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Abstract—Realizing the significant demand flexibility potential
in deregulated power systems requires its suitable integration
in electricity markets. Part I of this work has presented the
theoretical, algorithmic and implementation aspects of a novel
pool market mechanism achieving this goal by combining the
advantages of centralized mechanisms and dynamic pricing
schemes, based on Lagrangian relaxation (LR) principles. Part
II demonstrates the applicability of the mechanism, considering
two reschedulable demand technologies with significant potential,
namely electric vehicles with flexible charging capability and
electric heat pump systems accompanied by heat storage for space
heating. The price response sub-problems of these technologies
are formulated, including detailed models of their operational
properties. Suitable case studies on a model of the U.K. system
are examined in order to validate the properties of the proposed
mechanism and illustrate and analyze the benefits associated with
the market participation of the considered technologies.

Index Terms—Demand side participation, electric heat pumps,
electric vehicles, electricity pool markets, Lagrangian relaxation.

NOMENCLATURE

The main mathematical symbols used throughout this paper,
additional to the ones defined in Part I, are given below:

A. Electric Vehicle (EV) Local Sub-Problem

Electric power demand of EV at (kW).

Maximum electric power capacity of EV battery
and grid connection’s power electronics (kW).

Electric energy in EV battery at the end of
(kWh).

Electric energy capacity of EV battery (kWh).

Minimum electric energy in EV battery (kWh).

Maximum electric energy in EV battery (kWh).
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Electric energy requirements of EV for driving
purposes at (kWh).

Charging efficiency of EV battery and grid
connection’s power electronics.

Hourly electric energy efficiency of EV battery.

Set of hours when the EV is connected to the
grid.

B. Electric Heat Pump (EHP) System Local Sub-Problem

Building’s structure temperature at .

Building’s outdoor temperature at .

Building’s indoor temperature at .

Desired building’s indoor temperature at .

Total heat power supplied to building at (kW).

Internal heat power gains of the building due to
the human, lighting and equipment presence at
(kW).

Heat power output of EHP at (kW).

Heat power capacity of EHP at (kW).

Electric power demand of EHP at (kW).

Electric power capacity of EHP at (kW).

Coefficient of performance of EHP at .

Heat power input /output
of heat storage at (kW).

Charging heat power capacity of heat storage
(kW).

Discharging heat power capacity of heat storage
(kW).

Heat energy in heat storage at the end of (kWh).

Heat energy capacity of heat storage (kWh).

Minimum heat energy in heat storage (kWh).

Maximum heat energy in heat storage (kWh).

Hourly thermal energy efficiency of heat storage.
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C. Generation Participants’ Characteristics

Maximum generation of generation participant
(GW).

Minimum marginal cost value of generation
participant .

Maximum marginal cost value of generation
participant .

I. INTRODUCTION

D EMAND side integration in electricity markets is the
key towards the realization of its significant flexibility

potential in deregulated power systems [1]–[3]. Approaches
to achieve such integration in the existing literature exhibit
significant limitations. Centralized mechanisms raise com-
munication, computational and privacy issues while dynamic
pricing schemes fail to realize the actual value of demand
flexibility since the economic implications of demand response
are not encapsulated in the posted prices. In this two-part paper,
a novel pool market clearing mechanism is proposed, com-
bining the solution optimality of centralized mechanisms and
the decentralized demand participation structure of dynamic
pricing schemes.
In mathematical terms, the proposed mechanism is based on

Lagrangian relaxation (LR) principles and involves a two-level
iterative process, composed of a number of independent local
surplus maximization sub-problems, expressing the market par-
ticipants’ price response, coordinated by a global price update
algorithm, expressing the market operator’s effort to reach an
optimal clearing solution. When this process cannot reach a fea-
sible solution due to non-convexities in participants’ price re-
sponse, it is modified by suitable heuristic methods (LR heuris-
tics) achieving high-quality feasible solutions.
Part I [4] presented the theoretical and mathematical foun-

dations and outlined an implementation framework of the pro-
posed mechanism. Non-convex characteristics in the price re-
sponse of reschedulable demand participants (RDP) were iden-
tified and their impacts on the ability of the basic LR structure to
reach feasible solutions were analyzed. In order to deal with the
implications of such non-convexities, a simple yet effective LR
heuristic method was developed, complying with the decentral-
ized demand participation objective and limiting the creation of
new peaks by the concentrated shift of reschedulable demand
to the same low-priced periods by imposing a suitable relative
maximum demand limit on RDP.
The scope of Part II is to demonstrate the applicability of the

mechanism considering two reschedulable demand technolo-
gies with significant penetration and flexibility potential:
a) Electric vehicles (EV) with flexible charging capability.
Environmental and energy security concerns, along with
recent developments in automotive and battery technolo-
gies have paved the way for the electrification of the trans-
port sector [5]–[8]. The EV demand flexibility potential is
significant due to their inherent ability to store electrical
energy in their batteries, their stationary character (parked
for more than 90% of the time according to [5]) and their
low energy consumption requirements with respect to the
significant energy and power capacities of their batteries.

b) Electric heat pump (EHP) systems accompanied by heat
storage for space heating. Space heating loads currently
constitute the largest part of energy demand in the do-
mestic and commercial sector of the U.K. [9], [10].

As with the transport sector, environmental and energy
security concerns have justified the electrification of
heat supply, primarily based in the U.K. on the replace-
ment of traditional gas/oil-fired heating systems with the
promising and energy efficient EHP technology [10].
Different flexibility potentials are associated with such
loads, such as the allowance of indoor temperature vari-
ation by the users within their specified thermal comfort
level boundaries or the incorporation of some form of
heat storage (e.g., hot water tanks) in the heating system,
with the latter exhibiting a more significant potential
and attracting the authors’ interest due to its ability to
preserve the desired level of service (i.e., temperature)
delivered to the users.

The local price response sub-problems corresponding to these
reschedulable demand technologies are mathematically formu-
lated incorporating models of their operational properties. Suit-
able case studies involving the integration of these technolo-
gies in a model of the U.K. system are examined in order to:
a) validate and analyze the effectiveness of the proposed mech-
anism [4] in efficiently determining high quality solutions of
the market clearing problem and b) illustrate, analyze and com-
pare benefits emerging from the market participation of these
demand technologies through the proposed mechanism.
The rest of Part II is organized as follows. Section II derives

a mathematical formulation of the price response sub-problems
corresponding to the considered reschedulable demand tech-
nologies. Section III briefly presents the different case studies
examined while illustrative results are provided and explained
in Section IV. Finally, Section V discusses conclusions and fu-
ture extensions of this work.

II. FLEXIBLE EV AND EHP SYSTEMS
PRICE RESPONSE SUB-PROBLEMS

The formulation of reschedulable demand technologies’
price response sub-problems should include suitable models
of their users’ preferences and their operational constraints.
As discussed in Part I [4], consumers’ benefit functions are
assumed constant and consumers’ preferences are expressed
solely in the form of constraints. This assumption is justified
by a) the theoretical and practical difficulties of benefit func-
tions’ derivation due to the significant uncertainties related to
the human valuation of electrical energy and b) the fact that
the considered demand technologies involve explicit storage
components enabling demand flexibility without affecting the
level of service delivered to the users: provided that their EV
can carry out the desired journeys and their room temperature
is kept at the desired levels, the users have little concern over
the electric demand patterns of their EV and EHP systems
respectively. Given this assumption, the RDP technologies’
price response sub-problems are formulated as payment mini-
mization problems.
As part of the LR heuristic method proposed in

[4, Section V-B], the extra constraint (14) therein, limiting the
maximum hourly power demand of RDP to a fraction of
their respective technically feasible limits, is included in the
formulation of their sub-problems and the latter are solved for
a set [4, (13)] of different values of the factor . It has been
assumed that if a value of the set is so restrictive for an EV or
an EHP system that does not allow the satisfaction of its local
operational constraints, its optimal price response for this value
is set equal to the optimal price response corresponding to the
immediately higher value of the set. Since the value is
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always an element of , the feasibility of the price response
sub-problem is guaranteed (given that the technically feasible
maximum limit ensures this feasibility).

A. EV With Flexible Charging Capability

The considered vehicles are fully electric. The constraints of
the local sub-problem are related to the users’ driving require-
ments, the operational properties of the EV, its battery and its
grid connection, as well as the availability of a grid connection
when the EV is stationary. The price response sub-problem is
formulated as follows:

(1)

Constraints:

(2)

(3)

(4)
if
otherwise

(5)

Constraint (2) expresses the energy balance in the EV battery,
including charging losses, self-discharging energy losses and
the energy required for driving purposes; the latter is derived
by combining the users’ driving requirements in terms of travel
times and distances and the EV’s energy consumption per unit of
distance travelled. Constraint (3) corresponds to the minimum
andmaximum limits of the battery’s energy content related to its
maximum depth of discharge and state of charge ratings respec-
tively. Constraint (4) represents the limit of the battery’s power
input, which depends on the electric power capacity of the bat-
tery and the grid connection’s power electronics, on whether the
EV is connected to the grid and on the value of the factor .
The EVs’ demand rescheduling ability is spread beyond the

examined (daily) market horizon. Decisions regarding the de-
mand responses in a certain day will affect corresponding de-
cisions and subsequently potential payments in the next day(s).
Incorporation of such out-of-horizon effects in the formulation
requires suitable probabilistic models incorporating predictions
regarding operational parameters and prices beyond the day-
ahead horizon. For the sake of simplicity such effects are not
considered and the battery energy content at the start and the
end of the daily horizon are assumed equal (5).

B. EHP Systems With Heat Storage for Space Heating

The structure of the considered space heating system is
depicted in Fig. 1. The constraints of the price response
sub-problem are related to the users’ thermal comfort require-
ments, the dynamic thermal behavior of the building heated
and the operational properties of the installed heat pump and
heat storage appliances.
Buildings’ dynamic thermal response is modelled through a

second-order equivalent electric circuit [11], [12] characterized
by five lumped parameters whose values depend on the building
geometry and the thermal properties of its materials. As dis-
cussed in [12], proper manipulation of the differential equations
expressing the thermal balance in this circuit results in the linear

Fig. 1. Structure of considered space heating system.

formulation (6) expressing the building’s thermal behavior con-
straints, where , , , , , , , are functions of
the equivalent circuit lumped parameters:

(6)

(7)

Regarding the EHPmodel, constraint (8) represents the limits
of the electric input and thermal output, including the effect
of the factor . EHP thermal and electric power capacities are
functions of outdoor and indoor temperatures [13]; linear cor-
relations are assumed in this work (9), where constants , ,
, , , depend on the EHP technical characteristics. The

ratio of its thermal output over its electric input is known as Co-
efficient of Performance (10)[13]:

(8)

(9)

(10)

Regarding the heat storage operation, constraint (11) ex-
presses the thermal energy balance in the storage including
energy losses, constraint (12) represents the minimum and
maximum limits of the storage’s energy content—related to
its maximum depth of discharge and state of charge, respec-
tively—and constraint (13) corresponds to its maximum heat
power charging and discharging rates. Moreover, the heat
power input of the storage is lower than the heat power output
of the EHP (14), as the former is charged by the latter (Fig. 1):

(11)

(12)

(13)

(14)

Finally, users’ thermal comfort requirements are defined in
terms of the desired indoor temperature at each hour:

(15)

As with EV, out-of-horizon effects are not considered and a
periodic daily continuation is assumed:

(16)

(17)
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TABLE I
GENERATION PARTICIPANTS’ CHARACTERISTICS

TABLE II
EXAMINED SCENARIOS FOR EV AND EHP FLEXIBILITY EXTENT

The price response sub-problem is formulated as follows:

(18)

Constraints: (6)–(15), and (16)–(17)

III. CASE STUDIES

The examined case studies involve the application of the
proposed market mechanism to a model of the U.K. system
on a typical winter day. Due to the scope of this paper, a
simplified yet representative model of the generation side
is employed. Ten generation participants are assumed, each
representing the population of generation units of a different
power generating technology in the U.K., and characterized by
their maximum generation capability—assumed equal to the
total installed capacity of the respective technology, as derived
by [14] and [15]—and their assumed linear marginal cost
function (expressed by the line connecting points
and (Table I). Nuclear and wind units are
assumed inflexible with their hourly productions determined
by their maximum generation capability and their predicted
outputs, respectively.
Different scenarios for the penetration and flexibility extent

of the considered demand technologies are examined. In terms
of penetration, 3 different scenarios are considered where 10%,
20% and 30% of light to medium size vehicles are EV and the
respective percentage of domestic and commercial buildings are
space-heated by EHP systems. For each penetration scenario,
different scenarios of EV and EHP flexibility are considered
(Table II), explained in more detail in the following sections.

A. EV Data, Assumptions, and Flexibility Scenarios

Original data regarding the size and the average driving pat-
terns of the U.K. light to medium size vehicle fleet is taken from

TABLE III
EXAMPLE OF EV TYPE PRODUCED BY DATA PROCESSING STAGE

[16], [17]. Based on this data, each EV is assumed to make two
journeys per day. Their energy consumption rate is assumed
0.15 kWh/km travelled [18]. These assumptions along with data
from [16] and [17] are inputted to a data processing stage which
groups the EV fleet into a set of types, each defined by the com-
bination of the start time, end time and electrical energy require-
ment of each of its two daily journeys; an example of an EV type
is presented in Table III.
Based on [5]–[8], the values for the rest of the parameters

are assumed , ,
, and for every EV, and

EV are assumed connected to the grid during the period between
the end of their second and the start of their first journey, in line
with the home-charging scenario, deemed as the most plausible
in the literature [7], [8]. Under this assumption,

should be satisfied for every EV, so that they are able
to fulfil their driving requirements.
In the Base flexibility scenario, EV are as-

sumed inflexible, starting charging their bat-
teries immediately after their second journey with

. Cases
with EV flexibility (Table II) involve X% of the total number
of EV exhibiting flexible charging capability and participating
in the market through the price response sub-problem (1)–(5),
assuming .

B. EHP Systems Data, Assumptions, and Flexibility Scenarios

EHP systems for space heating are assumed installed in do-
mestic and commercial buildings of different structures (de-
tached, semi-detached, terrace, flat dwellings and hotels, offices,
retail stores, respectively), sizes and insulation levels. The En-
ergy Plus building energy simulation software [19] is used to
determine the values of the five parameters of the second-order
thermal response model and the internal heat gains for each of
those different building types [12]. Moreover, the buildings are
assumed to be spread across three different U.K. areas (North,
Midlands and South), for which typical winter day outdoor tem-
perature profiles are considered [12]. Data regarding the total
number of each of the examined building types in each of the
three considered areas is taken from [20] and [21].
During hours when the buildings are occupied, is as-

sumed constant and equal to for all buildings. When the
buildings are unoccupied, is reduced to a desired setback
value, which varies for the different buildings. Values of the de-
sign parameters , , , for different EHP models
are taken from [22] and the model installed in each building
is selected based on the latter’s maximum heat power demand.
The assumed values for the heat storage parameters are

, , ,
and for every building.

In the Base flexibility scenario, EHP systems are not accom-
panied by heat storage and the inflexible EHP demand keeps
the indoor temperature at the desired levels. Cases with EHP
flexibility (Table II) correspond to a different combination of
1) the percentage X% of EHP systems accompanied by heat
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Fig. 2. Impact of EV flexibility on demand profile for different values of
(30% EV/EHP penetration).

storage and thus exhibiting flexibility and 2) the storage ca-
pacity, expressed as a fraction of the daily heat energy con-
sumption in the respective building; in practical terms,
this capacity will be limited by restrictions related to the avail-
able space for storage installations.

IV. RESULTS

A. Validation of Proposed Market Mechanism

In order to limit the creation of new demand peaks by the con-
centrated shift of reschedulable demand to the same low-priced
hours and thus produce high quality solutions of the market
clearing problem, the LR heuristic method proposed in Part I
[4] perturbs the price response of reschedulable loads by lim-
iting their maximum power demand to a fraction of their re-
spective technically feasible limits. In order to heuristically de-
termine a high quality market clearing solution, a set of dif-
ferent responses (corresponding to different values of ) are
received from reschedulable loads and respective solutions
are determined (through the scheduling of the generation side)
at each iteration of the clearing mechanism.
Figs. 2 and 3 present the demand profiles and generation cost

savings (with respect to the Base scenario) corresponding to the
best solution for the different employed values of assumed
(0.1, 0.2, … , 1) in cases with EV flexibility. Not perturbing
EV response (equivalent to ) allows large EV demand
shifts to the lowest-priced hours, yielding a significant new de-
mand peak in early morning. A very low value of (0.1) on the
other hand restricts the EV flexibility to shift their demand to
lower-priced periods so much that part of their demand is satis-
fied at medium-priced periods and the off-peak valley of inflex-
ible demand (hours 23–7) characterized by lower prices is not
sufficiently filled; therefore, generation cost savings are lower
than the technically available EV flexibility allows. The most
suitable value of lies between these two extremes ( for
EV-50% and for EV-100%), enabling flatter demand
(and price) profiles and higher generation cost savings. As jus-
tified by Fig. 3 and Table IV, as the extent of EV flexibility and
EV penetration increases: 1) the new demand peak created in the
case corresponding to is larger and thus the value of the
proposed LR heuristic -quantified as the % improvement in gen-
eration cost savings when the best value of is employed with
respect to - is enhanced and 2) themost suitable value of
is reduced since a stricter restriction needs to be set on the avail-
able flexibility of each EV in order to achieve a higher-quality
solution.

Fig. 3. Impact of EV/EHP flexibility on generation costs for different values
of and different COP models (30% EV/EHP penetration).

TABLE IV
PROPERTIES OF PROPOSED LR HEURISTIC IN CASES WITH EV FLEXIBILITY

When flexible EHP systems are considered, a significant new
demand peak is not created for even in the case with
the largest flexibility extent (EHP-L-100%, Fig. 4); therefore,
the value of the proposed LR heuristic (giving 0.6 as the most
suitable value of in EHP-L-100%) is not as significant as in
the case of EV, as shown in Fig. 3 (best does not improve
generation cost savings with respect to as significantly
as in the EV case). This is due to the operational diversity of
the EHP associated with the correlation of their with in-
door and outdoor temperatures (9)–(10). Since the same EHP
thermal power output requires less electric power input when
the is higher, flexible EHP systems determine the optimal
periods for their storage charging based on the combination of
prices and indoor/outdoor temperatures. Given that the consid-
ered buildings exhibit different indoor and outdoor temperature
profiles, the optimal charging periods for the different EHP sys-
tems exhibit significant diversity and thus do not yield a large
new peak at the lowest-priced hours. This was justified by exam-
ining an additional case, where this correlation between
and indoor/outdoor temperatures is neglected and a constant

is assumed for each EHP; the diversity in EHP re-
sponse is lost, the demand profile exhibits significant new peaks
(Fig. 4) and the value of the proposed LR heuristic becomes very
significant, as shown in Fig. 3 (generation cost savings for the
best value are almost double as high with respect to

).
As discussed in Part I [4], the convergence properties of the

employed Lagrangian multipliers’ update algorithm will have
a significant impact not only on the total time for solving the
clearing problem but also on the communication costs of the
mechanism, as the number of required iterations corresponds
to the number of required message exchanges between the
market operator and the decentralized demand participants. As



3672 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 28, NO. 4, NOVEMBER 2013

Fig. 4. Impact of EHP flexibility on demand profile for different values of
and different COP models (30% EV/EHP penetration).

TABLE V
NUMBER OF REQUIRED ITERATIONS OF MARKET CLEARING

ALGORITHM (30% EV/EHP PENETRATION)

explained in [4], the initialization quality of the update process
can greatly influence the number of required iterations. Finally,
a combined termination criterion for the iterative mechanism
was proposed; the mechanism terminates when 1) the relative
duality gap is lower than a tolerance value or 2) a
maximum number of iterations is reached.
The case studies were executed with two tolerance values

and while the value of was set to 100.
Furthermore, two initialization cases were tested. In the first one
(poor initialization case), the initial multipliers were deter-
mined by the solution of the generation scheduling problemwith
the Base scenario demand profile, i.e., by neglecting the poten-
tial impact of reschedulable demand on prices; in the second one
(good initialization case), the th element of was calculated
as the average of its th element in the poor initialization case
and the th element of the multiplier vector corresponding to the
optimal market clearing solution. The number of iterations re-
quired for the two values of and the two initialization cases
are given in Table V.
When the extent of demand flexibility is relatively small, its

impact on the price profile is not significant; therefore, even
when the initialization ignores this impact, few iterations are
required for convergence and the initialization quality does not
have a significant impact. When however the degree of flex-
ible demand is relatively high, the number of iterations gets sig-
nificantly larger and a good initialization technique—including
suitable prediction of the flexible demand’s impact—becomes
critical. In these cases, the increase of can also reduce signifi-
cantly the required number of iterations but comes with the cost
of higher uncertainty on the optimality of the market clearing

Fig. 5. Impact of EV flexibility on demand profile (30% EV/EHP penetration).

Fig. 6. Impact of EHP flexibility on demand profile (30% EV/EHP penetra-
tion).

solution [4], a trade-off which needs to be properly balanced by
the market operator.

B. Benefits of Flexible Demand’s Market Participation
The demand profiles corresponding to the best solu-

tion—with the most suitable value of —in cases with
EV flexibility are depicted in Fig. 5. The shift of flexible EV
demand from high-priced (peak) afternoon/evening hours to
low-priced (off-peak) night/early morning hours results in a
flattening effect in the demand (and price) profile. This effect
is enhanced as the number of flexible EV is increased as more
demand migrates from peak to off-peak hours.
The respective profiles for cases with EHP flexibility are pre-

sented in Fig. 6. Flexible EHP systems shift their electrical de-
mand towards more favorable hours by increasing the EHP heat
power production and filling the available heat storage at low-
priced hours while reducing the EHP production and utilizing
the stored heat energy at high-priced hours. Therefore, as in the
cases of EV flexibility, a flattening effect is introduced in the
demand (and price) profile. It is worth noting however that the
daily electrical energy demand increases with the introduction
of flexibility due to the energy losses in the heat storage. When
the heat storage capacity is larger, flexible EHP systems can take
better advantage of the lowest prices of the day at night/early
morning hours by satisfying a larger part of their daily heat en-
ergy demand through electricity purchases in that period, and
the flattening effect is enhanced despite the fact that the storage
losses and thus the daily energy demand increase.
Table VI presents the impacts of demand flexibility on dif-

ferent system indices in some of the examined scenarios. The
flattening of the demand profile leads to significant savings in
generation costs, due to the increasing shape of the aggregate
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TABLE VI
DEMAND FLEXIBILITY IMPACTS ON SYSTEM INDICES (IN% REDUCTION
WITH RESPECT TO BASE SCENARIO) (30% EV/EHP PENETRATION)

hourly marginal cost function of the generation side (Table I);
these savings emerge despite the fact that the daily electrical
energy demand remains constant (EV flexibility scenarios) or
even increases (EHP flexibility scenarios) with the introduction
of flexibility at the demand side. The migration of flexible de-
mand away from high-priced peak hours leads to significant de-
mand peak reductions. These beneficial impacts on generation
costs and demand peak are enhanced as the extent of demand
flexibility increases. Flexible demand’s payments exhibit large
reductions, since it is rescheduled towards hours with lower
prices. It is noted that as the X% of EV and EHP exhibiting
flexibility increases, their % payments’ savings are reduced due
to their increasing effect on off-peak prices towards which they
are rescheduled.
Although the comparison between the impacts of the two

flexible demand technologies depends on their assumed pa-
rameters’ values, penetration and flexibility scenarios, useful
conclusions can be drawn by comparing for example scenarios
EV-100% and EHP-L-100%. The % savings in flexible EV
payments are much higher than the respective savings of flex-
ible EHP systems due to the greater flexibility of EV, justified
by the fact that: 1) the battery capacity of each EV is higher
than its daily driving energy requirements, while the heat
storage capacity of each building is lower than is daily heat
energy requirements and 2) in contrast with EV, introduction
of flexibility in EHP systems results in notable energy losses.
However, the same savings are higher in absolute terms for
the flexible EHP systems (the average payments’ savings in
per flexible EHP system in EHP-L-100% are almost double as
high as the respective savings per flexible EV in EV-100%)
due to their greater energy intensity. Finally, even though
EHP-L-100% exhibits higher demand peak reduction and
greater improvement of the load factor (the latter is 84.32%
in EHP-L-100% and 82.89% in EV-100%) due to the greater
energy intensity of EHP systems, it also exhibits slightly lower
generation cost savings due to the higher daily energy demand
caused by the heat storage losses.
Figs. 7 and 8 illustrate the generation cost savings and

demand peak reduction with respect to the Base scenario for
different EV/EHP penetration and flexibility scenarios. Due to
the temporal patterns of vehicles’ and heating systems’ use by
consumers, in a scenario where EV and EHP do not exhibit
flexibility, as their penetration increases, both morning and
evening demand peaks’ increase is disproportionately higher
than the increase in total energy consumption [18]; thus the

Fig. 7. Impact of EV/EHP flexibility on generation costs for different EV/EHP
penetration scenarios.

Fig. 8. Impact of EV/EHP flexibility on demand peak for different EV/EHP
penetration scenarios.

benefits brought by each demand flexibility scenario in terms of
generation cost savings and demand peak reductions increase
with an increasing EV/EHP penetration.

V. CONCLUSIONS

A novel pool market mechanism is proposed in this two-
part paper in order to realize the demand flexibility potential
in a market-oriented and decentralized fashion. Part II demon-
strates the applicability of the mechanism considering two flex-
ible demand technologies with significant potential, EV with
flexible charging capability and EHP systems accompanied by
heat storage for space heating. Their price response sub-prob-
lems are formulated including models of their operational prop-
erties, and case studies on a model of the U.K. system with dif-
ferent scenarios regarding their penetration and flexibility extent
are examined.
In terms of the mechanism properties, the results illustrate

that the LR heuristic method proposed in Part I [4] enables the
production of a high quality solution by setting a suitable restric-
tion to the maximum hourly demand of reschedulable loads, ac-
counting for the trade-off between the avoidance of new peaks’
creation (caused by the concentrated shift of reschedulable de-
mand to the same low-priced periods) and the sufficient flat-
tening of the inflexible demand profile. In cases with EV flexi-
bility the size of these potential new demand peaks and thus the
value of the proposed method are significant; as the EV pene-
tration and flexibility increases, the value of the method is en-
hanced and the optimal solution requires a stricter restriction
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on the available flexibility of each EV. In cases involving flex-
ible EHP systems on the other hand, their natural diversity as-
sociated with the correlation of the heat pump’s with in-
door and outdoor temperatures prevents the creation of signifi-
cant new demand peaks and the value of the proposed method
is smaller.
Regarding the communication requirements of the mecha-

nism, when the extent of demand flexibility is relatively small,
few message exchanges between the market operator and the
flexible demand participants are required to reach a solution
with a low relative duality gap (0.5%) evenwhen the Lagrangian
multipliers’ initialization ignores the impact of this flexibility.
When however the degree of flexible demand is high, the ini-
tialization process should include suitable prediction models of
such impact in order to limit the significant number of required
message exchanges.
In terms of demand flexibility benefits realized through the

proposed mechanism, the results show that the EV and EHP
flexibility results in a flattening effect and peak reduction in de-
mand and price profiles and yields significant savings in gener-
ation costs. These benefits are shown to increase not only with
an increasing extent of EV/EHP flexibility but also with an in-
creasing EV/EHP penetration, demonstrating the increased po-
tential of demand flexibility in a future with a wide electrifica-
tion of transport and heat sectors.
Future work will incorporate detailed models of the genera-

tion side, network and security constraints in themarket clearing
problem in order to further investigate the impact of demand
flexibility in cases of different generation system’s characteris-
tics, increased wind generation penetration and network conges-
tion. Furthermore, other flexible demand technologies and flex-
ibility patterns, interacting with the level of service delivered to
the users (e.g., EHP systems with indoor temperature margins,
wet appliances with reschedulable initiation time, etc.) will be
examined from the same perspective. Finally, suitable cost/ben-
efit analyses will be carried out in order to compare the eco-
nomic benefits of flexible demand market participation with the
investment required for introducing flexibility in the demand as-
sets and practically realizing the proposed mechanism.
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