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Abstract—This paper proposes an efficient method for evalu-
ating composite system reliability via subset simulation. The cen-
tral idea is that a small failure probability can be expressed as
a product of larger conditional probabilities, thereby turning the
problem of simulating a rare failure event into several conditional
simulations of more frequent intermediate failure events. In ex-
isting methods, system states are simply assessed in a binary se-
cure/failure manner. To fit into the context of subset simulation,
the adequacy of system states is parametrized with a metric based
on linear programming, thus allowing for an adaptive choice of in-
termediate failure events. Samples conditional on these events are
generated byMarkov chainMonteCarlo simulation. The proposed
method requires no prior information before imulation. Different
models for renewable energy sources can also be accommodated.
Numerical tests show that this method is significantly more effi-
cient than standard Monte Carlo simulation, especially for simu-
lating rare failure events.
Index Terms—Linear programming, Markov chain Monte

Carlo, Monte Carlo methods, power system reliability, rare event
simulation, risk analysis, subset simulation.

NOMENCLATURE

Sets and Indices:

Index for intermediate failure events and
simulation levels.

Intact sample space.

Nested subsets of with threshold .

Target failure domain with threshold .

Total number of simulation levels.

Bus index.

Total number of buses.
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Number of branches in the system.

Set of system components with cardinality .

Set of discrete-state components.

Index for system components.

Index for sampled states within a simulation level.

Number of samples per level.

Index for Markov chains within a simulation level.

Number of Markov chains per level.

Index for sampled states within a Markov chain.

Number of samples per chain.

Total number of samples.

Variables in the Optimization Problems:

Amount of load curtailment for the current state.

Metric for system deficiency defined by (5).

Supplied load at bus .

-vector composed of .

Power generation at bus .

-vector composed of .

Load demand at bus .

-vector composed of .

-vector of generation capacity.

-vector of minimum output of generators.

matrix of power transfer distribution
factors.

-vector of maximum line flow.

-vector of minimum line flow.

Load scale factor in (5).

DI Deficiency Index defined by (8).

Variables in the Evaluation Procedure:

Failure probability.

General response variable.

Level probability.

State variable for the target system.
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th sampled state of the system.

State variable for the th system component.

th sampled state of the th component.

Joint distribution function of .

Marginal PDF/PMF of .

Marginal CDF of .

Random variable uniformly distributed on .

Proposal PDF for component .

Random variable generated by the proposal PDF.

Candidate state of the system.

Standard Gaussian PDF.

Standard Gaussian CDF.

State variable for component in the Gaussian
space.

Acceptance ratio in the Metropolis algorithm.

th generated sample at level 0.

Deficiency Index corresponding to .

th sorted Deficiency Index at level .

Exceedance probability corresponding to .

Seed for the th Markov chain at level .

th state obtained in the th Markov chain at
simulation level .

Deficiency Index corresponding to .

I. INTRODUCTION

M ONTE CARLO simulation (MCS) is widely used in
power system reliability evaluation due to its robustness

to the dimension of the problem, capability of handling con-
tingencies of all orders, and flexibility in accommodating var-
ious power system models and operation modes [1], [2]. Nev-
ertheless, an intrinsic drawback of this method is the low ef-
ficiency in estimating failures with small probabilities. Essen-
tially, information from rare samples that lead to failure is re-
quired for estimation of small failure probabilities. On average it
requires a formidable number of samples before enough failure
events occur, because the number of samples required to achieve
a given convergence criterion is inversely proportional to the
probability of the failure event. This limitation is further exac-
erbated by increasingly interconnected power systemswith high
reliability.
Improving the computational efficiency of composite system

reliability evaluation has been a long-standing interest. Assorted
variance reduction techniques (VRTs) are available, including
stratified sampling, control variates, and antithetic variates [3].
Control variates and antithetic variates reduce variance by con-
structing a correlated variable that has the same mean value

as the original random variable but lower variance [4]. Strati-
fied sampling splits the sample space into several non-overlap-
ping subpopulations called strata before simulation to improve
the representativeness of sampled states [5], [6]. The efficiency
of the above methods relies on an appropriate alteration of the
probability distributions of the estimator, which inevitably re-
quires some prior knowledge about failure before simulation.
Their performance is thus system-specific.
Importance sampling (IS) [7]–[10] is one of the most popular

VRTs applied to the reliability evaluation of power systems. In
IS, an importance sampling density (ISD) is chosen to generate
samples that lead to failure more frequently so as to gain more
information about failure, and the choice of the ISD is crucial to
the performance of IS. Recently, a promising scheme for con-
structing an appropriate ISD in power system engineering based
on cross-entropy (CE) methods has appeared in the literature
[11]–[13]. In the CE-basedMCSmethod, the state variables rep-
resenting generation and transmission equipment are properly
distorted according to a CE-based optimization process. This
method has also been successfully applied to systems with re-
newable energy sources [14]–[16]. In order to get an analytical
update rule for the optimization process, the probability distri-
butions of the system state variables to be distorted are confined
within the natural exponential family.
As an emerging alternative to MCS, population-based intel-

ligent search (PIS) relies on metaheuristics that have a popu-
lation of solutions as its core [17]–[19]. Algorithms originally
developed as optimization tools are utilized to discover states
that have a great contribution to the interested indices. However,
problems associated with the convergence process, prevention
of revisited states, and memory management in PIS methods
still require further research.
In an attempt to solve the above-mentioned limitations, we

introduce subset simulation (SS), a simulation-based reliability
method originally developed for reliability analysis of structures
in civil engineering [20]. Because of its independence of the in-
herent properties of a system, this method is useful for appli-
cations in different areas of science and engineering [21]. Un-
like the VRTs that alter the probability distribution of system
states, SS utilizes a fundamental concept in probability: condi-
tional probability. A small failure probability can be expressed
as a product of larger conditional probabilities of the interme-
diate events, which effectively converts a rare event simulation
problem into a sequence of more frequent ones.
No room is left for intermediate failure events in most of the

existing methods, since system states are simply characterized
as either success or failure [2]. In well-being analysis [22], suc-
cess states are split into the healthy and marginal states. Al-
though the marginal state is a plausible candidate for an interme-
diate failure event, the partition between healthy and marginal
state is inflexible. A higher-level granularity of the degree of ad-
equacy is required in order to apply SS. In this paper, we define
a new metric for system deficiency considering line flow con-
straints by constructing a linear program. This metric reflects
the degree of adequacy of system states, which makes possible
an adaptive choice of intermediate failure events.
Besides the choice of intermediate failure events, efficient

generation of samples conditional on these events is required
by SS, which is generally a highly nontrivial problem. This
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however can be done by a class of powerful simulation tech-
niques called Markov chain Monte Carlo (MCMC) methods
[3]. We customize the modified Metropolis algorithm [20] by
transforming discrete input variables into a standard Gaussian
space via the inversion principle in order to accommodate the
discrete-state components in power systems.
We propose a framework for composite system reliability

evaluation with SS. Since the state space is not altered, this
method is robust to the scale and configuration of the target
system. It requires no prior knowledge about failure before
simulation. Sophisticated models for components of the power
system including multilevel load and renewable energy sources
are also easily accommodated. Apart from reliability indices
such as loss of load probability (LOLP) and expected energy
not supplied (EENS), the probability distribution of the degree
of system adequacy can be obtained without extra computation,
providing useful information for decision-makers in power
system planning.
The paper proceeds as follows. Section II introduces Subset

Simulation and defines intermediate failure events. The mod-
ified Metropolis algorithm is described in Section III. The
proposed procedure for reliability evaluation of composite sys-
tems is presented in Section IV. Various results are illustrated
in Section V, and conclusions follow.

II. INTERMEDIATE FAILURE EVENTS FOR COMPOSITE
SYSTEM RELIABILITY EVALUATION

In this section, we define intermediate failure events for com-
posite system reliability evaluation. After a brief introduction to
subset simulation and how it utilizes intermediate failure events
to simulate small failure events efficiently, we define a metric
for system deficiency taking into consideration the security con-
straints of the transmission network through linear program-
ming. It is proved that this metric is valid for parametrizing
the intermediate failure events of power systems. A sequence
of intermediate failure events can be chosen by varying this
parameter.

A. Overview of Subset Simulation

Subset simulation was originally developed for seismic risk
analysis of building structures subjected to stochastic earth-
quake motions [20], [23], where the problem involved a large
number (theoretically infinite) number of random variables
arising primarily from the time-domain stochastic description
of ground motions. Applications of SS to different disciplines
have appeared, e.g., in aerospace engineering [24], [25], fire
engineering [26], geotechnical engineering [27], [28], nuclear
engineering [29], [30], and meteorology [31]. Performance of
subset simulation in a set of benchmark problems is presented
in [32] and [33].
Subset simulation is based on the notion of representing a

small failure probability as a product of larger conditional
probabilities. Consider a sequence of nested subsets of the
sample space, beginning with the intact sample space and
ending with the target failure domain :

(1)

Failure events reside in subsets are called in-
termediate failure events. As a result, the failure probability

can be written as a product of conditional prob-
abilities:

(2)

By choosing appropriate intermediate failure events, although
is small, and all conditional probabilities

can be made sufficiently large so that they can be efficiently
estimated by simulation. Thus, the problem of simulating rare
failure events in the original sample space can be in principle
replaced by a sequence of simulations of more frequent events
in several conditional probability spaces.
Let be a scalar response variable that depends on the

current system state . In the actual SS implementation, without
much loss of generality, the target failure event is parametrized
by exceeding a specified threshold level , that is,

. The sequence of intermediate failure domains
can then be defined as

where is a sequence of intermediate
threshold values.
The choice of intermediate thresholds determines the values

of the conditional probabilities , and hence the ef-
ficiency of SS. One can use predetermined . But
then we will lose control of the conditional probabilities, which
leads to suboptimal performance. In fact, too big a conditional
probability leads tomore simulation levels , whereas too small
a conditional probability leads to more samples required in a
single level. It is more efficient to choose the thresholds adap-
tively, so that the estimated conditional probabilities are equal
to a fixed value . This can be easily done using the ordered
statistic of the generated samples of (see Section IV). De-
tailed study of the optimal is presented in [34].
For instance, if the failure probability of a certain composite

system , it would be inefficient to simulate by a
direct MCS. However, if conditional simulations are conducted
and thresholds of intermediate failure events are chosen so that

, the efficiency can be
significantly improved.

B. Target Failure Events in Composite Power Systems

For reliability evaluation of generating systems, the response
can be simply chosen as the difference between system load

and the sum of online generation capacity, and chosen as 0.
For composite systems, the target failure events are instead de-
fined as the inability to generate and transport sufficient en-
ergy to satisfy the demands at all bulk supply points without
violating the system operational constraints [35]. Mathemati-
cally, the response is identified with , a nonneg-
ative real number indicating the amount of load curtailment
needed in this state. The target failure domain is defined as

.
Let us first review the process of determining . For

a system state , if no outages happen, or security constraints
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are not violated after a contingency analysis, then .
For those states where violation of security constraints exists,
post-contingency remedial actions such as generation re-dis-
patch and/or load shedding should be conducted. Such actions
are usually modeled as a linear program (3) which minimizes
load curtailment. The DC modeling of the power system is used
in this paper. The calculation of the matrix could be found
in [36]:

(3)

C. Parametrizing Intermediate Failure Events in Composite
Power Systems

It is impossible to create intermediate events in the context of
SS by simply relaxing , because all success states with var-
ious degrees of adequacy collapse into a single that equals
zero. That is, all success states, which constitute the majority
of the samples obtained by a direct MCS and contain a variety
of generation and transmission contingencies, lead to the same
result: .
Although the marginal state in a well-being analysis [22] is a

plausible candidate for an intermediate failure event, the parti-
tion between healthy and marginal state is inflexible. Only one
intermediate failure event is introduced and this choice of inter-
mediate failure event may be far from optimal.
In order to apply SS, a response variable should be chosen

so that the samples generated are driven by this response to grad-
ually populate towards the target failure region. The response
should be defined so that:
1) It should be a multivalued metric. Intermediate failure

events can thus be created adaptively through varying this
metric.

2) Whether the sampled state is a success or a failure can be
determined from this metric. That is, assuming that the less
the , the more secure the system state, there should be a
threshold that and

for a certain state .

D. Constructing a Valid Metric

Constructing a valid metric that satisfies the two requirements
is nontrivial. In fact, an intuitive metric for adequacy—the dif-
ference between the sum of online generation capacity and the
system load—is invalid.
In order to construct such a metric, we modify LP (3) and

base the metric on the modified program. The third constraint is
first removed, which indicates that the generators can supply an
amount of load that is more than actually needed. Then we set

, where is a scalar representing that the amount of
load at all buses are increased or decreased to times of the

original values. Substituting into the objective
function of (3) yields

(4)

which is minimized by the optimization and defined as the
metric for system deficiency.
Given a sampled state of the composite system, the modified

linear program is shown as follows:

(5)

For this linear program only, we assume that all the bus loads
follow the same pattern of variation. This assumption is indis-
pensable in that it ensures , as we will
see later. Notably, decision variables of LP (3) that consti-
tute the vector are replaced by a scalar , which considerably
reduces the scale of this LP.
We will next show that is a valid metric. From the formu-

lation of optimization (5) we can see that satisfies the first
condition listed in Section II-C. For the second condition, we
claim that for a certain sampled state of the system, if
is determined by optimization (3) and is obtained by (5),
then the following equations hold:

(6)
(7)

To prove the above equations, we first show that (6) holds.
Assume that . is always a fea-
sible solution to (5) (both generation and load are set to zero):
Such a feasible solution leads to an objective function

. Since (5) is a linear program, its feasible
region is a convex polyhedron, and its objective function is a
real-valued affine function defined on this polyhedron. Hence,
there exists a feasible solution with objective function

that satisfies . This implies that
. Then, where must be

a feasible solution to (3) because all the constraints are satis-
fied. Substituting into the objective function of (3)
yields . Since load curtailment is a nonnegative value,

is not only a feasible, but also an optimal solution to
(3), and thus .
Next, suppose . Denote an optimal solution to

optimization (3) by . In this case must
hold true for . Therefore, must be a
feasible solution to (5) with objective function , because
we can again verify that all the constraints are satisfied. Since
linear program (5) tries to minimize , we have

.
For (7), since is nonnegative, (6) implies (7).
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E. Generating Intermediate Failure Events With a Deficiency
Index

Through the above metric, various degrees of adequacy cor-
responding to different success states are revealed by system de-
ficiency . One problem is that when load shedding occurs,
although (7) holds, is not necessarily equal to .
The amount of with regard to each sampled state is of
interest to power system planners. It is also related to energy-re-
lated reliability indices such as EENS. We therefore propose a
Deficiency Index (DI) that equals to the amount of load curtail-
ment when the system fails. This index appropriately reveals the
degree of adequacy of a system state:

(8)

When assessing the reliability of the composite power system,
we define the response . After a certain state is
sampled, the LP (5) is first solved to determine the value of .
If , then this state is a failure, and LP (3) needs to be
solved to determine the amount of load curtailment.
All possible states of the power system can be parametrized

with the parameter DI so that the sequence of intermediate
failure events can be chosen by
varying the parameter. That is, intermediate failure domains
can be defined as

(9)

where is a sequence of intermediate
threshold values.

III. EFFICIENT GENERATION OF CONDITIONAL SAMPLES

Besides the determination of intermediate failure events, one
needs to generate samples conditional on these events. Here we
customize theMetropolis algorithm used in the conditional sim-
ulations to accommodate the discrete-state components in com-
posite power systems.
Let the set of system components be , with index and car-

dinality . The components represented by discrete variables
make up a set , and . The vector
indicates the -th sampled state of system. State variables
can be either continuous or discrete variables with marginal
probability distribution/mass functions . Since no limita-
tion is imposed on the probability distribution of the state vari-
ables, could be a discrete variable following Bernoulli dis-
tribution which represents a two-state generator or transmission
line, a discrete variable obeying categorical distribution that
models multilevel load, or a continuous variable following Beta
distribution which represents solar irradiation. Their joint dis-
tribution function is represented by .
In the conditional simulations, one needs to obtain samples

. Although one can use a direct MCS approach to
obtain samples that lie in failure region , it is inefficient to
do so. Here we describe the algorithm for efficiently generating
samples according to the conditional distribution , which
will be used in the SS algorithm (see Section IV). The algorithm
is amodified version of the originalMetropolis algorithm so that
it works even when the number of random variables is large

Fig. 1. Illustration of the proposed transformation.

without suffering from the curse of dimension [20], [37]. The
significance of Metropolis algorithm to power system reliability
evaluation is that we can simulate a sample of the power system
having the conditional distribution , then the next state
of the Markov chain will also be distributed as .
Let , the proposal PDF, be a univariate PDF for

with symmetry property . Generate a Markov
chain of samples from a given sample by com-
puting from as follows:
1) Generate a candidate state : Simulate from the pro-

posal PDFs for each component ,
and compute the ratio . Set
with probability , and otherwise.

2) Accept/reject : If , accept it as the next sample, i.e.,
. Otherwise reject it and .

The above algorithm is suitable for components that are rep-
resented by continuous variables. However, many components
of composite power systems are usually represented by dis-
crete-state models. In view of this, we first transform the dis-
crete variables into the standard Gaussian space according to
the inversion principle. Let be the marginal CDF of ,
then is uniformly distributed on . If we fur-
ther perform a transformation by

(10)

where is the standard Gaussian CDF, then will be stan-
dard Gaussian. Transformation from to is done by the in-
verse of (10), which is illustrated in Fig. 1.
With the above transformation, the modified Metropolis al-

gorithm proceeds as follows:
1) Obtain for all .
2) For components represented by continuous variables, pro-

ceed as before. For , simulate from a continuous
proposal PDF, and compute the ratio ,
where is the PDF of standard Gaussian distribution.
Set with probability , and
otherwise.

3) Get by transforming back into the discrete
space.

4) Accept/reject as before.
The Metropolis algorithm is thus adapted for discrete-state

components. Good candidates for a proposal PDF in a contin-
uous space, for example the uniform andGaussian PDF centered
at the current sample, can be readily adopted in simulating dis-
crete-state systems.
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Fig. 2. Brief flowchart for the proposed evaluation procedure.

IV. PROPOSED EVALUATION PROCEDURE

In this section, we first illustrate the procedure for reliability
evaluation of composite systems via subset simulation. A brief
flowchart is also shown in Fig. 2. Then, the calculation of reli-
ability indices as well as some additional aspects is described.
The readers are also encouraged to refer to [21] for a compre-
hensive view of the subset simulation method.

A. Illustration of the Evaluation Procedure

Input: level probability , and the number of samples per
level . Then the number of Markov chains , and
number of samples per chain . and should be
chosen that and are integers. The number of simulation
levels will be determined in this procedure. Notice that

.
Simulation Level 0 (Direct Monte Carlo)
1) Generate samples of system states

using directMCS. Evaluate all sampled states and calculate
their corresponding with (8).

2) Sort in ascending order to give a
new permutation of DI, denoted by .
The value of gives the estimate of corresponding to
the exceedance probability where

(11)

3) Plot to give the com-
plementary cumulative distribution function (CCDF) of DI

with exceedance probability ranging from to .
The regime for probabilities below shall be further es-
timated by higher levels of simulation.

4) Set to be the threshold for the next inter-
mediate failure event. The intermediate failure events are
thereby adaptively chosen. Let
be the samples of system state corresponding to

. These samples are used as
the seeds for the Markov chains that generate samples
conditional on at simulation Level
1.

Simulation Level (MCMC)
1) Generate conditional samples

from each seed with the modi-
fied Metropolis algorithm described in Section III. This
gives Markov chains, each with samples. The
total number of samples at Level still equals to

. The seeds are discarded after use in order
to reduce the correlation between samples at different
simulation levels, which is slightly different from the
original SS algorithm described in [20]. Evaluate these
system samples and calculate the corresponding

.
2) Sort all in ascending order to give the list

, whose corresponding exceedance probabilities
are

(12)

3) Plot to give the CCDF
of DI with exceedance probability ranging from

to .
4) Set .

a) If , the failure region is reached. Plot the
to cover the

probability range below , since no further simu-
lation level will be carried out to obtain a better esti-
mate of this probability regime. Set , and
the simulation ends.

b) Else, let be the samples
of system state corresponding to

. These are used as the seeds for the
Markov chains that generate samples conditional on

at simulation Level .
Set and enter the next simulation level.

B. Calculation of the Reliability Indices
In the proposed evaluation procedure, the conditional sam-

pling stops once the target failure region is reached. Therefore
all plotted failure states are obtained at simulation level .
Though correlated, these failure states are conditional on the
same intermediate failure event . This allows us to esti-
mate some of the reliability indices using conditional expecta-
tion.
The reliability index LOLP can be easily obtained through

the CCDF curve:

(13)
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The calculation of energy-related reliability indices involves the
determination of the expected value of . Such a expected
value itself is one of the reliability indices, EPNS (expected
power not served):

(14)

Nonsequential MCS can also provide unbiased estimates for
the loss of load frequency (LOLF). We use the unbiased esti-
mator given in [38] to determine this index:

(15)

where is the sum of the transition rates between the current
failure state and all the success states that can be reached from
in one transition.
Other reliability indices (EENS, LOLD, etc.) can be easily

calculated based on the above three estimates. Note that one
might enter another level of simulation after the failure region
is reached. As a result, the failure states sampled would be con-
ditional on different intermediate failure events. In this case, the
sampled failure states need to be weighted according to the in-
termediate failure event they are conditional on. To this end, the
sample partitioning method [21] can be used.

C. Additional Aspects
1) Number of Samples Per Level : In the direct MCS, since

the samples are independent from each other, the coefficient of
variation (c.o.v.) is estimated by where

is the total number of samples and is the estimate for the
failure probability. The number of samples needed to achieve a
certain level of c.o.v. can also be determined by this equation.
In subset simulation, the number of samples per level is

an input that controls the accuracy of the estimated indices. The
samples (except for those generated in simulation level 0) in SS
are generated by Markov chain Monte Carlo and are thus corre-
lated. They generally give less information compared to the sit-
uation when they were independent. Therefore, the correlation
among the MCMC samples must be accounted when estimating
the variance of the samples. For verification purposes, the c.o.v.
of the reliability indices is statistically assessed by 50 repeated
independent runs of the subset simulation in Section V of this
paper.
If one has an acceptable coefficient of variation in mind, the

following formula originally from [20] can be used to estimate
the total number of samples needed to achieve a desired
c.o.v. of associated with the estimate , given that a rough
estimation of the failure probability is known a priori:

(16)

where depends on the actual correlation of the level
probabilities, and represents a factor accounting for the cor-
relation among the MCMC samples. Typical values such as

and might be used when estimating . If
is not known a priori, some tentative runs of simulation could
be conducted. In the numerical tests presented in this paper, for
comparison, the number of samples per level is chosen after

TABLE I
RELIABILITY INDICES FOR IEEE-RTS-79

some tentative runs of simulation so that the c.o.v. of the ob-
tained reliability indices are below a given level.
2) Choice of the Proposal PDFs: It is concluded in [20] that

the efficiency of Subset Simulation is insensitive to the type of
the proposal PDFs. On the other hand, the spread (or the vari-
ance) of the proposal PDFs affects the deviation of the candi-
date state from the current state, and controls the efficiency of
the Markov chain in populating the failure region. The optimal
choice of the proposal PDF involves a trade-off between accep-
tance rate and correlation of the MCMC samples, because small
spread tends to increase the correlation between samples due to
their proximity, and excessively large spread may reduce the ac-
ceptance [20]. A sensitivity study on the spread of the proposal
PDF on efficiency is presented in [34]. In this paper, a Gaussian
PDF centered at the current sample with unit standard deviation
is chosen as the proposal PDF, which is found to give satisfac-
tory performance.

V. RESULTS

Numerical tests are conducted on the original IEEE-RTS-79,
IEEE-RTS-79 integrated with wind energy, IEEE-RTS-96, as
well as a real-life power system. Circuits and conventional gen-
erators are represented by two-state models. Numerical tests are
performed on a MATLAB platform with a PC consisting of a
2.2-GHz processor and 4-GB RAM. Linear programs are solved
by GUROBI 5.5.

A. IEEE-RTS-79

IEEE-RTS-79 [39] includes 24 buses, 38 circuits, and 32 gen-
erators, with a total generation capacity of 3405 MW. The an-
nual system peak load is 2850 MW. The original hourly load
curve is used and represented by a non-aggregated model. Al-
though it has been assumed that all the bus loads follow the same
pattern as the system load, this assumption is not mandatory for
the proposed method.
The level probability is set at 0.1. The number of samples

per level is set at 30 000 so that after three levels of simu-
lations are conducted, coefficient of variation (c.o.v.) reaches
below 5% for the reliability indices. This is also used as the
convergence criterion for a direct MCS. Reliability indices esti-
mated by a single run of these twomethods are shown in Table I.
In Fig. 3, three independent runs of SS are conducted. For

comparison, results obtained by the direct MCS are also plotted.
The CCDF of load curtailment, which is of interest to power
system planners and crucial in estimation of energy-related re-
liability indices, is simply the part of the CCDF of DI where
DI . Also, the results obtained by SS agree well with those
of the direct MCS, except for the low probability region where
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Fig. 3. CCDF of DI obtained from three independent runs of subset simulation
and a single run of direct MCS.

Fig. 4. Coefficient of variation of the exceedance probability estimates.

the error of the MCS is obvious due to its inefficiency in sim-
ulating rare events. Theoretically, the estimates of exceedance
probabilities obtained by SS are asymptotically unbiased [20].
To investigate the empirical variation of exceedance proba-

bility estimates, the sample c.o.v. of the exceedance probability
estimates over 50 independent runs of SS are calculated and
shown by the solid line in Fig. 4. An additional level of sim-
ulation is conducted to examine how c.o.v. changes with de-
creasing exceedance probability. The dashed lines indicate the
approximations of c.o.v. of the exceedance probability estimates
obtained by SS assuming that the conditional probability es-
timators are uncorrelated or fully correlated. Here the sample
c.o.v. is close to the approximation where samples in different
levels of simulations are assumed uncorrelated, indicating that
the loss of efficiency due to correlation between samples in dif-
ferent simulation levels is modest. Detailed description of the
statistical properties of the estimators, as well as how SS re-
duces variance, are found in [20].
Also the c.o.v. of MCS estimates at a probability corre-

sponding to a particular threshold for intermediate failure
events using the same total number of samples as in SS
(i.e., in this case, for

, respectively) are plotted in Fig. 4.

TABLE II
RELIABILITY INDICES FOR THE MODIFIED IEEE-RTS-79

Notice that the values of c.o.v. for SS and MCS are identical
at probability 0.1, since a direct MCS is conducted in Level 0
of SS. While the c.o.v. for a direct MCS grows exponentially
with the logarithm of decreasing exceedance probability, such
growth is only moderate (visually linear) for SS. Therefore, the
smaller the target failure probability, the more efficient is SS
over a direct MCS.
The probability distribution of the degree of system adequacy

is obtained (Fig. 3). Nevertheless, the probability distributions
of reliability indices as described in [40] are indeed restricted to
full chronological (sequential) MCS methods. In the next sub-
section, we show the flexibility and simplicity of SS in accom-
modating different models for renewable energy sources.

B. Modified IEEE-RTS-79

In order to examine the robustness of SS to different models
for power system components, IEEE-RTS-79 is modified by in-
tegrating two 160-MW wind farms located at Bus 19 and one
240-MW wind farm located at Bus 1. All these wind farms are
connected to the original network through a single transmission
line whose unavailability is ignored. While the identification of
probabilistic models that accurately capture the intermittency
and non-stationarity of wind power is of critical importance,
this is not the focus of our paper. We make a simplifying as-
sumption that the wind speeds at the three wind farms follow
a two-parameter Weibull distribution. This family of distribu-
tion has been shown to give a good fit to observed wind speed
data [41]. Parameters of the Weibull distribution are calculated
by fitting two-year hourly wind speed data observed on Hainan
Island, China. The power output of the wind farm is then de-
termined through a quadratic power curve of the wind turbines.
Parameters of the simulation, except for the number of samples
per level, are set at the same values as the previous test.
As illustrated in Section III, the only modification to the pro-

posed method for integrating the wind farms is three additional
state variables that follow Weibull distribution. Similarly, one
can use state variables that follow other types of probability
distribution to incorporate a different type of renewable energy
source, or use state variables that follow categorical distribution
to incorporate any component of the power system that is rep-
resented by a multi-state outage table.
Reliability indices of the Modified IEEE-RTS-79 are pre-

sented in Table II.

C. IEEE-RTS-96

IEEE-RTS-96 [42] includes 73 buses, 120 circuits and 32
generators, with a total installed capacity of 10 215 MW. The
optional DC link connecting two subsystems as indicated in [42]
is omitted. The annual system peak load is 8550 MW, and the
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TABLE III
RELIABILITY INDICES FOR IEEE-RTS-96

TABLE IV
RELIABILITY INDICES FOR THE REAL-LIFE SYSTEM

original hourly load curve is used. We set the number of sam-
ples per level to be 179 000 in order to ensure that the c.o.v. of
the reliability indices are below 5%. The other parameters re-
main the same as previous tests. Five levels of simulation are
conducted in SS.
The failure events in IEEE-RTS-96 are even rarer than the

above systems. The inefficiency of the direct MCS in simulating
small failure probabilities is clearly shown in Table III. As for
Subset Simulation, the speed-up ratio in terms of CPU time in-
creases to 18.16, which again validates that the smaller the target
failure probability, the more efficient is SS over a direct MCS.

D. Real-Life Power System in Northwestern China
To validate the scalability of the proposed method, tests are

also performed on a real-life power system in Northwestern
China, which contains 773 buses, 279 generating units, and
1036 circuits. The total installed generating capacity is 28.8
GW. System load is set to be constant at 22.4 GW. Parameters
of the simulation, except for the number of samples per level,
are set at the same values as previous tests.
Reliability indices in Table IV demonstrate that the proposed

method achieve satisfactory performance for a large-scale real-
life system.

VI. CONCLUSION
This study proposes a framework for composite system re-

liability evaluation with subset simulation. The inefficiency of
Monte Carlo simulation in simulating rare failure events is over-
come by breaking the problem into estimating a sequence of
conditional probabilities. Computational burden is reduced by
extracting the subset of system states with significant contribu-
tion to reliability indices.
The degree of adequacy of system states is first parametrized

through a metric based on a linear program that takes network
security constraints into consideration. The Metropolis algo-
rithm is then customized to account for the discrete-state com-
ponents in power systems. The proposed method successfully
replicates the MCS results while considerably reduces the com-
putational effort.
Every simulation algorithm is involved with a tradeoff be-

tween efficiency and robustness. The direct MCS provides best

robustness yet poor efficiency when simulating rare events. A
major difference of subset simulation from other VRTs is that
it utilizes the fundamental notion of conditional probabilities,
instead of altering the probability distribution of system states.
Though the proposed method might not be as efficient as some
algorithms well-designed for certain target systems, it pos-
sesses advantages in terms of robustness. No prior knowledge
of system failures is required before simulation. Preparation
processes, such as constructing an optimal distortion of the
sample space in VRTs, or training the learning system in ma-
chine-learning-based classification techniques, are thus spared.
Also, sophisticated models for power system components can
be easily incorporated.
A nonsequential simulation of the composite system is con-

ducted in this study. Future work could focus on the applica-
tion of the proposed method to the chronological (sequential)
simulation of power systems, as well as customized procedures
targeting at area and bus indices. The conditional samples gen-
erated in subset simulation can also be further investigated to
reveal more information of the cause and consequence of failure
events in composite systems.
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