow calculation using the
DG power output samples obtained in Step 1.

3) Repeat Steps 1–2 for runs, and calculate the power flow
statistics. is the total number of Monte Carlo samples,
which is usually in the order of or higher for achieving
an acceptable simulation accuracy.

B. Impacts of DGs on Bus Voltages

Weather conditions are volatile and uncertain in nature,
which consequently induce power generation uncertainties
from wind turbines and photovoltaic panels. Considering
DGs connected to a -bus distribution power system, power
outputs are expressed in affine forms ( ).
Power injections in other buses are deterministic and are ex-
pressed as ( ). Bus voltages of each phase
can be calculated via the CATFBS method. ( )
is a function of ( ) in (31):

(31)
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Fig. 5. One-line diagram of the modified IEEE 13-bus system.

According to (14), the RIUVO of DG at bus is calculated
as (32). RIUVO can be used to evaluate the impacts of each DG
on uncertainties of voltages on each phase at individual buses:

(32)
When multiple DGs are connected to a distribution system,

the total relative influence of uncertain variables on outcome
(TRIUVO) can be used to quantify the impacts of individual
DGs on the entire system as (33), where represents the
slack bus, and is the real non-negative coefficient in the range
of [0, 1], which is used to identify the importance of individual
buses. For instance, indicates that bus is a key bus:

(33)

V. SIMULATION RESULTS
The proposed method is implemented using C++ on an Intel

Core Q8400 CPU 2.66-GHz personal computer and is evaluated
via the modified IEEE 13-bus system and a modified 292-bus
system.

A. IEEE 13-Bus System
In this section, the modified IEEE 13-bus system is used to

illustrate the effectiveness of the proposed CATFBS method.
Since the original IEEE 13-bus system does not have renewable
energy, the system is modified by adding one three-phase wind
farm (DG2) with the installed capacity of 300 kW at bus 675,
one three-phase photovoltaic panel (DG3) with the installed ca-
pacity of 400 kW at bus 684, and one photovoltaic panel (DG1)
with the installed capacity of 200 kW to phase A at bus 634.
The total load demands are kW kvar in phase A,

kW kvar in phase B, and kW kvar
in phase C. The one-line diagram of the modified IEEE 13-bus
system is shown in Fig. 5.

Fig. 6. Wind speed profile.

Fig. 7. Solar radiation profile.

In order to illustrate the effectiveness of the proposed
CATFBS method, the following three cases are studied. In all
three cases, bus voltages obtained by the proposed CATFBS
method, including real and imaginary part, are compared with
those calculated via the Monte Carlo simulation.
1) Case 1: Assuming that bus 634 and bus 684 have the same

weather condition. Thus, the output of DG1 and DG3 show the
same uncertainty patterns. Wind speed at bus 675 and solar ra-
diation follows the profiles shown in Figs. 6 and 7. Based on
data in Figs. 6 and 7, at 11:00 am, the wind speed interval is
[11.001, 11.567] m/s, and the solar radiation interval is [252,
308] kW . Thus, the corresponding power output intervals
are [99, 121] kW at bus 634, [202.5, 245.5] kW at bus 675, and
[210.6, 244.9] kW at bus 684. Thus, the affine forms of power
outputs are , ,
and , respectively.
2) Case 2: The output of DG1 and DG2 are the same as those

in Case 1, while the output of DG3 is ,
which represents more uncertainties than in Case 1.
3) Case 3: DG1 and DG3 are connected to the same buses

as those in Case 1, while DG2 is connected to bus 680 instead
of bus 675. The output of DG2 is the same as that in Case 1, i.e.,

.
Fig. 8 shows the real component values of voltages obtained

from the proposed CATFBS method and the Monte Carlo
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Fig. 8. Voltage results by the proposed CATFBS method and the Monte Carlo
method with the sample size of (Case1).

simulation for Case 1. As shown in Fig. 8, results from the
Monte Carlo simulation are all within the uncertain intervals
obtained from the CATFBS method. The upper and the lower
bounds of Monte Carlo simulation are set as the minimum and
the maximum values obtained in Monte Carlo simulation itera-
tions. Thus, the intervals obtained from the proposed CATFBS
method can fully reflect the impacts of DG uncertainties on
power flow results. Affine arithmetic is able to keep track of
dependency between operands and sub-formulae. As a result,
the affine arithmetic derives more accurate results, i.e., tighter
bounds on computed quantities, than those obtained via the
interval arithmetic.
Table II summarizes the CPU times for the CATFBS solu-

tion, the conventional deterministic power flow solution, and the
Monte Carlo simulation. It shows that the CATFBS method is
about 16 times faster (i.e., 0.43 s vs 7.22 s) than theMonte Carlo
method with the sample size of . As the number of Monte
Carlo samples increase, the CPU time for the Monte Carlo sim-
ulation would further increase. As shown in the last row of
Table II, when the sample size is increased to , the CPU
time is about 10 times higher than that of the sample size of .
In comparison, the Monte Carlo method simulates uncertainties
via multiple scenarios. However, it suffers from computational
burdens because the accuracy of the Monte Carlo simulation
relies on large sample sizes. On the other hand, the proposed
CATFBS method has the advantage in terms of better compu-
tational performance for handling uncertainties. Moreover, the
Monte Carlomethod does not work well when probability distri-
butions of uncertainties are unavailable or inaccurate due to in-
adequate statistical information, which is often the case in power
industrial applications. In these situations, the CATFBS turns
out to be a powerful and efficient method.
The last row of Table II shows the iteration number of the

conventional deterministic method and the proposed method.
The CATFBS has shown good convergence characteristics, the
iterations of which is even less than the deterministic one in
some cases.
For real-time operation of distribution systems, the interval

results (bus voltage intervals) with the consideration of input
uncertainties are useful but may be inadequate. Besides bus
voltage uncertainties, system operators may also want to figure

TABLE II
CPU TIMES FOR DIFFERENT METHODS IN CASE 1

Fig. 9. The A phase voltage RIUVOs of individual DGs (Case1).

out the contributions of individual DGs to the output uncer-
tainty. By using CATFBS and the RIUVO, system operators can
evaluate the impacts of individual DGs on uncertainties of bus
voltages and, in turn, are able to determine proper regulation
priorities.
Figs. 9 and 10 show the voltagemagnitude RIUVOs of phases

A and B for individual DGs in Case 1, respectively. The RIUVO
values are expressed in percentages. The buses where the DGs
are connected to are mostly affected by DG uncertainties. As
shown in Fig. 9, for phase A, the RIUVO of DG1 at bus 634
is 53.8%, DG2 at bus 675 is 54.9%, and DG3 at 684 is 37.4%.
On the other hand, single-phase DGs mainly impact the phases
where they are connected to. For instance, DG1 is connected to
phase A, and the phase A RIUVOs of DG1 are all larger than
those of phases B and C. RIUVO values derived from the pro-
posed method can thus be used to compare the impacts of un-
certainties of individual DGs. For instance, as shown in Fig. 9,
voltage uncertainty of bus 671 is mainly induced by DG2, while
DG3 has less impact and DG1 has the least impact. The value
of RIUVO would reflect the relative influence of uncertain vari-
ables on output. From Fig. 9, it can be drawn that the uncertainty
of DG1 has the largest impact on bus 634, the uncertainty of
DG2 has the largest impact on bus 675, and the uncertainty of
DG3 has the largest impact on buses 652, 611, and 684.
Uncertainty levels of DGs and their locations will impact

RIUVO values. As shown in Fig. 11, when the uncertainty of
DG3 is increased in Case 2 while those for DG1 and DG2 are
kept the same as in Case 1, the RIUVO value of DG3 becomes
the largest. Thus, in Case 2, DG3 has the most impact on un-
certainty among the three DGs. In Case 3, when DG2 is moved
to bus 680 while all other inputs are kept the same as Case 1,
the RIUVO value of DG3 becomes the largest. Thus, in Case 3,
DG3 has the most impact on uncertainty among the three DGs,
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Fig. 10. The B phase voltage RIUVOs of individual DGs (Case1).

Fig. 11. The A phase voltage RIUVOs of individual DGs (Case2).

Fig. 12. The A phase voltage RIUVOs of individual DGs (Case3).

as shown in Fig. 12. Bus 680 is a better location for DG2 in the
case that the system planer wants to shrink the impact of DG2
on uncertainty. Therefore, RIUVO can be used to evaluate the
impacts of DGs uncertainties and determine the best locations
for installing DGs.
Table III reports the TRIUVO in all three cases with .

In all three cases, TRIUVO of DG1 is the least in all three
phases, which indicates that DG1 has the least impact on the
entire system. In Case1, the uncertainty of the system is mainly
caused by DG2 who has the largest TRIUVO; while in Case
2 and Case 3, DG3 has the greatest impact. Using TRIUVO
values, system planners could explore the impacts of DG un-
certainties on the entire system, and thereby select the optimal

TABLE III
TRIUVOS IN DIFFERENT CASES

Fig. 13. One-line diagram of the modified 292-bus system.

planning scheme with the consideration of DG uncertainties.
Furthermore, TRIUVO values can quantify the impacts of un-
certainties and help system operators optimally control and ef-
fectively utilize DGs. In addition, TRIUVO values may be also
valuable for the electricity market. The electricity market has
the principle of “the one who uses the electricity must pay for
it” [34]. With the development of smart grid, a similar principle,
“the one who generate the uncertainty must pay for it”, could be
considered which is quantified by TRIUVO.

B. Modified 292-Bus System

In this section, a modified 292-bus test system as part of
NYSEG's distribution system in Elmira, NY is used to illus-
trate the effectiveness of the proposed CATFBS method. The
one-line diagram of the modified 292-bus system is shown in
Fig. 13. The 292-bus system is modified by adding 9 additional
distributed generations with the capacity of 600 kW each. Lo-
cations of distributed generations are lists in Table IV. A 20%
uncertainty on distributed generations is assumed.
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TABLE IV
CPU TIMES FOR DIFFERENT METHODS IN CASE 1

Fig. 14. Voltage results by the proposed CATFBS method and the Monte Carlo
method with the sample size of (buses ).

TABLE V
CPU TIMES OF DIFFERENT METHODS

Fig. 15. The A phase voltage RIUVOs of individual DGs (modified 292-bus
system).

Fig. 14 shows the real component values of voltages obtained
from the proposed CATFBS method and the Monte Carlo sim-
ulation. As shown in Fig. 14, results from the Monte Carlo sim-
ulation are all within the uncertain intervals obtained from the
CATFBS method.
Table V summarizes the CPU times of different methods. It

shows that the CATFBS method is much faster than the Monte
Carlo method with the sample size of .
Similarly, RIUVO can also evaluate the effect of each DG

uncertainty on node voltage. Taking buses 90, 125, 197, and
280 as an example, assuming that these are key buses that need

monitoring. As shown in Fig. 15, the RIUVO value of DG4 on
Bus-90 is the largest. As a result, Bus-90 is most affected by
DG4. Based on the same principles, Bus-125 is most affected
by DG5, Bus-187 is most affected by DG6, and Bus-180 is most
affected by DG9.

VI. CONCLUSIONS
This paper proposes a complex affine arithmetic based un-

balanced three-phase power flow solution to explore the im-
pacts of DG uncertainties on distribution systems. Based on
the proposed method, the power flow solution bounds, i.e., the
bounds of bus voltages, can be effectively obtained. The index
of RIUVO is used to analyze the impacts of individual DG un-
certainties on nodal voltages. The index of TRIUVO provides
system decision makers an efficient way to analyze the impacts
of individual DG uncertainties on the entire system. The pro-
posed method is tested on the modified IEEE 13-bus system and
amodified 292-bus system. Numerical results show that the pro-
posed CATFBS method is well positioned for efficiently han-
dling uncertainties as compared to the Monte Carlo simulation
method. The CATFBS is useful in both planning and real-time
operations of distribution systems when such decisions are sub-
ject to DG uncertainties.
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