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Abstract—The novel cascade-mitigation scheme developed in
Part I of this paper is implemented within a receding-horizon
model predictive control (MPC) scheme with a linear controller
model. This present paper illustrates the MPC strategy with a
case-study that is based on the IEEE RTS-96 network, though with
energy storage and renewable generation added. It is shown that
the MPC strategy alleviates temperature overloads on transmis-
sion lines by rescheduling generation, energy storage, and other
network elements, while taking into account ramp-rate limits and
network limitations. Resilient performance is achieved despite
the use of a simplified linear controller model. The MPC scheme
is compared against a base-case that seeks to emulate human
operator behavior.

Index Terms—Cascade mitigation, convex relaxation, energy
storage, modeling, model predictive control, power system opera-
tion, receding horizon, thermal overloads.

I. INTRODUCTION

T HIS paper complements Part I [1], which established a
novel model-predictive bilevel control scheme for miti-

gating the effects of large disturbances and cascading failures
in electric power systems. Fig. 1 provides an overview of the
bilevel hierarchical operation of the system. This bilevel con-
trol scheme is designed to combine both economic and security
objectives. Level 1 computes an economically optimal set-point
schedule , which establishes a reference trajectory for
Level 2. Level 2 is implemented using model predictive con-
trol (MPC) in a receding-horizon fashion. It achieves security
by bringing conductor temperatures below limits, and returns
the system to optimal economic performance. In particular, it is
proven in [1] that a convex relaxation of line losses is tight ex-
actly when line temperatures exceed their limits. This is a nec-
essary condition for the MPC scheme to alleviate unacceptable
temperature overloads on transmission lines. The MPC scheme
can be summarized as follows:
1) At time and for the measured system state and up-
dated reference signals from Level 1, and , solve
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Fig. 1. Overview of the proposed control scheme showing Level 1 (economic)
and Level 2 (corrective) interaction.

an optimal control problem over fixed interval
taking into account current and future constraints. This
yields a sequence of optimal open-loop control actions:

.
2) Apply the first instance of the open-loop sequence: .
3) Measure the system state reached at time .
4) Set and repeat step 1).
In order to fully explore the MPC scheme, this paper presents

a case-study that is based on the IEEE RTS-96 network [2], with
renewables and energy storage (ES) devices added. It highlights
practical aspects of the MPC scheme and the role of energy
storage in providing improved reliability and economic perfor-
mance. Specifically, the RTS-96 network is subjected to a large
disturbance (i.e., line outage) and theMPC response is analyzed.
The paper is organized as follows. Section II summarizes the

MPC model developed in [1]. The representation of the actual
power system and the line outage methodology are described
in Section III. Section IV formulates a reasonable base-case to
emulate the performance of a human operator, explores in detail
the case-study and highlights the practicality of the proposed
MPC scheme. Concluding remarks are presented in Section V.

II. CONTROLLER MODEL SUMMARY

The controller model is developed in detail in Part I. For
the sake of completeness though, a summary is provided here.
The Level 2 MPC controller utilizes a sufficient approxima-
tion of the non-convex AC power system that is amenable to
a quadratic programming (QP) optimization framework. The
index denotes discrete time-steps, and the MPC scheme is
employed with prediction and control horizon . That is, let

.
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Remark II.1 (Prediction and Control Horizons.): Even
though this paper uses identical prediction and control horizons
(i.e., ), it is straightforward to consider the
effect of varying either horizon, provided .
A power system network can be described in a graph-theo-

retic sense as consisting of a set of nodes and edges, (i.e., edge
for nodes , graph ). Elec-

trical transmission lines have prescribed power flow limits to
prevent dangerous sagging and permanent damage (e.g., an-
nealing). These limits are related to the thermal capacity of the
conductor and the current flowing through the line. Generally,
there is an inverse relationship between the current in a line and
the time that may elapse before the line must be taken out of
service. In most common overload scenarios, the time-response
is on the order of 10–20 min [3].
To ensure secure line flows, it is usual for operators to main-

tain flows within MVA limits. While it is feasible to take such
limits into consideration when determining longer-term energy
management schedules (i.e., Level 1), it is unrealistic to expect
such constraints to be valid immediately after a significant dis-
turbance (e.g., line outage). This is because flows depend on the
physics of the network and (unlike many digital systems) cannot
be directly guided, which means that line flows may exceed
their limits post-contingency. A more appropriate measure of
line overload is the conductor temperature. Therefore, the MPC
controller seeks to alleviate temperature overloads.
The states and inputs associated with the proposed formula-

tion of an MPC cascade mitigation scheme for an electric power
system are outlined below:
Dynamic States : There are three types of dynamic states:
• , line conductor temperature overload with re-
spect to limit ;

• , state-of-charge (SOC) for energy storage device ;
• , power output level for generator .
Control Inputs : The formulation employs six types of

control inputs:
• , change to conventional generator output level;
• , wind spilled from nominal, for wind turbine ;
• , demand response (reduced) from nominal, for load ;
• , charge and discharge rates for ES ;
• , transformer phase shift (rads), for line .
Uncontrollable Inputs: There are three types of forecast (un-

controllable) inputs (i.e., exogenous disturbances):
• , nominal available power from wind turbine ;
• , nominal demand, for load ;
• , ambient temperature and solar gain, for line .
Algebraic States : Models require nine types of algebraic

states:
• , real power flowing through line ;
• , real power losses for line ;
• , phase angle difference between nodes and ;
• , absolute value approximation of ;
• -segment PWL approximation of ;
• , real power injected by wind turbine ;
• , real power consumed by load ;
• , total power injected or consumed by ES .
Suppose that controls are step-wise with constant step-

width , such that for . All

discrete dynamics are the result of forward Euler discretization
with sample time . For each time , the dynamic states
are measured and represent the initial state of the MPC system
model. Then, the full MPC formulation is defined as a quadratic
programming (QP) problem:

(1a)

(1b)

(1c)

(1d)

(1e)

(1f)

(1g)

(1h)

(1i)

(1j)

(1k)

(1l)

(1m)

(1n)

(1o)

(1p)

(1q)

for all , where , and represent the dynamic
state, control input, and algebraic state variables, respectively, at
predicted time given initial measured state at time .
This notation has been adopted for clarity of presentation. The
more precise forms, , and , appear in [1]. The
terms in the summation of the objective function (1a) are defined
by

(2)

where . Also, are non-negative
definite weighting matrices, and is a positive definite
weighting matrix.
Expressions (1b), (1c), and (1d) represent the linear (discrete-

time) dynamics associated with conductor temperature for line
, SOC for energy storage device , and the power supplied

by generator , respectively. The thermal conductor model is
based on the IEEE standard describing the temperature-current
relationship in overhead conductors [4]. Temperature dynamics
in (1b) are linearized with respect to the conductor temperature
( [ C]) obtained for steady-state ampacity ( [A]), and
conservative ambient parameters. Accordingly,

and , where [VA]
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and [m] are the three-phase per-unit power base and con-
ductor length, respectively, and [ /m] is the resistance per
unit length. Appendix A describes the relationship between tem-
perature limit and ampacity-rated -losses. Also,

describes deviations from representative ex-
ogenous conditions, ambient temperature and solar heat
gain rate , with a function of conductor diameter and solar
conditions. However, it has been assumed for these studies that
ambient temperature and solar heat gain rates remain fixed over
the period of interest (i.e., ).
Constraint (1e) enables the main objective of alleviating

temperature overloads while not incentivizing under-loading
of lines. That is, MPC should compute control actions that
only consider lines with . Keeping in mind the QP
formulation, the implementation of this temperature objective
can be relaxed to the linear formulation:

(3a)

(3b)

Because the objective function penalizes , this relaxation
will always be tight.
The complementarity condition (1f) ensures that energy

storage devices cannot simultaneously charge and discharge.
As discussed in Part I, exact implementation of complemen-
tarity would considerably increase computational complexity.
Therefore, the algorithm described in Appendix A of Part I has
been adopted for (approximately) enforcing (1f).
A convex piece-wise linear (PWL) approximation of line

losses is described by algebraic relations (1g), (1h), and
(1i). This PWL relaxation utilizes segments of width

and is modeled using the algebraic states
. In Part I, it was proven that if a line

experiences a temperature overload at predicted time ,
then for all prior time-steps (i.e., ) the convex relaxation
will be locally tight. When the relaxation is locally tight, the
controller has a meaningful and relatively accurate model of
line losses, and hence of line temperature. This allows MPC to
compute control actions that relieve line overloads.
Equations (1j) and (1k) denote nodal power balance con-

straints and DC power flows, respectively. Power
balance is implied by Kirchhoff’s law: power flowing into node
must equal the power flowing out plus/minus that injected/con-
sumed. Note that the term in (1j) is a constant estimate
of line losses at time-step . It is shown in Part I that by decou-
pling this loss term from , the PWL relaxation inherits cru-
cial tightness properties. The “DC” power flow presented in (1k)
reflects application of the “Unified Branch Model” developed
in [5]. This unified model provides a consistent formulation for
in-phase (IPT, ) and phase-shifting (PST, ) trans-
formers, and transmission lines .
Algebraic (1l), (1m), and (1n) establish the relationship be-

tween control inputs, namely demand response, storage injec-
tion/consumption, and wind curtailment, and the power balance
of (1j).
The sets defined in (1o) and (1p) are convex polytopes. In

particular, is closed and is compact:

(4)

(5)

(6)

with bounds defined by appropriate parameters. The sets contain
the Level 1 reference trajectories . Finally,
the set represents the convex polytopic terminal constraint
set and is defined by

(7)

Remark II.2 (Terminal Constraint and Feasibility): The ad-
dition of the terminal constraint limits the magnitude of pre-
dicted temperature overloads by ensuring that all lines have ac-
ceptable temperatures by the end of the horizon. However, ter-
minal constraints may impact the feasibility of the QP problem
if the chosen prediction horizon is too short. In this work,
is appropriately chosen to ameliorate concerns of feasibility.
Given the complete controller model description provided by

(1)–(7), the state and input vectors can be defined by

(8a)

(8b)

(8c)

Based on the state and input definitions in (8), the weighting
matrices in (1a) are given by

(9a)

(9b)

(9c)

where represents identity matrices of appropriate dimensions,
are weighting coefficients for states and inputs, and
denotes a block-diagonal matrix. Note that the terminal

cost matrix penalizes deviations from economical refer-
ences for storage SOC and conventional generation states more
severely than does the weightingmatrix . This is becauseMPC
does not care how these reference signals are tracked, only that
they are being considered at the end of the horizon.

III. PLANT (ACTUAL SYSTEM) REPRESENTATION

Over the timescale of interest, the (nonlinear) AC power flow
provides an accurate representation of the actual physical power
system (i.e., the plant). Therefore, the control actions recom-
mended by MPC, which utilizes the strictly linear model de-
scribed in Section II, are applied to an accurate AC model of
the system at each time-step. In addition, the losses given by
the AC power flow are utilized in the nonlinear IEEE standard
conductor temperature model to accurately capture the effects
of MPC recommendations on the actual system.
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Fig. 2. Probabilistic line outage model. Tripping times above 100 min have
been truncated for graphical purposes.

Excessive line temperature (resulting in unacceptable sag)
may culminate in line-tripping. The higher the temperature,
the more likely line tripping becomes. This inverse relation-
ship between temperature and mean time-to-trip (i.e., mean
time-to-failure) is captured in the representation of the actual
system by use of the exponential time-to-failure probability
density, parameterized by the temperature overload. Thus,
given , the probability of line tripping
during time-step (over interval ) is defined by the resulting
cumulative distribution function:

(10)

where rate parameter is dependent on the tem-
perature overload. That dependence has been established using
the short-term (15-min) emergency (STE) line rating. That is,
given an STE rating (e.g., nominal rating), the method
presented in Appendix A is deployed to compute an associ-
ated STE temperature, from which an appropriate
is chosen. It has been found experimentally that

gives a realistic line-tripping characteristic, as
shown in Fig. 2.
Furthermore, considering over-current protection on trans-

mission lines (for large overloads), an additional condition is
added to the probabilistic line-tripping model:

(11)

where is the line flow of the actual system (given by the AC
power flow), and is an upper bound on the allowable relative
instantaneous overload. For example, if , then a line flow
of 300% of the nominal thermal limit would immediately
trip line .

IV. CASE STUDY: IEEE RTS-96

A. Overview

The hierarchical control scheme developed in Part I [1] and
summarized in this paper was applied to an augmented version
of the IEEE RTS-96 power system test-case, which is described
in full details in [2]. For completeness, a brief overview of this
test-case is included here.

TABLE I
NETWORK MODEL PARAMETERS USED IN CASE-STUDY

The RTS-96 system consists of 138-kV and 230-kV subsys-
tems. The network is organized into three interconnected phys-
ical regions, as illustrated in Fig. 3. It consists of 73 nodes and
120 branches, of which 15 branches are IPTs, one is a PST,
and the remainder are overhead transmission lines (138 and
230 kV). Buses are denoted with three digits: the first digit in-
dicates the area while the latter two are intra-area designators.
Bus types are indicated by color: generator (blue), load (yellow),
and zero-injection (white). Edges represent transmission lines
(black) and transformers (aqua/gray). The disturbance is dis-
played with stars: lines 113–215 and 123–217 were tripped.
Note that the three underground cables in the original RTS-96
system have been replaced by equivalent overhead lines to en-
able application of a single thermodynamic model. Transformer
temperature overloading is not considered in this paper, as their
thermodynamic models differ from those presented here.
The aim of this case study is to explore the contingency

management achievable with the proposed hierarchical control
scheme. Unfortunately, the RTS-96 system is designed as a
highly reliable system, with unusually high thermal ratings
for lines. To bring the system closer to its limits and engender
worthwhile scenarios, thermal ratings were reduced by
40%, yielding line temperature limits in the range of 60–70 C.
Furthermore, ramp-rates have been reduced by 82.5% to high-
light Level 2 performance and enhance the role of storage in
congestion management. For the temperature dynamics, the
RTS-96 system data only specifies per-unit resistance, reactance
and line length, but not the conductor types (i.e., diameter, heat
capacity). Therefore, this case-study employed ACSR conduc-
tors, 18/1 Waxwing (138 kV) and 26/7 Dove (230 kV), which
represent reasonable choices given the reduced line ratings.
The parameter values for Dove andWaxwing conductors, along
with other system parameters, are provided in Table I. Values
in brackets represent ranges.



82 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 30, NO. 1, JANUARY 2015

Fig. 3. Modified IEEE RTS-96 network with storage (E) and wind (W) included. Note that storage and wind resources are associated with buses, as indicated in
the figure, but the respective edges do not represent transmission lines.

B. Base-Case

To benchmark the performance of the proposed MPC
scheme, a base-case controller was developed. This base-case
was meant to provide an indication of human operator behavior
during a system emergency (disturbance). Clearly, modeling
a human operator is non-trivial as standard emergency proce-
dures vary broadly across utilities. Furthermore, the experience
of a human operator is not amenable to an implementable (and
repeatable) algorithmic framework. However, the formulation
presented here captures the underlying goals of the operator:
1) alleviate thermal overloads by rescheduling or curtailing
generation, while considering ramp-rate limits and incre-
mental generator cost curves,

2) employ sensitivity-based methods, such as power trans-
mission distribution factors (PTDFs), generation shift fac-
tors (GSFs), and transmission loading relief (TLR) proce-
dures to make quick control decisions to relieve thermal
overloads [6],

3) shed load as an absolute last resort, and
4) ignore energy storage.
Mapping the above operator response into an MPC-like

framework serves as the base-case, and can be implemented as
follows:
• Replace with a relative overload metric:

(12)

That is, if a line is 25% overloaded, .
• Consider PTDF, GSF, and TLR implicitly as a 1-step MPC
process akin to Level 2 (i.e., set ) and include over-
loads in the objective and terminal costs.

• Heavily penalize load shedding and adjustment of energy
storage levels.

• Remove terminal constraints on overloads, .
• Set weighting matrices

.

C. Optimization Implementation

The objective function weighting factors utilized in MPC
Level 2 and the base-case are presented in Table II. Note that for

Fig. 4. Hourly wind power profiles for 8 wind turbines in the RTS-96 network
over a 24-h horizon.

TABLE II
OBJECTIVE FUNCTION COEFFICIENTS FOR
MATRICES FOR MPC AND BASE-CASE SYSTEMS

the base-case, the overload coefficient weights the thermal
power overload, , and not temperature. Also, the storage
control coefficient for the base-case, , reflects the
fact that this resource is not available for decision-making.
Generator control actions, , are weighted using cost curve
parameters,1 with for Level
2, and for the base-case.
The cost-curve parameters utilized in this case-study
are from [7, Table 1] and are repeated in Table III for complete-
ness. Note that the generator IDs in this table specify their upper
output limit, with an ID of U implying
MW.
Remark IV.1 [Extension to Unit Commitment (UC)]: Since

no minimum generator outputs are specified in [2], lower limits
of have been assumed. Consequently, there is no role

1Recall that the generator cost curves used in Level 1 are of the form:
.
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TABLE III
GENERATOR RAMP-RATE AND COST PARAMETERS

Fig. 5. Interaction of Level 2 MPC with the grid.

for UC in this paper. In a more complete setting, UC could be in-
troduced as a Level 0 process which establishes the set of avail-
able generators.
An overview of Level 2 operation is displayed in Fig. 5. Since

the early stages of a cascade evolve relatively slowly, signifi-
cant computation can be performed during that period. There-
fore, immediately following a disturbance, Level 1 computes
new optimal set-points and passes that updated information to
Level 2. This interaction is discussed in detail in Part I.
Note that base-case interactions with the grid have the same

form as shown in Fig. 5, except with the Level 2MPC controller
replaced by theMPC-like framework described in Section IV-B.

D. Simulation Results

The case-study was simulated using Matlab to implement
Level 1, Level 2, and the base-case. Initially the system was
operating economically according to Level 1. However, at hour
18 (low wind, high demand), a double-line outage tripped lines
113–215 and 123–217. Transient (short-term) stability was as-
sumed. Performance and behavior of the Level 2 MPC (with
horizon lengths of , and 45) and the base-case
are discussed below.
The double-line outage caused the remaining inter-area trans-

mission line 107–203 to become severely overloaded (greater
than ). The Level 2 MPC scheme alleviated the tem-
perature overloads and brought the system safely to the updated
economic set-points provided by Level 1. In contrast, the base-
case underwent a cascading failure, with line tripping bringing
the system to a voltage collapse after 29 min, as exemplified
by non-convergence of the AC power flow. The base-case cas-
cading failure evolved as follows:
• : line 107–203 tripped at C;
• : line 114–116 tripped at 8.1 C;
• : line 113–123 tripped at 11.4 C;
• : lines 103–109 and 112–123 tripped at 16.8 C and
20.7 C, respectively;

Fig. 6. Base-case operation: voltages undergo cascading failure, resulting in
voltage collapse.

• : voltage collapse “Blackout”.
This process is illustrated in Fig. 6, where it can be seen that the
minimum voltage magnitude fell below 0.87 pu.
The maximum line temperatures for the base-case and MPC

are illustrated in Fig. 7(a). Note that MPC is able to avoid exces-
sively high temperatures, and in fact drives all line temperatures
below their respective limits by around minute . Later,
a few lines hover slightly above their temperature limits. How-
ever, this is due to model inaccuracy arising from MPC’s use
of an approximate linear temperature model and the DC power
flow. In particular, over that latter phase, the largest tempera-
ture deviations above limits are associated with 138-kV lines
that exhibit . This relatively low ratio
engenders errors in the DC approximation of the nonlinear AC
network equations. The DC model incorrectly informs the con-
troller that losses are sufficiently low, implying that negligible
control action is required for the temperature to drop below its
limit in the next time-step. But the actual power system, de-
scribed by the AC power flow, has higher than predicted losses,
and the temperature stays slightly above the limit. The controller
repeats these incorrect estimates of losses until control action is
required for other reasons, or load patterns autonomously re-
duce line loadings below limits.
The ability of MPC to eliminate line overloads can be ob-

served in Fig. 7(b), which shows the maximum of the normal-
ized line loadings, %.
For , all line loadings are less than 5% above their
thermal ratings, which is within expected error levels [8], [9].
These results suggest that despite the presence of approximate
models, the MPC scheme is able to reject the disturbance
through feedback and return the system to an acceptable state.
Further discussion of the impact of model approximations is
provided in Section IV-E.
As discussed in Section II, the control actions available to

Level 2MPC for reducing line temperatures include: load reduc-
tion, wind curtailment, and energy storage injections. Fig. 7(c)
and (d) illustrates the main controls employed to alleviate exces-
sive temperatures for this case-study. ContrastingMPC response
with the base-case, it is clear that load and energy storage con-
trols were crucial immediately following the disturbance. By
initially reducing the aggregate load by less than 5% [Fig. 7(c)]
and curtailing energy storage discharge [Fig. 7(d)], line temper-
atures were brought to within their limits. For ,
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Fig. 7. Case-study simulation results for MPC and the base-case. (a) Maximum line temperature responses. (b) Relative line flow response. “Level 1 Ref” implies
line limit. (c) Aggregate load control. (d) Aggregate energy storage charging and discharging. (e) Total MPC objective function value. (f) Total cost of generation
with reference to level 1.

TABLE IV
AVERAGE QP SOLUTION TIME PER TIME-STEP ,

FOR PREDICTION HORIZON

storage discharge exceeded reference levels in order to bring
SOC back to economical reference levels. Wind curtailment
was employed as cheap control over the longer term to bring
and keep line temperatures below their limits.
Fig. 7(e) illustrates that the objective function cost (1a), cal-

culated for each MPC run, decreased monotonically over time.
This does not prove stability, but highlights the Lyapunov-like
properties of the objective function [10] as MPC drives the
system back to the Level 1 (economically optimal) equilibrium
point.

Level 2 MPC performs a balancing act between ensuring
safety criteria and restoring economically optimal set-points.
This balance is highlighted in Fig. 7(f), where the cost of con-
ventional generation is shown for both MPC and the base-case.
To ensure acceptable line temperatures, MPC initially sacrifices
economic optimality by deviating from the Level 1 set-points.
For , the system returns to economically optimal levels,
with inaccuracy in the MPC model causing some minor dis-
crepancies. Interestingly, over the first 15 min or so, the gen-
eration cost achieved by MPC is actually less than the optimal
cost given by Level 1. Two factors contribute to this apparent
anomaly. Firstly, Fig. 7(f) shows the post-disturbance Level 1
schedule, whereas the generators were initially operating ac-
cording to less-costly pre-disturbance set-points. Secondly, the
updated Level 1 reference schedule enforces hard line-flow con-
straints, while MPC allows line flows to temporarily exceed
limits.
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Fig. 8. Illustration that is a sufficient condition for ensuring
a locally tight formulation of line losses for all prior time-steps .

It is worth pointing out the effect on performance of varying
the prediction and control horizon . Assuming the QP
problem remains feasible, employing the terminal constraint
requires that MPC restore line temperatures to within their

limits by the end of the horizon. Therefore, as the prediction
horizon decreases, the MPC scheme utilizes more aggressive
control actions to alleviate overloads. This can be clearly seen
in the load-control trajectories of Fig. 7(c).
Furthermore, with a shorter horizon and the terminal con-

straint requiring greater use of expensive load and storage con-
trol, the MPC enjoys smaller departures in generation from the
Level 1 economic reference. Such an outcome is displayed in
the generation costs of Fig. 7(f). In addition, it could be argued
that for , any performance improvement gained by in-
creasing is negligible compared with the increased computa-
tional cost of solving the open-loop QP problem. Table IV gives
average QP solution times for different values of .
Finally, Fig. 8 illustrates the locally tight nature of the convex

relaxation that underpins the controller model’s line loss cal-
culation. The figure presents the adjacency, absolute-value and
temperature conditions for MPC predictions over the horizon

, with , and with initial conditions corresponding
to time-step . Notice how a predicted temperature over-
load at a time yields a tight solution for all previous
time-steps . For example, line 52 (207–208) is predicted
to have a temperature overload for , so adjacency
and absolute value relaxations are tight for all . Note that
when the temperature deviation of line is predicted to re-
main at or below 0 C for all subsequent time-steps , fic-
titious losses can occur over those time-steps but have no effect
on the objective function. Since fictitious losses are decoupled
from the network model, these losses have no effect on network
power flows. Thus, fictitious line losses cannot affect control ac-
tions when the line temperature is no longer predicted to violate
its limit.

E. Model Approximations

Fig. 9 provides insights into the accuracy of the DC power
flow model used by MPC. The figure allows a comparison be-
tween the line loadings predicted by the lossyDC linemodel and
the apparent-power loadings given by the accurate AC model.
The DC flow model is generally within % of the true value,

Fig. 9. Accuracy of DC model flows.

Fig. 10. Maximum loss error: .

though accuracy is reduced when reactive power makes a rel-
atively significant contribution to the line flow. This situation
occurs mainly when active power flows are quite low and lines
are well below their ratings. These lines do not, therefore, im-
pact the actions of the DC-based control scheme.
It is also interesting to consider the impact of the constant-

loss approximation in (1j). This can be achieved by defining the
normalized error

(13)

for every line and each time-step . Fig. 10 shows
over the prediction horizon , with

each curve corresponding to a particular value of time-step
. The shades indicate the progression of time, from black
representing through to white for the final time .
It should be mentioned that only one line (107–203) exhibits
loss errors greater than 2.5%. This line becomes heavily
overloaded immediately upon the initial two-line outage.
With this large overload (and correspondingly high losses),
MPC actively seeks to reduce the line’s losses, which causes

to overestimate losses by less than 5%. However, for
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% for all lines , all prediction
times , and all time-steps . Furthermore, it was found that
average line errors

% (14)

for all , and all . This implies that the error introduced by
the constant-loss approximation is negligible for most lines.

V. CONCLUSIONS AND FUTURE WORK

Part I presented a novel model-predictive contingency man-
agement scheme that balances economic and security objectives
via a bilevel hierarchical control structure. This scheme employs
a receding-horizonmodel predictive control (MPC) strategy that
guides thepost-disturbance system toa secure, economic state. In
determiningoptimal control decisions,MPCexploits the thermal
overload capability of transmission lines. The characteristics of
this MPC strategy have been explored in Part II through a case
study based on the IEEE RTS-96 test system. This study showed
that MPC made very effective use of generation rescheduling,
demand response, energy storage adjustment and wind curtail-
ment to eliminate line overloads and restore economic operation.
In contrast, a base-case that emulated current operational prac-
tices exhibited cascading line outages, and ultimately underwent
voltage collapse. The utility of the proposedMPC-based control
scheme is illustrated clearly via the case-study. Further work is
required, though, to adapt the scheme for larger networks, and
to incorporate a more detailed network model [11].
The proposed bilevel control structure separates the eco-

nomic set-point evaluation of Level 1 from the MPC tracking
control of Level 2. Whilst this arrangement is consistent with
standard MPC practice [12], the implied time-scale decoupling
between levels can limit performance. Economic MPC [13]
may offer a framework for systematically evaluating alterna-
tive structures. Furthermore, MPC control decisions are quite
dependent upon the tuning of the and weighting ma-
trices. For example, different load-control strategies could be
evaluated by adjusting the respective weighting factors. More
generally, an automated process for balancing the control ob-
jectives is desirable, with [14] offering an appealing approach.
The bilevel control scheme can be used in an offline mode

to evaluate economic and resiliency benefits of energy storage
and demand response. This approach offers valuable guidance
in assessing siting and sizing options for such resources, partic-
ularly as uncertainty in renewable generation can be taken into
account.

APPENDIX A
CALCULATING CURRENT AND TEMPERATURE LIMITS

Given the steady-state (continuous) thermal rating of a three-
phase transmission line, [VA], and the base voltage, [V],
line ampacity, [A], is given by

(15)

Furthermore, given the per-unit-length series resistance and
other physical conductor parameters, and representative esti-
mates of exogenous parameters (i.e., solar, wind, and air), the
per-unit-length heat loss and gain rates at steady-state give the
heat balance equation:

(16)

This provides the temperature limit of the conductor, which
is denoted . No closed-form solution exists for (16) as it
is quartic with respect to , so numerical methods must be
utilized.
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