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Regional Carbon Emission Management Based
on Probabilistic Power Flow With Correlated

Stochastic Variables
Xu Wang, Yu Gong, and Chuanwen Jiang

Abstract—Most existing carbon emission management strate-
gies only control the total carbon emission without focusing on
both the regional carbon emission and the stochastic properties of
the system. Correlated regional loads and unpredictable renew-
able energies in the power system make regional carbon emission
management (RCEM) increasingly challenging and necessary.
A complex multi-objective RCEM model based on probabilistic
power flow (PPF) considering correlated variables is contributed
in this paper. The three objective functions to be minimized are
1) the cost of electricity generated, 2) the total carbon emission, and
3) the carbon emission difference among regions which reflects the
regional carbon emission imbalance from the supply side. A new
clonal selection algorithm (CSA) coupled with a fuzzy satisfying
decision method and an extended point estimate method
(PEM) is proposed to solve this multi-objective RCEM model.
The proposed method is illustrated through IEEE 30-bus, IEEE
118-bus and simplified Shanghai case studies. The proposed model
can help reduce the total carbon emission, control regional carbon
emission, prevent probabilistic congested lines from overloading,
and choose the most suitable region for wind farms (WFs).

Index Terms—Carbon flow tracing, multi-objective optimiza-
tion, probabilistic power flow, regional carbon emission.

I. INTRODUCTION

T HE growing energy demand increases the greenhouse gas
(GHG) emissions greatly, which has caused the earth to

warm [1]. Worldwide, the electric power sector accounts for
a rapid increasing percent of the total GHG emissions, which
will pose a great threat to our human society. In addition,
contributes 77% of the total GHG effects [2]. Carbon emission
management has attracted more global attentions currently.
Optimal dispatching with low-carbon sources and demand

side management (DSM) are two main approaches to reduce
the carbon emission. Essentially, DSM reduces the carbon emis-
sion level [3] through improving the energy efficiency and de-
mand response [4]. Generally, frequently interactive DSM re-
quires higher payouts than just rescheduling generation from the
supply side.
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As a consequence, optimal dispatching with low-carbon
sources is a better choice. The environmentally constrained
optimal dispatch method has been thoroughly studied in recent
years. A traditional low-carbon dispatch model combined with
the impact of wind power was presented in [5]. In [6], [7],
the environmentally constrained optimal dispatch model took
the major operating characteristics of a capture power
plant into account. As its high ‘efficiency penalty’, an emission
concerned wind-electric vehicle coordination dispatch model
[8] was proposed. Also, wind power and coal-fired generation
were coordinated in the day-ahead scheduling [9]. Though a
useful tool in both fuel saving and carbon emission reduction,
wind power increases the uncertainties of the power system.
However, these researches just focus on the optimal dispatch
under low-carbon economy, neglecting of other factors such as
PPF and RCEM problems.
With China's huge investments in the low-carbon and sustain-

able energy, more highly stochastic and unpredictable system
operating conditions will be imposed to system operators. PPF
method, as a probabilistic analysis tool, is urgently needed. The
PPF method was first proposed by Borkowska in 1974 [10].
Many papers [10]–[22] have been published in this interesting
area. The discrete convolution technique, proposed in [22], is
not only computationally intensive but performs badly in pro-
cessing nonlinear problems. For nonlinear load flow equations,
the computation burdens can be greatly relieved using PEM
[13]–[16]. Actually, nodal powers within the same region may
be correlated. The multivariate Gram-Charlier Type A series in
[21] can be applied to solving this problem. Recently, the Gram-
Charlier expansion has been widely used to estimate the proba-
bility density function (PDF) [18], [19]. However, this method
produces probability distribution calculations greater than 1.00
and has serious convergence problems for non-Gaussian PDF,
especially for wind power [23]. So the Cornish-Fisher expan-
sion in [23], [24] is used in this paper.
This paper presents the concept of RCEM. The application

of RCEM can balance the carbon emission in different regions
with the total cost and carbon emission under control. Through
RCEM, one region of a city can be prevented from over pol-
luted, which may incur protests from citizens in that region and
limit the dispersion of the pollutants. Only wind power is in-
cluded in RECM for its typicality. Practically, RCEM problem
is a multi-objective optimal PPF problem with correlated input
random variables (IRVs). It can be divided into two parts, one is
PPF with correlated IRVs and the other is multi-objective opti-
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mization. For the first part, an extended PEM [14]–[16] is
applied for its best performance in processing correlated IRVs.
For the second part, a novel CSA coupled with a fuzzy satisfying
decision method is proposed. What's more, a carbon tracing
model [26] is used to reveals the regional supply-demand im-
balance which can guide the future grid planning in RCEM.
This paper is organized as follows. The mathematical formu-

lations of RCEM are presented in Section II. Section III gives
the PPF model coupled with correlated IRVs. In Section IV, the
method to process uncertainties and correlations of the IRVs
is proposed. Section V gives the CSA method coupled with
a fuzzy satisfying decision method. Sections VI and VII pro-
vide two case studies. Finally, Section VIII provides the rele-
vant conclusions.

II. MATHEMATICAL FORMULATIONS OF RCEM

The RCEM is a multi-objective optimization problem bal-
ancing the relationships among the electricity generation cost,
the total carbon emission and the regional carbon emission
with the system constraints satisfied for one day. This section
presents the multi-objective RCEM model.

A. Objective Function

The RCEM model is proposed at the average load level for
one day and includes three minimum objective functions pre-
sented as follows.
1) Electricity generation cost in a day:

(1)

where is the number of the traditional power gen-
erators (TPGs), is the cost function of TPG ,

is the expected active power generated by TPG ,
is the number of the buses with WFs,

is the cost function of bus with WFs, and is the
expected active power generated by bus with WFs.

2) Total carbon emission produced in a day:

(2)

where is the expected carbon emission produced
by TPG , and is the expected carbon emission
produced by bus with WFs.

3) Carbon emission difference among regions in a day:

(3)

where is the number of regions, and are the
expected carbon emission in region and , respectively.
This is an index reflecting the carbon emission imbalance.
The lower the index, the more balanced the carbon emis-
sion in each region is. The higher the index, the more se-
rious some region is polluted.

B. Constrains and Limits

1) Power flow equations:

(4)

where , and are the active power, reactive power
and voltage amplitude of bus , respectively; is the
number of buses; is the phase angle difference between
bus and and are conductance and susceptance
between bus and .

2) Power constraints of TPGs:

(5)

where and are the minimum and maximum
active power of TPG ; and are the min-
imum and maximum reactive power of TPG ; and

are the active and reactive power of TPG .
3) Bus voltage limits:

(6)

where denotes the probability of the event ;
and are the lower and upper bound of voltage ampli-
tude of bus ; is the voltage amplitude of bus ; is the
confidence level of the bus 's constraint.

4) Line power flow limits:

(7)

where are the upper limit of transmission power
of branch ; is the power flow of branch ; is the
confidence level of the branch 's constraint; is the
number of the branches.

In the above formulas, the superscript ‘ ’ denotes the expec-
tation of the random variables. The RCEM model is proposed
for one period, such as a day or a week. Moreover, it can also
solve the RCEM problem in several periods through summing
up the objective functions in different periods and adding to-
gether ramping constraint of generators which is an chance con-
straint similar to (6) and (7). This chance constraint is omitted
for only one period is studied in this paper.

III. PROBABILISTIC POWER FLOW

A. Overview

Mathematically, the power flow problem [10]–[24], deter-
mining the operation conditions of a power system, is:

(8)

where is the vector of output variables calculated through the
power flow function , and is the vector of input vari-
ables representing the power injection at every bus except for
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the slack. The power flow problem becomes a PPF problem ac-
counting for the inherent uncertainty of the input vector .

B. PEM
PEM provides the best performance in processing

a high number of IRVs, both continuous and discrete, among
different PEMs [15], [16]. Moreover, the PEM can also
process correlated IRVs [14]. Considering there are IRVs and
output random variables in the system, (8) can be rewritten as:

(9)

where and . The first
four central moments of is used to approximate to the PDF of
by three points. Each point is a pair with ,

2, 3, composed of a location where the corresponding
is to be estimated and a weighting factor which measures
the impact of this estimation on the random behavior of . The
locations can be calculated by:

(10)

where and are the mean and standard deviation of ,
and is the standard location given by [14]:

(11)
The parameters and are the coefficients of skewness
and kurtosis of , and can be computed as:

(12)

For each location , the corresponding weighting factor
are expressed as [14], [15]:

(13)
For each pair , the th component of the solution
vector of the power flow estimation is calculated as follows:

(14)

Then, the th raw moment of can be estimated as [14]:

(15)

where stands for the expectation operator. Note that the
third location of exactly equal to its mean according to
(11). Then (15) is modified to:

(16)

The deterministic power flow of a system with IRVs needs to
be calculated for times. So it is called PEM.

C. Cornish-Fisher Expansion
All the moments of a random variable obtained through

the above PEM can be used to approximate its PDF
accurately through Cornish-Fisher expansion [23], [24], which
is related but superior to Gram-Charlier expansion. However,
Cornish-Fisher expansion has two pitfalls: one is exceeding
the domain of validity of the expansion and the other is con-
fusing the skewness and kurtosis parameters of the calculated
results with the actual ones [34]. In Section VI-B, it is proved
that the data used are within the domain of validity of the
Cornish-Fisher expansion and the impacts of the errors of
the skewness and kurtosis parameters on the approximate are
quite small. So these two pitfalls are avoided. The theoretical
deduction of Cornish-Fisher expansion can refer to [25].
Using the first five cumulants, the can be computed as:

(17)

where are the CDF of standard normal distribution;
and are the mean and standard deviation of ; is the th
order cumulant of which can refer to formula (12) in [23]. The
accuracy of this method regarding to the Monte Carlo method
is demonstrated in Section VI-B.

IV. UNCERTAINTIES AND CORRELATIONS PROCESSING
To simulate the uncertainties of the IRVs, such as loads and

wind power, probabilistic models are established. As the corre-
lations among IRVs significantly affects the power flows [14],
[28], an improved PEM capable of managing the corre-
lations, is introduced.

A. Probabilistic Correlated WFs Model
The output of WFs at bus depends on the wind speed gen-

erally considered to follow the Weibull distribution. Under the
assumption that the joint moments over than 2nd order are zero,
the joint output of the correlated WFs at bus can be obtained
through the correlated wind speed.
The correlated wind speeds of the

WFs at bus can be generated via the method as fol-
lows:
1. Generate a matrix of independent standard

normal distributed random variables
( represents the sampling times).

2. For the desired correlation coefficient matrix of the
wind speeds, the modified correlation coefficient matrix

by the Nataf transformation [20] are obtained using
the Formula (22) and (23) in [14]. Then decompose
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by the Cholesky decomposition method [14] into
.

3. Using the transformation and the inverse Nataf
transformation , the final sampling ma-
trix with
Weibull distributed variables and correlation coefficient
matrix is obtained.

The wind speed vector from the th column of deter-
mines the output column vector of WF with

wind turbine generators (WTGs) at the bus :

(18)

where is the rated power of a single WTG; , and
are the cut-in, rated and cut-out wind speed, respectively.
Then, the output sampling matrix is obtained

by:

(19)

The mean and standard deviation of WFs' output can be cal-
culated by:

(20)

where is the th element of . The th ( )
order standardized central moments of the bus with WFs can
be calculated as:

(21)

No matter the IRVs are continuous or discrete, the
PEM can be just applied to the uncorrelated ones. Thus, Part B
introduces a modified PEM to process correlated IRVs.

B. PEM for Correlated IRVs

[33] processed the correlated IRVs by using joint moments
and joint cumulants. But the joint PDF of the correlated IRVs
is required, which is hardly obtained in practical engineering.
For this reason, the orthogonal transformation [14] based on
Cholesky decomposition [17] is used to approximate the PPF
with correlated IRVs. The PEM for correlated IRVs
is as follows:
1. Obtain the matrix by Cholesky decomposition using

and , where is the variance-co-
variance matrix.

2. Transform the correlated IRVs into a new set of inde-
pendent variables whose first four central moments sat-

isfy the following equations (under the assumption that the
joint moments of an order higher than two are zero):

(22)

where and are the mean vectors of and ; and
are the standard deviation vectors of and ; is

the m-dimensional identity matrix; ( ,4) are the
coefficients of skewness and kurtosis of ; is the th
row and th column element of .

3. Calculate the new transformed pairs of inde-
pendent defining the new PEM using (10)–(13).

4. Construct the new points in the form
and . Let

, ,2,3, be a matrix each row of which
is one point of the points with from 1 to .
Then transform the points to the original space by

.
5. Calculate the deterministic power flow using (14) for each

row of for times. This step yields the
solution vectors .

6. Estimate the the th raw moment, PDF and CDF of .

V. SOLUTION METHODOLOGY

Firstly, the CSA with hybrid variation strategy is imple-
mented to solve the multi-objective RCEM model. Then the
interactive fuzzy satisfying method is used to convert the
objective functions into a min-max problem.

A. CSA
The CSA in [29] has never been implemented in power en-

gineering. Compared with the standard genetic algorithm, the
CSA can reach a diverse set of local optima solutions while ge-
netic algorithm tends to polarize towards local optima solution.
Thus, the multi-objective CSA using hybrid variation strategy
is adopted. The detailed procedure is as follows:

Step 1: Read the input data.
Step 2: Generate initial populations with the th antibody
satisfying the constraint (5):

(23)

where is the th element of ; is the size of the
populations; is the number of decision variables.
Step 3: Each antibody is cloned times using hybrid
variation strategy to update the populations.
1) The mutation rate and the mutation elements scale of

every cloning operation is determined by:

(24)

where is the current iteration; is the
maximum number of the iterations; ,
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and are the current, maximum and minimum mu-
tation rate; is the number of the mutation el-
ements in the current antibody; denotes the
rounding operation.

2) If the current cloning number ,
random step mutation is applied:

(25)

Otherwise, fixed step mutation is adopted:

(26)
where is a random integer; is a random step
following uniform distribution on the interval [0, 1];

and are the upper and lower limits of the th
decision variable of the th antibody; is a fixed
step; % denotes the operation of reminder calculation.

Step 4: Adjust the new antibodies to satisfy the constraint
(5) and compute PPF. Then check the chance constraints
(6) and (7) by calculating the penalty terms:

(27)
where and are computed by:

(6) satisfied
else

(7) satisfied
else (28)

where ;
; .

Step 5: Modify the original objective functions into the
new objective functions :

(29)

where and are the penalty factors.
Step 6: Calculate the new objective functions using (28)
for each antibody and obtain the Pareto-optimal set through
selecting the antibodies using the Pareto dominant theory.
Step 7: Check the current size of the Pareto-optimal set. If
the current size is larger than the allowed one , elimi-
nate the antibodies from the Pareto-optimal set as follows:
1) Sort the antibodies in ascending order according to .
2) Save the two antibodies which have the maximum and

minimum value and . Then calculate the fit-
ness of others:

(30)

3) Eliminate the antibody having the smallest fitness until
the size of the Pareto-optimal set is reduced to .

Step 8: Update the Pareto-optimal set.
Step 9: Verify the termination criterion. If

, go back to Step 3; otherwise, stop the opti-
mization search and output the optimal solutions.

B. Fuzzy Satisfying Decision Making
To select the ‘best’ compromised solution, interactive fuzzy

satisfying method [30] based on Logistic membership function
(LMF) is used. Each objective function is modeled by:

(31)

where is a linear normalization function; and are the
parameters of LMF which determines the fuzzy value and the
intermediate point for , and here , .
A particular optimal solution based on the preference of

the decision maker is obtained through solving the following
min-max problem:

(32)

where is the Pareto-optimal set; is the th reference mem-
bership value which is a real number in the range of [0,1] and
higher value represents the corresponding objective function is
more important.

VI. IEEE 30-BUS CASE STUDY
The RCEM model is solved for the modified IEEE 30-bus

power system [31], [32] in detail, which consists of 6 genera-
tors, 41 branches, 20 loads and 3 regions. The studies have been
implemented in MATLAB 2012a.

Assumptions
1) Generators and Loads Data: Fig. 1 and Table I show the

locations and detailed generator data [32] used in this paper.
The active power consumption of each load is assumed to be
normally distributed with means equal to the values provided
in [31, Table III] with the value at bus 5 zeroed out (the largest
load in the system makes it difficult to satisfy the chance con-
straints). The test is applied at an average load level for a day
24 hours. So the standard deviation of each load is set to 20% of
its corresponding mean value. The rated capacities of branches
are raised to 1.5 times of the original ones. For calculation con-
venience, the power factor of each load computed from the load
data is kept constant.
2) WFs' Data: All the wind speed data used are considered to

follow the Weibull distribution with scale and shape parameters
8.5, 2.75, respectively. Fig. 2 depicts the mean and standard
deviation of the output of two 15-MWWFs composed by five
3-MWWTGs as Table II shows with the correlation coefficient
increasing from 0 to 1. From Fig. 2, the correlations of the wind
speeds significantly affect the statistical performance of WFs.
WFs have the same expected output when they are independent
or completely correlated. Here, if a bus is integrated with WFs,
the WFs are assumed to be two 15-MW ones composed by five
SL3000 WTGs with a correlation coefficient of 0.9 and a power
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TABLE I
GENERATOR DATA

Fig. 1. IEEE 30-bus system.

Fig. 2. Correlation effect on the WFs' output.

TABLE II
SL3000 WTG DATA

factor 0.9 lagging. More wind power leads to more stringent
constraints which will not be conducive to the case study.
3) Correlations and Parameters Set: Three regions are dis-

tinguished shown in Fig. 1. Correlations among buses are listed
in Table III. The anti-load characteristics of WFs are consid-
ered using a negative correlation coefficient. As is accepted un-
conditionally, wind power is considered to be negative load. So

TABLE III
CORRELATION COEFFICIENT DATA BETWEEN TWO BUSES

Fig. 3. The optimal front set of the objective functions (Case 1).

the correlation matrix of the buses is positive definite. The pa-
rameters of the CSA and the penalty factors are set as
, , , ,

, , , ,
, , , ,
.

A. Application of CSA
The CSA associated with the PEM is applied under

different conditions including changing the confidential levels,
the reference membership values and the WFs' locations. For
these comparative purposes, three cases are applied, namely:

Case 1: WFs are located at bus 11 and 5.
Case 2: WFs are located at bus 11 and 13.
Case 3: WFs are located at bus 11 and 25.

Fig. 3 shows the optimal front set under confidential level
, Case 1. The figure indicates that it costs more

to reduce total carbon emission. Also, we must pay more to de-
crease with the total carbon emission unchanged. The large
range of the solution set provides lots of options for decision
makers.
1) Accuracy of Cornish-Fisher Expansion: To verify the

accuracy and viability of Cornish-Fisher expansion, its re-
sults are compared to those from Monte Carlo method and
Gram-Charlier expansion. Cornish-Fisher expansion, with an
equivalent computation times as Gram-Charlier, has fewer
computation times than Monte Carlo method [19]. Fig. 4 shows
the CDF curves of the power flow in branch 6–8 obtained by
the three methods in Case 1. In the figure, the curve obtained
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TABLE IV
OPTIMIZATION RESULTS UNDER DIFFERENT CONFIDENTIAL LEVELS ( , ,2,3, CASE 1)

TABLE V
DECISION RESULTS UNDER DIFFERENT REFERENCE MEMBERSHIP VALUES ( , CASE 1)

Fig. 4. CDF of power flow in branch 6–8 (Case 1).

by Cornish-Fish expansion is closer to the real distribution
than Gram-Charlier and the largest relative error is less than
1.25% in the interval [0.8, 1] (The confidential level of the
chance constraints is greater than 0.95). Obviously, the two
pitfalls mentioned in Section III.C are avoided. Cornish-Fisher
expansion is more suitable for the system containing the
non-Gaussian PDF of the wind power, instead of Gram-Charlier
expansion.
2) Effect of the Confidential Levels: Table IV lists the ex-

pected outputs of the TPGs and region carbon emission under
different confidential levels. Higher confidential level leads to
higher values of objective functions because higher confidential
level means more stringent constraints which decrease feasible
solutions. For example, when , the outputs of
and are limited as a result of branch limits so the objective
functions have an obvious increase.
3) Effect of the Reference Membership Value: The reference

membership values were set 1 to give equal weight to all the
objective functions in the previous study. However, problems

Fig. 5. Outputs of generators in different cases ( , ,
,2,3).

with non-commensurable objectives always arise. The effect of
the reference membership values on decision results are shown
in Table V. From the table, when and have the same de-
gree of attention, these two objectives increase few with more
attention paid to . It indicates that we can decrease with

and under nearly the same level. Also, Table V can help
decision makers select a compromised solution or the most sat-
isfactory plan based on their preference.
4) Effect of the WFs Locations: Three cases mentioned

above are studied under confidential level
with equal weight to all the objective functions to reveal the
effects of the WFs' locations. Fig. 5 and Table VI provide the
optimization results of the 30-bus system using Case 1, Case 2
and Case 3, respectively. According to the results, Case 1 has
the best performance in the expected objectives and network
losses from the supply side, especially in . As the TPGs
in Region 1 have higher average carbon intensity than the
others, adding the WFs to Region 1 can balance regional carbon
emission more properly than adding it to the other two. Also,
the TPGs with higher carbon intensity are rarely
dispatched and WTGs can somehow increase the output of the
TPGs with lower cost in the same region from Fig. 5.

B. Regional Carbon Emission Assessment
All the cases have been studied from the power supply side.

Most of the time, it is difficult to select the best plan just from
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TABLE VI
OPTIMIZATION RESULTS OF 30-BUS SYSTEM UNDER DIFFERENT CASES ( , ,2,3, )

TABLE VII
CARBON INTENSITY ACCOUNTED FROM THE SUPPLY SIDE AND THE DEMAND SIDE

Fig. 6. Expected carbon emission of 30-bus system at each region.

the supply side. This is because there is little difference in re-
gional carbon emission from the supply side. Also, it is hard to
allocate the cost of RCEM from the supply side. Thus, a carbon
flow tracing model proposed in [26] is applied to determine the
regional carbon emission obligation from the demand side. The
difference between the expected region carbon emission from
both sides is depicted in Fig. 6. Table VII further proves the
rational WFs' locations of Case 1 among the three cases. Ac-
cording to Fig. 6 and Table VII, the performance of different
cases in controlling regional carbon emission from the supply
side is almost the same. But from the demand side, WFs' loca-
tion in Case 1 stands out. The results indicate thatWFs should be
installed in the region with heavier loads and higher carbon in-
tensity TPGs, which can not only help decrease the total carbon
emission but also prevent one of the regions from being polluted
heavily.

VII. IEEE 118-BUS AND SHANGHAI CASE STUDIES
The RCEMmodel is solved for the IEEE 118-bus system [35]

and a simplified Shanghai system to verify the feasibility of the
proposed method in larger and actual systems here.

TABLE VIII
CARBON INTENSITY DATA FOR GENERATORS OF DIFFERENT CAPACITIES

TABLE IX
WFS' LOCATIONS OF DIFFERENT CASES

A. IEEE 118-Bus System
Table VIII gives the carbon intensities of generators used in

118-bus system. Six regions are distinguished covering nodes
1–24, 25–42, 43–65, 66–81, 82–100 and 101–118, respectively.
Six cases of WFs' locations listed in Table IX are applied. All
other parameters are set as the 30-bus case study above.
Table X gives the simulation results from both supply and

demand sides. From the table, Case 3 has the best performance.
So conclusions similar to the 30-bus case study are obtained.
Adding WFs to the region with heavier loads is more conducive
to balance regional carbon emission. Consequently, the pro-
posed method can be also adopted in a larger system.

B. Simplified Shanghai System
A simplified Shanghai system provided by Shanghai Munic-

ipal Electric Power Company is applied in this part. The load
and WFs' data are from May 1, 2013 in Shanghai. Six regions
are distinguished based on the geographic locations, namely: 1,
2, 3, 4, 5, and 6.
Table XI gives the simulation results under different deci-

sions with the same decision making condition as Table V. As
all studies are done on the same system with WFs located in
Region 5 which has the heaviest load, regional carbon emission
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TABLE X
SIMULATION RESULTS OF 118-BUS SYSTEM UNDER DIFFERENT CASES FROM THE SUPPLY SIDE AND THE DEMAND SIDE ( , ,2,3, )

TABLE XI
SIMULATION RESULTS OF SIMPLIFIED SHANGHAI SYSTEM UNDER DIFFERENT DECISIONS ( )

differences from the demand side of different decisions are al-
most the same, 270000 t, not shown in the table. From the table,
we can also find that varies greatly while and have less
difference under different decisions. It indicates that the RCEM
model can be used to reduce the emission of the region heavily
polluted, such as Region 5. The cost allocation of RCEM can
be done based on the region carbon emission of the supply side
and demand side. So the proposed RCEMmodel can not only be
adopted in the actual system, but also have a promising future.

VIII. CONCLUSIONS
A new multi-objective RCEM model combining PPF with

correlated random variables is proposed in this paper. Different
from the traditional ones, a new objective called region carbon
emission difference is added to control equilibrium degree of
contamination. From the simulation results, relevant conclu-
sions can be drawn as follows:
1. The correlations do affect the moments of the WFs' output.

Higher correlation coefficients lead to larger standard de-
viations of WFs' output. But the WFs have nearly the same
expected output when the correlation coefficient is 0 or 1.

2. Cornish-Fisher has better performance in approximating
the real distribution than Gram-Charlier for PPF problem
with the non-Gaussian PDF.

3. With the increase in confidence levels, the value of the
three objectives will rise for more stringent constraints
which need to be satisfied.

4. Flexible reference membership values make this model
a useful carbon emission management tool for system
operators.

5. WFs should be installed in the region with heavy loads and
high carbon intensity TPGs which can help reduce carbon
intensity from both supply and demand side.

In conclusion, as the RCEM model can be adopted in both
test and actual systems, it provides a useful tool to manage the

regional carbon emission inside a city and evaluate the ratio-
nality of the regional grid planning with wind power.
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