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Abstract—It is of paramount importance that power system
operators be able to assess transient stability in order to realize
a reliable and stable power supply. Transient stability analysis
can be formulated as a large-scale system of differential and
algebraic equations (DAE). However, as power systems are
becoming larger and more complex, it is becoming difficult to
solve DAE in a practical amount of time for system operations.
Parallel computing based on the waveform relaxation method is
an effective solution to achieve faster calculations for transient
stability analysis. To enhance the performance of the waveform
relaxation method, a proper partitioning of the original problem
is essential. Although various partitioning approaches have been
used, those approaches might not be effective when analyzing a
weakly damped low-frequency oscillation. In particular, in the
Japanese 60-Hz power system, this oscillation becomes an impor-
tant problem. To resolve this issue, in this paper we have developed
a new partitioning method that is better suited to analyzing a
weakly damped low-frequency oscillation based on eigenvalue
analysis. Specifically, effective partitioning can be automatically
determined by the proposed index, which can evaluate the validity
of the partitioning. The proposed method was tested using the
Japanese standards of the IEEJ WEST10 system model and the
WEST30 system model.
Index Terms—Eigenvalue analysis, parallel computing, power

systems, transient stability, waveform relaxation method.

I. INTRODUCTION

I N order to secure a reliable and stable power supply, the
criterion is widely used as a reliability index for

power system operations. A requirement of this criterion is
that no outage should occur as the result of a single fault in
a power system under thermal, voltage stability, frequency,
and synchronous stability constraints. This means that system
operators need to perform very heavy computing loads to check
the above constraints under all credible faults. In particular,
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synchronous stability against a large disturbance, which is
defined as transient stability analysis, is recognized as being
very time consuming. A transient stability analysis can be
formulated as differential and algebraic equations (DAE). As
power systems are very large and complex, it is difficult to solve
DAE in a practical amount of time to maintain stable system
operation. Therefore, various parallel computing technologies
have been studied to achieve faster calculations for transient
stability analysis.
The application of the domain decomposition method to tran-

sient stability analysis has been studied as a parallel computing
technique by Magoulès et al. In [1]–[3], an original problem is
split into multiple subproblems in space, and each subproblem
is assigned to a different processor to be solved in parallel. Al-
though one subproblem cannot be solved independently from
other subproblems because they interact with each other, the
waveform relaxation method [4]–[9] enables the problems to be
solved in parallel iteratively. In particular, in these references,
initialization and preconditioning techniques are proposed to
improve convergence. In addition, as shown in [10]–[12], the
global problem is divided not only in space but also in the time
domain by using the parareal method. It has been shown that
the combination of system partitioning in both the space and
the time domain works well for the transient stability analysis
of power systems [11], [12].
In the waveform relaxation method, calculation time is

strongly related to the validity of the system partitioning
pattern in space. In addition, the desired partitioning pattern
might change depending on the characteristic of the problem.
Therefore, an automatic partitioning method is extraordinarily
important, and thus many partitioning methods have been
proposed for application in the waveform relaxation method.
METIS algorithm [13], [14], which focuses on the topology
of a network, is often applied to problems in power system
analysis. However, in transient stability analysis based on
variable-stepsize integration, the required size of the timesteps
is determined by the steepest changing variable. If the system
is divided considering the coherency of generators, a longer
stepsize is available in subsystems where the maximum change
rate is small [15], [16]. Therefore, a partitioning technique
based on the coherency of generators is expected to provide
an effective approach to reducing computing loads. Hence,
for example, in [17] and [18], the coherency of generators is
determined by using the proposed evaluation index, which
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Fig. 1. First swing and multi-swing stability.

focuses on the displacement phase angle between generators
shortly after the occurrence of a fault or the electrical distance
from the fault point. In recent studies, independent component
analysis and sensitivity analysis have been implemented to
determine coherency [19]–[21]. In addition, the usage of a
phasor measurement unit has also been studied [22].
Transient stability can be divided into two categories: first

swing stability and multi-swing stability. The former is used to
analyze the behavior of the system only at first power swing,
while the latter is related to multiple power swings as shown in
Fig. 1. Many partitioning methods for transient stability anal-
ysis as stated above focus, in the main, on first swing stability
because this is more important when a power system is based
on a mesh or loop configuration. However, multi-swing stability
analysis also is important for some power systems, especially if
the power system is based on a radial configuration. In practice,
in the Japanese 60-Hz power system, a weakly damped low-fre-
quency oscillation is generated by a fault, and this might trigger
the multi-swing instability phenomenon. Fig. 1 shows two ex-
amples of this: a stable case and an unstable case. Although the
step-out phenomenon does not occur in either of the cases at first
swing, the oscillation barely converges after the second swing,
and then step-out occurs in the unstable case. Thus, system op-
erators have to analyze not only first swing but also multi-swing
phenomenon, and it takes a long time to properly assess the sta-
bility. The oscillation of the excitation voltage controlled by an
automatic voltage regulator (AVR) is related to this oscillation.
However, with respect to this multi-swing stability analysis, the
partitioning methods proposed in earlier papers might not be
effective because their main aim is to analyze first swing sta-
bility, the characteristics of which are different from those of
multi-swing stability.
It is known that the characteristics of a power swing can

be predicted by eigenvalue analysis around the stable equilib-
rium point. Although the behavior of generators does not coin-
cide with the eigenvalues completely under a large disturbance
in transient stability analysis, there is a possibility that the co-
herency of all the variables can be explained roughly even when
there is significant nonlinearity. Hence, in this paper, we de-
veloped a new partitioning method that is better suited to an-
alyzing a weakly damped low-frequency oscillation based on
eigenvalue analysis. Specifically, an effective partitioning can
be determined by a proposed new index that can evaluate the
validity of the partitioning by using the eigenvector.

The rest of this paper is organized as follows: In Section II, we
outline transient stability analysis and its characteristics in the
Japanese standard IEEJ WEST10 system model. In Section III,
we describe the basis of the waveform relaxation method and
also propose a new partitioning method that is better suited to
analyzing weakly damped low-frequency oscillation. The ef-
fectiveness of the proposed method is tested in Section IV by
using the WEST10 and the WEST30 system models. Finally,
we present our conclusions in Section V.

II. TRANSIENT STABILITY IN THE JAPANESE
60-HZ POWER SYSTEM

A. Transient Stability Analysis

The behavior of synchronous generators and their controllers
in power systems can be represented by differential equations,
while the network calculation, including the stator side of gener-
ators, is represented by algebraic equations. Therefore, transient
stability analysis can be formulated as DAE as follows:

(1)

where

functions of differential and algebraic equations;
differential variables;
algebraic variables;
elapsed time and total simulation time.

The specific equations used in DAE are shown in
Appendix A. Usually, an iterative calculation is needed to
solve an algebraic equation because the function is nonlinear.
Here, the voltage characteristics of active and reactive loads,
which are strongly related to nonlinearity, are often modeled as
constant current and constant impedance models, respectively.
However, these models are based on statistical measurement
data that focus on the steady states, and an accurate voltage
characteristic in the transient state has not been clarified. In
addition, transient stability tends to worsen when the voltage
characteristic is treated as a constant impedance model, as
compared to other models. As the power system model includes
various uncertainties such as load change, it is important to err
on the side of caution when assessing stability in order to ensure
sufficiency. Hence, we make an assumption that the voltage
characteristic of loads is represented by a constant impedance
model in this paper. Under this assumption, the network model
can be reduced and represented by simple linear equations
given by a dense matrix. Therefore, the order of the computing
load for solving this algebraic equation can be represented by
the square of the matrix size, which is equal to the number of
generators.
In order to solve DAE, the implicit Runge-Kutta method is

used in this paper because it is suitable for solving stiff equations
with adaptive stepsizes. Without using parallel computing, the
problem is solved in chronological order, which is referred to as
the sequential method in this paper.
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Fig. 2. IEEJ WEST10 system model (Japanese 60-Hz system model) [25].

Fig. 3. Automatic voltage regulator. [25].

B. Weakly Damped Low-Frequency Oscillation in WEST10

Two power systems are used in Japan, a 50-Hz system in the
east and a 60-Hz system in the west. The 60-Hz system has
a longitudinal structure because western Japan is wider in the
east-west direction. It is known that a weakly damped low-fre-
quency oscillation occurs in this system, and that a simulation
needs to be performed for longer to analyze this. As this ten-
dency can be observed especially when the operating point is
close to the stability boundary, increasing the speed of the anal-
ysis of this oscillation is of prime importance in determining the
available transfer capability.
Against this background, the basic characteristics of transient

stability in the Japanese 60-Hz power system is described in this
section. It is known that we can simulate the above phenom-
enon in the Japanese 60-Hz power systems in the IEEJWEST10
and WEST30 system models [23]–[25]. Both models are re-
duced models of the 60-Hz power system, and the scale of the
WEST30 model is larger than that of the WEST10 model. Al-
though utilization of a large-scale model better shows the ef-
fectiveness of the proposed method, it is not so easy to obtain
a deep understanding of the phenomenon using a large-scale
model. Therefore, the WEST10 system model is mainly used in
this section to analyze the basic behavior of the Japanese 60-Hz
power system. In the simulations described in Section IV, both
theWEST10 and theWEST30 models are used in order to show
the effectiveness of the proposed method.
Figs. 2–4 show the network structure and controllers

equipped with generators (automatic voltage regulator: AVR,
and speed governor: GOV). There are 10 generators and 27
nodes. Each generator, including the AVR and GOV, is modeled
as differential equations with a total of 13 orders. As all the
nodes other than the generator bus are reduced, the number
of variables in an algebraic equation is 40 (four variables per
generator bus: voltage and current in the direct and quadrature
axes).

Fig. 4. Speed governor. [25].

Fig. 5. Phase angle difference in case 1.

To analyze the relationship between the fault conditions and
the characteristics of power swing, the following two fault cases
were examined:

Case 1: fault point A (fault clearing time 80 msec)
Case 2: fault point B (fault clearing time 140 msec)

Because the transient stability is more severe in the case of
a fault at the west end, the fault clearing time is adjusted to be
smaller in case 1.
Fig. 5 shows the displacement phase angle in case 1, where

the phase angle of G0 is treated as a reference. Because the fault
point is near the west end of the system, G1 and G2 fluctuate
significantly compared to the other generators shortly after the
fault occurrence. As the system condition is close to the stability
boundary, the magnitude of the oscillation does not decrease
quickly.
Fig. 6 shows the phase angle of all the generators in case 1.

Not only the displacement phase angle, but also the phase angle
is important when discussing the calculation time because the
available stepsize in the integration by the implicit Runge-Kutta
method is determined by the maximum change rate among all
variables. We can see from this figure that all the generators are
oscillated by this fault. In particular, the oscillation of genera-
tors on the east side, such as G0 and G9, is very large. Hence,
in the WEST10 system model, we can estimate that the conven-
tional partitioning approaches, in which the size of subsystems
are adjusted to be larger at a distant area from the fault point, do
not work effectively.
Fig. 7 shows the fluctuation of excitation voltage controlled

by the AVR. The timing of the fluctuation differs from that in the
phase angle. Although many partitioning techniques are based
on coherency only considering the phase angle, we can see from
this figure that a consideration of other variables is also impor-
tant to recognize the maximum change rate.
Fig. 8 shows the displacement phase angle in case 2. Al-

though the large fluctuations are caused by the fault in the
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Fig. 6. Phase angle in case 1.

Fig. 7. Excitation voltage in case 1.

Fig. 8. Phase angle difference in case 2.

eastern generators just after the disturbance, the same co-
herency as that in case 1 can be seen after the second oscillation.
This tell us that these characteristics are inherent to the power
system characteristics. Specifically, there is a possibility that
eigenvalue analysis around the stable equilibrium point is effec-
tive in predicting behavior in the time domain of multi-swing
stability, regardless of the fault point.

C. Eigenvalue Analysis

The placement of the eigenvalues in this system is shown
in Fig. 9. Generally, the conjugate eigenvalue whose damping
is weakest has a great impact on synchronous stability. In this
case, there is one pair of conjugate eigenvalues whose damping

Fig. 9. Eigenvalues of WEST10 system model.

Fig. 10. Eigenvectors related to phase angle and excitation voltage.

is weakest (mode 1) around ( [1/sec], 1.1 [rad/sec]). In ad-
dition, it is known that an autoparametric resonance[26] occurs
between some modes whose frequency are equal to the integral
multiple each other. In the WEST10 system model, frequency
of modes 2, 3 and 4 are equal to the integral multiple of that of
mode 1. Therefore, these modes are oscillated with mode 1, and
weakly damped low-frequency oscillation is caused by this au-
toparametric resonance as shown in Fig. 5. As described above,
the weakly damped low-frequency oscillation caused by the in-
teraction of multiple modes is defined as the dominant mode in
this paper.
The eigenvectors corresponding to mode 1 and 4 are shown

in Fig. 10. In practice, a single right eigenvector relates its asso-
ciate oscillation mode to all the state variables. However, only
the state variables related to phase angle and excitation voltage
are shown in this figure because the magnitude of factors re-
lated to these variables is much larger than that of the other fac-
tors. Based on this analysis, we can estimate the behavior of
the system in the linear region around the equilibrium point.
Fig. 11 shows the one cycle of the estimated oscillations re-
lated to the phase angle and the excitation voltage. Here, they
are derived by composition of the above four modes supposing
that amplitudes and phase angle of their modes are the same.
Compared to Figs. 6 and 7, we can see that tendency of the co-
herency can be well predicted by eigenvalue analysis, although
their behavior does not coincide perfectly due to the impact of
the nonlinear characteristics. By utilizing this fact, a new parti-
tioning approach based on the eigenvalue analysis is discussed
in Section III.
Finally, the robustness of the eigenvalue analysis is dis-

cussed below. Both eigenvalues and eigenvectors can change
depending on the operating point, such as load change or
network reconfiguration caused by the actions of protective
relays. Fig. 12 shows the estimated dominant swing mode
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Fig. 11. Linear prediction by using eigenvectors (original system).

Fig. 12. Linear prediction by using eigenvectors (load change case).

related to phase angle and excitation voltage supposing that
all the loads and generation output are reduced by 10%. Here,
the dominant mode is composed by some modes which are
corresponding to from mode 1 to mode 4 in the original system.
Actually, the maximum change rate of the generating output in
conventional thermal generating plants is around 10%/10 min.
Considering that the change rate is smaller in the case of some
other generating plants such as nuclear power, this setting can
be regarded as a kind of worst case in which the system load
changes rapidly in 30 min or 1 h. From Figs. 11 and 12, we
can see the tendency of the coherency do not change largely,
although the order of the coherency becomes different in some
generators regarding excitation voltage. Here, it should be also
noted that the amplitude of the oscillation is not important.

From a viewpoint of recent penetration of distributed gener-
ators such as photovoltaic generations and wind turbines, the
system state might change faster than above assumption due to
their uncertain and rapid fluctuation. In particular, if systems in-
clude many wind firms and their output change dramatically, for
example, due to the cut-off operation of wind turbines, its im-
pact would be given to the eivenvectors. However, in this study,
it is supposed that the proposed method is mainly applied to
Japanese power system, and the main target of the renewable
energy integration is photovoltaic generations in Japan. Hence,
the above situation is not considered in this paper supposing that
the smoothing effect works effectively by the uniformed distri-
bution of photovoltaic generations.
Next, the impact by the system reconfiguration was also

tested supposing the transmission line between node 11 and
node 12 was decreased by half. As many transmission lines
are reduced and represented by a single line in the WEST10
system model, this assumption should be sufficiently large.
However, even under such a large disturbance, the difference
in the dominant mode was limited to the same extent though
the results are omitted here.
As above, in the case of the Japanese 60-Hz power system,

we can see that there is a strong robustness in the eigenvalue
analysis. Although it is better to recalculate the eigenvector ac-
cording to the change of the operating point, the same eigen-
vector would be also available during several hours when the
recalculation is not in time.

III. PARTITIONING TECHNIQUE FOR WAVEFORM
RELAXATION METHOD

In the waveform relaxation method, the original system is
split into multiple subsystems, and each problem is indepen-
dently solved by the sequential method in parallel by different
processors. After calculations at all subsystems have finished,
the waveforms are exchanged between neighboring subsystems,
and a converged solution is obtained by repeatedly applying this
procedure. Therefore, the required calculation time in each iter-
ation depends upon themaximum calculation time in all the sub-
systems as the Gauss-Jacobi algorithm is applied in this paper
(see Appendix B for details). In other words, a balanced com-
puting load on all processors is important to achieve an increase
in speed, and the load balance strongly depends on the par-
titioning. Hence, the purpose of the partitioning method is to
improve the load balance between all subsystems to maximize
the advantage of the adaptive stepsize control in the implicit
Runge-Kutta method.
The setting for the interface condition is shown in Fig. 13.

This is an example in which the global system is divided into
two subsystems at branch 14–15. As shown in this figure, the
overlap concept is applied in this paper. Namely, the waveforms,
which are the voltage fluctuation at nodes 14 and 15, are cal-
culated independently in subsystems 1 and 2, respectively, and
they are updated at the end of each iteration (in addition, the
waveforms at nodes 14 and 15 are used in subsystems 2 and 1,
respectively). For image-building, virtual generators are intro-
duced to the nodes at which the waveforms are used. Apart from
the fact that synchronous reactances do not exist, these virtual
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Fig. 13. Example of interface condition.

generators are treated the same way as other synchronous gen-
erators in algebraic equations.
As denoted in Section II, the coherency of variables tends to

be determined mainly by the dominant swing mode represented
by its corresponding eigenvector several seconds after the fault
clearing time. Hence, the computing load on each processor can
be estimated in advance supposing that the power swing caused
by a fault is similar to the fluctuation of the dominant swing
mode. The behavior of the dominant swing mode is formulated
as

(2)

where is the estimated state variable at generator , variable
, and is the magnitude and phase angle of the dominant
eigenvector at generator , variable .
Of course, the behavior of the power swing is more com-

plex because the transient phenomenon includes various swing
modes and they interact with each other due to the nonlinearity.
However, it can be expected that the above idea will work well
in a case where a major swing mode can be detected as most of
the other modes decrease rapidly and the substantial character-
istic is represented by the dominant mode.
Let us consider the following assumptions:
• The dominant mode continues to oscillate without de-
creasing its amplitude. In other words, the damping rate is
not considered.

• The required number of calculation steps is proportional
to the maximum change rate in all the variables included
in the same subsystem. The validity of this assumption is
discussed using a simulation in Section IV

• In the implicit Runge-Kutta algorithm, it is needed to solve
linear simultaneous equation. Generally, the amount of cal-
culation for this process can be represented as cubic func-
tion. Therefore, the computing load at each timestep is pro-
portional to the cube of the number of generators included
in the same subsystem.

• The computation time in each time window is determined
by the maximum calculation time in all the subsystems
because the Gauss-Jacobi algorithm is applied.

Under the above assumptions, the computing load in each
subsystem is proportional to the product of the estimated
number of calculation steps based on the maximum change
rate and the cube of the number of generators including in the
subsystem. The maximum change rate is derived by differenti-
ating (2) with respect to supposing that the dominant swing

mode fluctuates at a constant speed. Hence, the degree of the
computing load can be evaluated by the following evaluation
index, :

(3)
where

set of subsystems;
set of generators in subsystem ;
set of variables in each generator;
number of generators in subsystem ;
slope and intercept of the approximate line in the
relationship between required number of steps
and maximum change rate.

Based on these results, we can estimate optimal partitioning
using the following procedures:

A. Connection Diagram
The method proposed in this paper should be mainly applied

to power systems that are based on a radial configuration be-
cause the multi-swing stability is more important in those power
systems. To clarify the positional relationship between genera-
tors in radial power systems, a connection diagram in which all
the generators are numbered in series is effective. For example,
although the WEST30 system model includes a loop configura-
tion in part, the positional relationship between generators can
be treated as shown in Fig. 14. Incidentally, the connection dia-
gram for the WEST10 system model is omitted as it is obvious.
The italic numbers next to the generator numbers represent the
partitioning points. If we divide the system into subsystems,
we have to specify at least partitioning points. Although
an initial partitioning pattern can be determined arbitrarily, it
would be reasonable to specify the partitioning points in order
that the number of generators included in each subsystem be al-
most the same because the load balance between subsystems is
important to enhancing calculation speed. In this example, the
system is divided into 6 subsystems by specifying five parti-
tioning points, 3, 6, 9, 12, and 19. For a better understanding of
the connection diagram, some denotations are defined below.
A partitioning point that is on the border of subsystems and
is denoted as . A partitioning pattern can be represented

as a set of partitioning points, for example in this case,
. In addition, a set

of adjacent partitioning points around ,
, is defined. For example, the set of adjacent parti-

tioning points of is represented as . These
definitions are used in the flowchart described later.

B. Eigenvalue Analysis
The eigenvalues and eigenvectors are calculated in advance.

However, this process should be carried out also for other pur-
poses such as PSS design. Thus, it should be noted that an addi-
tional computing load is not needed during actual system oper-
ation. The dominant mode is composed by some corresponding
eigenvectors, whose frequency are equal to the integral multiple
of the conjugate eigenvalue with the largest damping rate. Here,
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Fig. 14. Positional relationship in WEST30.

if needed, knowledge of the characteristics of the system could
be considered to choose the corresponding eivenvectors.

C. Search Algorithm
To search for the optimal partitioning pattern, the following

iterative procedure is introduced. First, the evaluation index is
calculated for all the subsystems based on a specified initial par-
titioning pattern. Next, the evaluation index is recalculated by
shifting each partitioning point in order to improve the evalua-
tion index. Specifically, in the case of Fig. 14, partitioning point
3 is virtually shifted to 2 and 4, and the evaluation index is recal-
culated only within subsystems 1 and 2 for both cases. If either
change improves the evaluation index, the partitioning point is
shifted to that direction. The same procedure is applied to all the
other partitioning points, and, if at least one change is executed,
the same procedure is iterated again. If there is no change, the
partitioning pattern becomes a converged solution that cannot
be improved anymore. The flowchart of this search algorithm is
shown in Fig. 15.

IV. SIMULATION RESULTS

A. System Model and Specifications of Waveform Relaxation
Method
We performed simulations to show the effectiveness of the

proposed method using both the WEST10 and the WEST30
system models. Although simulations using other large models
such as the European interconnected power system model are
also important, we choose the Japanese power system model
because the proposed method is effective mainly for systems
based on a radial configuration.

Fig. 15. Flowchart of the proposed method.

The Gauss-Jacobi algorithm with an overlap in interface con-
ditions is used. To enhance convergence, all the waveforms are
specified before the first iteration by the initialization technique,
and are modified at the end of each iteration by the precondi-
tioning technique[1]–[3]. The entire time domain, 20 [sec], is
divided into 50 time windows. The size of each time window is
0.4 [sec]. The maximum stepsize in the implicit Runge-Kutta
method is 20 [msec]. Thus, at least 20 steps are required in
each time window. The threshold value used to determine the
convergence is set to 0.001 considering the accuracy of the
calculation as denoted later. Finally, the number of available
processors (CPUs) is 4 and 6, in the WEST10 model and the
WEST30 model, respectively. If a large number of CPUs are
available, we can assign multiple CPUs for the analysis of each
subsystem, and the parallel computing technique should be used
to speed up the matrix calculation. However, this kind of par-
allel computing is applicable independently from the proposed
partitioning method. Hence, in this paper, we supposed that the
original system is divided into the same number as the number
of CPUs because we can show the effectiveness of parallel com-
puting by focusing only on the partitioning technique. The com-
munication time between subsystems is set to 50 [msec].

B. Relationship Between Change Rate and Required Number
of Steps
In the previous section, we worked under the assumption that

the required number of calculation steps is proportional to the
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Fig. 16. Required number of steps and maximum change rate.

TABLE I
PARTITIONING PATTERNS (WEST10)

maximum change rate in all state variables. Before showing
the simulation results obtained with the waveform relaxation
method, the validity of this assumption is discussed in this sub-
section. Regarding case 1 as shown in Section II, Fig. 16 shows
the scatter graph of the number of calculation steps and the max-
imum change rate. We can see from this figure that their rela-
tionship is almost linear, and we can specify the approximate
straight line as shown in the figure, whose slope and intersect
are 96.82 steps/40 msec and 475.6 steps, respectively.

C. Simulation Results in the WEST10 System Model

The proposed partitioning technique is applied to the
Japanese WEST10 system model with two simulation cases,
the details of which are shown in Section II. Because only 10
generators are included in this model, the number of candidates
for the partitioning pattern is small. If there is a subsystem that
includes only one generator, the load balance is not correct,
obviously. Hence, by skipping such candidates, we applied
the six partitioning patterns shown in Table I. The proposed
evaluation index and calculation time in each simulation case
are shown in Tables II and III. To analyze the effectiveness
on first and multi-swing stability, the calculation times for
tw=0–6 and tw=7–49 are listed separately. The figure within ( )
represents the ranking of the validity of the partitioning in each
simulation case.
We can see from these tables that the proposed evaluation

index works well because the ranking of the partitioning pat-
terns can be predicted in the period of time for multi-swing

TABLE II
AND CALCULATION TIME IN CASE 1 (WEST10)

TABLE III
AND CALCULATION TIME IN CASE 2 (WEST10)

stability except the ranking 2 and 3. Here, although the parti-
tioning pattern 2 is better than pattern 1, the proposed method
can not predict this order properly. This is due to the fact that
the estimated oscillation based on the eigenvalue analysis has a
margin of error. Specifically, phase angle of generators near the
west-end, such as G1 and G2, do not actually fluctuate in the
multi-swing region as shown in Fig. 6. However, this behavior
is not predicted by the eigenvalue analysis as shown in Fig. 11.
Since it is estimated that their phase angle are also oscillated,
the pattern 1, in which the subsystem 1 has three generators,
was evaluated poorly than in reality.
Regarding the time domain corresponding to the first swing,

the ranking estimated by the proposed method does not coincide
with the actual simulation results. This is due to the influence of
nonlinearity in the first power swing. As for the first swing, it is
expected that the phase angle moves wider as the generator is
closer to the fault point. Therefore, it should be noted that con-
ventional methods, in which the partitioning pattern is decided
based on behavior shortly after the fault or the electrical distance
from the fault point, work more effectively for first swing sta-
bility analysis. By dividing the original system into subsystems,
it is possible to reduce the stepsize in the implicit Runge-Kutta
method in subsystems with a changing rate that is not large. Due
to this effect, the speed increase in both cases was more than 4.0
with four CPUs.
Although the waveform relaxation method is effective in in-

creasing speed, it is possible that the calculation accuracy de-
creases in the case of an insufficient threshold value for a con-
vergence check. Fig. 17 shows the error between the waveform
relaxation method and the sequential method. Due to the accu-
mulation of small errors, the calculation error becomes larger
with time. However, we can see from this figure that it is not
so large and it is assumed that the magnitude of the error is
permissible for actual system operation. The error can be re-
duced by decreasing the threshold value for the convergence
check. Next, Fig. 18 shows the calculation time in each time
window regarding the partitioning pattern 3 and pattern 2, the
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Fig. 17. Calculation error in case 1.

performances of which were the best and second best, respec-
tively. Although the size of each time window was the same, the
required calculation times were different because the required
number of timesteps changed depending on the change rate of
the variables. In partitioning pattern 3, the calculation time of
CPU1 was relatively longer during the initial period of time be-
cause subsystem 1 included three generators in pattern 3, while
it included two generators in pattern 2. However, the calcula-
tion time of CPU1 is not so important because it was sufficiently
small after the first swing and the performance should be eval-
uated considering the dominant long period swing mode. Con-
versely, for CPU3, the calculation time was smaller in the case
of pattern 3 because subsystem 3 included two generators in this
pattern. As a result, total calculation time can be made smaller
by improving the load balance between CPUs by choosing par-
titioning pattern 3 as opposed to pattern 2.
Fig. 19 shows the number of iterations in each time window

in case 1 with partitioning pattern 3, whose performance was the
best, and pattern 4. The partitioning idea with pattern 4 was sim-
ilar to that of conventional approaches in which the coherency
only in the initial period of time was considered because the size
of the subsystem was adjusted to be larger at the side distant
from the fault point. Specifically, the number of generators was
two in all subsystems except for subsystem 4, which had four
generators. Due to the work involved in the preconditioning and
initialization methods, the number of iterations was limited to
five in the case of pattern 3. However, the number of iterations
was slightly smaller in the case of pattern 4 in the latter period of
time. The fact shows that the load balancing technique leads to
the additional interaction between processors. If this interaction
has a high impact on the required number of iterations, there
is a possibility that the speedup obtained by the load balancing
would be decreased. Although this problem was not severe in
the simulation cases in this paper, it must be treated carefully in
applying the proposed method.
Finally, Fig. 20 shows a comparison of the cumulative calcu-

lation time at each time window between pattern 3 and pattern 4.
The figure shows that the calculation time is shorter in the case
of pattern 4 during the initial period of time, especially during
the first and second swing before 4.0 [sec]. After that, however,
the proposed partitioning approach was better because the load
balance between CPUs over a long period of time was consid-
ered in the proposed method.

Fig. 18. Calculation time at each time window.

Fig. 19. Iteration number at each time window (case 1—pattern 3 and 4).

D. Simulation Results in WEST30 and EAST30 System Model
The transient stability analysis is performed on the WEST30

system model supposing that a three-phase short-circuit fault
occurs near generator 4 and that the fault clearing time is 50
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Fig. 20. Cumulative calculation time at each time window.

msec. Here, parameters of all the generators are set to the same
values for simplicity. Fig. 21 shows the phase angle for this
model. As with the case in the WEST10 model, we can see a
large disturbance throughout the systems. The proposed method
was applied to the WEST30 system model. The initial parti-
tioning pattern was set as in Fig. 14.
The simulation result is shown in Table IV. Here, the optimal
partitioning pattern obtained by the proposed method is

. The speed increase obtained by the proposed
method was around 10-fold using 6 CPUs. As above, we can
see that the proposed method is more effective in analyzing
multi-swing stability by using a long period of time.
On the other hand, the simulation was also performed in the

EAST30 system model [23]–[25] supposing that a three-phase
short-circuit fault occurs near generator 1 and 4 (point B) [25]
and that the fault clearing time is 150msec. The EAST30 system
model was the standard power system model of 50-Hz network
in the eastern Japanese power system based on the meshed con-
figuration. As with the WEST30, parameters of all the genera-
tors are set to the same values for simplicity.
Fig. 22 shows the phase angle change for this model. Com-

pared to the simulation cases with WEST10 and WEST30
system models, the size of the oscillation is smaller after the
third swing while the size of the first swing is larger.
We prepared two simulation cases whose partitioning patterns

are shown in Table V. Pattern 1 was determined considering the
coherency of the power swing around stable equilibrium point
without using the search Algorithm in Section III because the
search method was proposed for the systems based on radial
configurations. However, in this case, almost all of the genera-
tors fluctuate as one coherent group as shown in Fig. 22. There-
fore, the number of generators included in each subsystem is
simply adjusted to be the same (7 or 8). Pattern 2 was based on
the coherency right after the fault is cleared in order to increase
calculation speed for first swing stability analysis. To this end,
the number of generators in subsystem 4 is reduced while it is
increased in subsystem 1 which is the farthest from the fault
point.
Table VI shows the calculation time with both patterns. The

calculation speed is faster in the case of pattern 1. However, the
effectiveness of taking the long-term coherency into considera-
tion is smaller in the EAST30 compared to theWEST30 because
the damping rate is larger in this case. In addition, the calcula-
tion speed of pattern 1 is faster even during the first swing be-
cause the phase angle increases right after the fault even in sub-
system 1. Hence, regarding not only the multi-swing stability

Fig. 21. Phase angle (WEST30).

TABLE IV
EVALUATION INDEX AND CALCULATION TIME IN WEST30 MODEL

Fig. 22. Phase angle (EAST30).

TABLE V
PARTITIONING PATTERNS (EAST30)

TABLE VI
CALCULATION TIME IN EAST30 MODEL

but also the first swing stability, the calculation burden becomes
larger at subsystem 1 in the case of pattern 2. From this simu-
lation case, we can see that the weakly damped low-frequency
oscillation becomes more important problem and the proposed
method would be more effective in the power systems with ra-
dial configurations.
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V. CONCLUSION

Parallel computing technology is massively important in re-
alizing the fast analysis of transient stability of very large and
complex power systems. The waveform relaxation method is
an important technique for this purpose, and an effective parti-
tioning method is essential to maximizing performance. In this
paper, a new partitioning technique, which is appropriate for
a calculation over a relatively long period of time, was pro-
posed considering application to the Japanese power system.
The method is based on a eigenvalue analysis and its effective-
ness was tested using the Japanese power system models. The
following knowledge was obtained through the simulation:
• By applying the waveform relaxation method with the pro-
posed partitioning method to the Japanese 60-Hz system
model, the obtained speed increase is more than the number
of CPUs because a longer size for the calculation step can
be allowed.

• The coherency of the power swing is different depending
on the fault point especially during the initial period of
time. However, after several oscillations have finished,
the same coherency as based on the eigenvector can be
observed. Therefore, in the analysis of weakly damped
low-frequency oscillation, it was shown that the proposed
method worked effectively regardless of the fault point.

Areas of future work are as follows:
• The proposed method in this paper is applicable mainly
for systems based on a radial configuration. We should im-
prove our proposed method so that it can work for sys-
tems based on amesh configuration or a loop configuration.
In addition, there is a possibility that the search algorithm
stops at the local solution. Therefore, it should be impor-
tant to develop the global search algorithm.

• In this paper, the number of subsystems, which is the same
as the number of CPUs, was given. However, the number
of subsystems is also an important factor in determining
the calculation performance of the waveform relaxation
method. Therefore, the proposed method should be im-
proved so that it can determine the optimal number of sub-
systems.

• It was shown that the conventional approach was better
than the proposed method for analysis in a short period
of time. Hence, the proposed approach should be devel-
oped so that there is automatic adjustment of the parti-
tioning, which would enhance the calculation efficiency
by changing the partitioning pattern from the conventional
one to the proposed one at appropriate timing.

• The waveform relaxation method can be applied also in
the time domain. Automatic partitioning should be done
not only in space but also in time for maximum utilization
of the CPUs.

• The voltage characteristic of loads is treated as a constant
impedance in this paper. However, the proposed method
needs to be able to treat other load models such as constant
current and constant power.

APPENDIX A
BASIC EQUATIONS FOR TRANSIENT STABILITY ANALYSIS

Differential Equations [27]: The following differential
equations are used in this paper to model the behavior of the
synchronous generator:

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

where

phase angle difference;
rotor speed and its reference value;
inertia constant and damping coefficient;
mechanical input and electrical output;
transient, subtransient quadrature internal
voltage.
transient, subtransient direct internal voltage;
transient, subtransient quadrature inductance;
transient, subtransient direct inductance;
leakage inductance;
transient open-circuit, direct time constant;
subtransient open-circuit, direct time constant;
transient open-circuit, quadrature time
constant;
subtransient open-circuit, quadrature time
constant.

Algebraic Equations [27]: Under the assumption that the
voltage characteristics of loads are represented by a constant
impedance model, the network calculation becomes a simple
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linear calculation. First, the direct and quadrature internal volt-
ages at node on the rotator side, , are given as

(12)

(13)

These internal voltages can be transformed to the stator side,
, as follows:

(14)

Then, we can derive the network voltage and current by solving
the following linear algebraic equations:

(15)

...
...

...
. . .

...
...

...

(16)

where

output impedance;
driving-point conductance,
susceptance at node ;
transfer conductance, susceptance at
branch - ;
direct, quadrature-injected current;
direct, quadrature voltage.

APPENDIX B
BASIC EQUATIONS FOR WAVEFORM RELAXATION METHOD

In the waveform relaxation method, the original problem is
divided into multiple subproblems in space, and each problem
is assigned to different processor. On the border of the adjoining
subproblems, the interface variables, which are called wave-
forms, are defined as shown in Fig. 13. The entire time domain
is also divided into multiple time windows. DAE for each sub-
problem is solved independently from those of other subprob-
lems for each time window, then the waveform information is
exchanged between adjoining subproblems. If the update of the
waveform converges, the calculation proceeds to the next time
window.
The specific algorithm is as follows:
Step 0: The original system is divided into multiple sub-

systems based on the partitioning points. The number of sub-
systems is defined as . The entire time domain is also
divided into multiple time windows, . Set .

Step 1: Estimate the initial waveform of each subsystem
, , by using the linear calculation pro-
posed in [1]–[3].

Step 2: Solve DAE for each subsystem described by
the following equation based on the Gauss-Jacobi relaxation
method:

(17)

where

differential variables at iteration , subsystem ;
algebraic variables at iteration , subsystem ;
waveform at subsystems adjoining subsystem
at iteration .

Step 3: If the following convergence condition is satisfied,
end the calculation:

(18)

where is the maximum and allowable value of the
correction, or set and go to step 1 again.
See [4] for details on the waveform relaxation method.
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