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Abstract—This work describes a new way to solve the optimal
power flow problem applying typed graph neural networks.
Typed graph neural networks allow the representation of dif-
ferent elements of transmission systems with different types of
nodes, thus adding accuracy and interpretability to the solutions
obtained, in comparison to results obtained with conventional
feed-forward neural network models. The proposed graph neural
network architecture is trained without the need of training data,
through a physics informed loss function which incorporates not
only the optimization objective, but also operational constraints
of the physical system. Results are comparable with those
obtained with the interior point method, and it is shown that
the calculation time is greatly reduced.

Index Terms—Optimal power flow, Graph neural networks,
Unsupervised learning, Physics-informed neural networks.

I. INTRODUCTION

The optimal power flow (OPF) problem is a fundamental
optimization tool in power system operation and planning.
Initially formulated by Carpentier in 1962 [1], extending the
economic dispatch problem by incorporating power flow equa-
tions, but since then the OPF problem has undergone signifi-
cant evolution in both modeling and algorithmic approaches.
A comprehensive overview of the objective functions and
algorithms used in classical electrical networks can be found
in [2]–[7].

However, in the early twenty-first century, the landscape
shifted towards more intricate OPF models [8]–[10], address-
ing challenges in the electricity market [11], smart grids [12],
and renewable energy integration [13]. These developments
necessitate the use of probabilistic models [14], [15] and
exploration of numerous scenarios [16] to capture uncertainties
in renewable energy and market dynamics. The increasing
complexity of models and operational flexibility of networks
demand considerable time for study execution and require
faster analysis [17].

In response to these challenges, several authors propose the
application of neural networks and machine learning in OPF.
Various articles explore the intersection of OPF and neural
networks [16], [18], [19], leveraging these technologies to
enhance the speed and efficiency of studies. Recent trends
indicate a growing preference for machine learning in solving
AC optimal power flow due to the significant runtime speedup
compared to traditional optimization techniques. However,
challenges arise, as some methods require large amounts of
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target data and struggle with generalization outside training
scenarios [16].

Approaches taken with Physics-Informed Neural Networks
(PINN) stem from the formulation of the problem, introducing
constraints into the loss function guiding neural network
learning. In [20], four stacked Multilayer Perceptrons (MLP)
are used, one for each significant variable (voltage magnitude,
phase angle, active power, and reactive power of generators),
with constraints incorporated into the loss function. In [21],
deep reinforcement learning is utilized, employing an action-
value function mimicking the gradient ascent algorithm to
update the action network. In [22], prior information provided
by the Karush-Kuhn-Tucker conditions is used to train the
network. In [23], information supplied by the Jacobian in
learning allows for achieving the same precision with less
training data.

Nevertheless, the implementation of these algorithms re-
quires substantial high-quality datasets and must ensure com-
pliance with operational constraints in critical applications.
Semi-supervised methods, as seen in [20], [24], mitigate this
issue but miss out on leveraging graph networks’ ability [25]
to learn structured data representations, crucial for accuracy
and efficiency in neural network-based solvers. Physically
informed neural networks [24] emerge as a solution, reducing
the dataset size needed for training and incorporating equations
to guide network behavior.

While both PINNs and traditional machine learning methods
can solve the OPF problem, they differ in approach. Traditional
methods rely on historical data to establish input-output rela-
tionships, potentially overlooking underlying physical laws. In
contrast, PINNs integrate physical principles into their neural
network architecture, allowing for more accurate and general-
izable solutions. However, PINNs’ complexity in development
and training surpasses that of traditional methods.

The utilization of typed graph networks, as presented in
this work, not only enhances accuracy and efficiency but also
adds interpretability to the solutions—an essential aspect for
gaining operators’ confidence in the practical application of
these methods. The proposed solution in this article eliminates
the need for training data, allows for simple modeling, and
embeds power flow equations within the neural network.

II. METHODOLOGY

This section explains the layout of the proposed physics-
informed typed graph neural network (PI-TGN) based OPF
solver. It starts out explaining the elements of the loss function,
as one of the biggest challenges in solving the OPF problem0000–0000/00$00.00 © 2021 IEEE

This article has been accepted for publication in IEEE Transactions on Power Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2024.3394371

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 2

with machine learning lies in complying with the presented
constraints. This way, the chosen loss function greatly influ-
ences the structure of the model, which is described subse-
quently.

A. Loss function

As mentioned previously, the OPF problem can have differ-
ent optimization objectives, but in any case it is constrained
by physical laws governing the system and the operational
constraints of the different elements that make up the electrical
network. In this work, the objective is set to minimize the
power losses in the transmission branches. To incorporate
the different requirements of the OPF problem, the loss
function used for training is multi-target and composed of
three elements: one that depends on the objective, i.e. active
power line losses, a second that aims at eliminating active and
reactive power imbalance at each bus, and a final component
that depends on the operation constraints of voltage magnitude
and power generation of all buses. Each of the three terms has
a corresponding weight, represented as λa, λb and λc. These
weights are assigned to give more or less importance to each
term in the total loss function.

The total active power loss in each sample is calculated as
the sum of the difference between sent power and received
power of all branches. These values are dependent on the
inferred voltage magnitude and phase values, and on the
branch characteristics, as shown below:

Jloss =

NE∑
e=1

||Pfe

(
Γ̂e, ϵ̇e

)
| − |Pte

(
Γ̂e, ϵ̇e

)
|| (1)

where NE represents the number of branches of the trans-
mission system; Pfe and Pte represent the power flowing from
the sending bus and to the receiving bus of each branch,
respectively. These values are determined by the characteristics
of each branch, and the voltage magnitude and phase values
at their extremities (the ”sending” and ”receiving” buses). The
branch characteristics are summarized in the single variable
ϵe = (ρe, δe, Be, τe, ωe); where ρe and δe represent the
magnitude and phase of the series admittance of each branch
e, Be represents the total line charging susceptance, and in the
case of transformers, τe and ωe represent the nominal turns
ratio and the phase shift angle. The voltage magnitude and
phase values of the buses on each extremity of the branch
are summarized in the variable Γe = (Vfe , θfe , Vte , θte);
where V and θ represent the voltage magnitude and phase,
respectively; the subindexes, fe and te, refer to whether it is
on the sending or receiving side of the branch e. The voltage
magnitude and phase are inferred values, and are thus marked
with a hat ( ˆ ), while the branch characteristics are given
values, thus marked with a dot ( ˙ ).

The total loss is calculated for every sample in the training
batch, consisting of H samples. This way, to infer voltage
magnitude and phase values that will minimize the branch
losses, the first part of the loss function is simply the mean
square deviation from zero loss of each sample, as presented
below:

La = λa
1

H

H∑
h=1

J2
loss,h (2)

The second part of the cost function is meant to enforce
the equality constraint that enforces the fulfillment of the
Kirchhoff laws, it is defined by the mean square deviation
from the active and reactive power equilibrium point at each
bus:

Lb = λb
1

H

H∑
h=1

(
1

NB

NB∑
n=1

(
P̃ 2
n,h + Q̃2

n,h

))
(3)

where NB represents the number of substations in the elec-
trical grid; Ġsn and Ḃsn represent the bus shunt conductance
and susceptance; P̃n and Q̃n represent the active and reactive
power imbalances in the bus n, such that:

P̃n = P̂ gn − Ṗ dn − ĠsnV̂
2
n

−
∑

e∈N (n)

Pfe

(
Γ̂e, ϵ̇e

)
−

∑
e∈N (n)

Pte

(
Γ̂e, ϵ̇e

)
(4)

Q̃n = Q̂gn − Q̇dn + ḂsnV̂
2
n

−
∑

e∈N (n)

Qfe

(
Γ̂e, ϵ̇e

)
−

∑
e∈N (n)

Qte

(
Γ̂e, ϵ̇e

)
(5)

n = 1, . . . , NB

where the generated power (P̂ gn and Q̂gn) are inferred, the
demanded power (Ṗ dn and Q̇dn) are known, and the power
from (Pfe and Qfe) and to (Pte and Qte) each bus of the
branch e depends on the inferred voltage magnitude and phase
values.

The final term of the loss function is in itself a com-
position of terms designed to discourage the transgression
of the operational constraints. The violation degrees (VDs)
are defined by ramp functions that depend on how much
the inferred parameters deviate outside the minimum and
maximum established limits, i.e. for any parameter x ∈ R
with lower and upper limits xmin, xmax ∈ R, the VDs for
both limits are defined as:

ηmin =

{
0, if xmin − x < 0

xmin − x, otherwise (limit violation)
(6)

ηmax =

{
0, if x− xmax < 0

x− xmax, otherwise (limit violation)
(7)

These functions are applied to enforce the inequality con-
straints that are determined by the operational constraints of
voltage magnitude, and power generation. For simplicity, the
ramp function is expressed as the ”max” function, which
outputs the maximum of two given values.
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ηVmin = max(0, V̇ min
n − V̂n) (8)

ηVmax = max(0, V̂n − V̇ max
n ) (9)

ηPmin = max(0, Ṗ gmin
g − P̂ gg) (10)

ηPmax = max(0, P̂ gg − Ṗ gmax
g ) (11)

ηQmin = max(0, Q̇gmin
g − Q̂gg) (12)

ηQmax = max(0, Q̂gg − Q̇gmax
g ) (13)

n = 1, . . . , NB , g = 1, . . . , NG,

where NB and NG represent the number of buses and
generators, respectively; eqs. (8) and (9) represent the VD
of voltage magnitude from their lower and upper limits,
respectively, for every bus; eqs. (10) and (11) represent the
VD of the active power generation from their lower and upper
limits, respectively, for every generation bus; eqs. (12) and (13)
are similarly defined, but for the reactive power generation.

It should be noted that the ramp function is not differentiable
in all its domain, but the gradient can be estimated through the
subgradient. The two VDs of each parameter are aggregated,
as shown below:

ηVn,h
= ηVmin + ηVmax (14)

ηPg,h
= ηPmin + ηPmax (15)

ηQg,h
= ηQmin + ηQmax (16)

As with the previous loss function expressions, the mean
square deviation of each parameter is calculated as shown in
eqs. (17 - 19), then all the resulting terms are added together
in eq.(20).

vlimit =
1

H

H∑
h=1

1

NB

NB∑
n=1

(ηVn,h
)2 (17)

plimit =
1

H

H∑
h=1

1

NG

NG∑
g=1

(ηPg,h
)2 (18)

qlimit =
1

H

H∑
h=1

1

NG

NG∑
g=1

(ηQg,h
)2 (19)

Lc = λc(vlimit + plimit + qlimit) (20)

Eq. (21) shows the final loss function, which is simply the
sum of the terms described above (eqs. (2), (3) and (20)).

L = La + Lb + Lc (21)

B. PI-TGN based OPF solver

The proposed method for solving the OPF problem utilizes
a PI-TGN neural network [26]. In [27], physics-guided neural
networks emerge as a novel and competent alternative for
optimization tasks in the real world. This approach models
an electrical grid through a graph, incorporating various node
types that mirror the grid’s structure. It categorizes nodes into
three types: two for buses (generator VG and load VD) and one
for electrical lines (VE), as depicted in Fig. 1. The topological

(a)

(b)
Fig. 1. (a) Small example of transmission grid; (b) corresponding PI-TGN
architecture

connections among these different node types are indicated
by two adjacency matrices, Ag, e and Ad, e. Here, each node
functions as a small neural network, and the exchange of in-
formation between nodes is facilitated by messages leveraging
the network’s topological knowledge. Each layer of PI-TGN
is defined by the graph G = (VD,VG,VE ,Ag, e,Ad, e).

The scheme of the PI-TGN based OPF solver proposed
in this work is shown in Fig. 2. The solid blue squares
represent the main parts of each PI-TGN layer, and other
squares with a blue edge represent either components of the
input or intermediate layer outputs (which are fed to the next
layer). The orange square with the bright orange border shows
the initialization of the inference variables, and is only input
to the first PI-TGN layer. The orange square with purple edge
represents the output only of the last PI-TGN layer. In the
following subsections the different elements of the scheme
are explained in more detail.

In Fig. 2, the visual representation of the neural network’s
inputs and outputs is provided, and a comprehensive summary
of these elements is presented in table I. The inputs consist
of the grid state data, whose values are known, and the initial
inference values of the control variables, whose values are
unknown. The outputs comprise the values that are determined
for these control variables.
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Fig. 2. PI-TGN based OPF solver scheme.

C. Grid state data and initial inference values

The data used to train and verify the proposed model is
obtained from a benchmark library from the IEEE Power
& Energy Society task force on benchmarks for validation
of emerging power system algorithms to solve the AC opti-
mal power flow problem, posed as a non-convex, nonlinear
program; the headers used were the ones of cases 14, 30,
57 and 200 buses [28]. All of the case files are curated
in the Matpower data format, and thus include three main
structures: bus data, generator data and transmission line data.
The predefined, nominal and limiting values obtained are
summarized in table I.

To generate a batch of data, the first step is to establish
the parameters that determine the grid state, either by adding
uniform noise to specific elements of the benchmark data
structures (bus, generator, branch), or by loading predefined
time series data. The second step is to define initial voltage
and power generation values. A batch of data is generated for
every training iteration.

This way, to generate data for training uniform noise is
added to the active and reactive power load of every bus,
so that the final value lies between 80 and 120% of the
original benchmark case value, uniform noise from 0.9 to
1.1 is also added to the shunt susceptance of every bus.
To prepare the proposed model for possible changes in the
power line parameters, which can be due to modifications in
the operational conditions, added or removed vegetation and
aging, branch noise is added to every training sample. Uniform

TABLE I
INPUT AND OUTPUT DATA

INPUTS Nominal values Limiting values

Bus
data

Real and reactive power
demand, shunt conductance
and susceptance, voltage
phase and magnitude.

Max. and min.
voltage magnitude.

Generator
data

Active and reactive
power generation.

Max. and min. active
and reactive generation.

Branch
data

Sending/receiving buses,
resistance, reactance,
total line charging
susceptance. Transformers:
turns ratio, phase shift angle.

Not considered.

OUTPUTS Nominal values Limiting values
Bus
data Voltage phase and magnitude. Not considered.

Generator
data

Active and reactive
power generation. Not considered.

noise is added to the resistance, reactance and line charging
susceptance of every branch, resulting in values between 90
and 110% of the original benchmark values. Additionally,
with the purpose of increasing the generalization capabilities
of the proposed model to learn to deal with generators with
different capacities, active power generation limits are varied
between 90 and 110% of their original value. Once noise has
been added to the injections (load characteristics) and to the
transmission line characteristics, the topology of the grid is
modified by randomly deleting a different transmission line
for each sample.

The initial state of the parameters that will be inferred by the
model are indicated by Pg(0), Qg(0), V (0) and θ(0). The active
and reactive power are independently initialized to a value
between 25 and 75% of the previously established generation
limits, i.e.

Pg(0)g = UPg · (Ṗ gmax
g − Ṗ gmin

g ) + Ṗ gmin
g (22)

Qg(0)g = UQg · (Q̇gmax
g − Q̇gmin

g ) + Q̇gmin
g (23)

g = 1, . . . , NG

UPg,UQg ∼ U(0.25, 0.75)

There must be some amount of balance between power
generation and load in the initial state. In this work, a 5% error
margin is set for this initial condition; if the total generation
and load difference is larger, the initial generation state is
scaled to meet the requirement.

The voltage magnitude of every bus is initialized to a value
between 30 and 70% of the established bus limit, i.e.

V (0)
n = UV · (V̇ max

n − V̇ min
n ) + V̇ min

n (24)
n = 1, . . . , NB

UV ∼ U(0.3, 0.7)

The voltage phase of each bus is initialized to the slack bus
angle established in the benchmark case, i.e.

θ(0)n = θ′slack, n = 1, . . . , NB (25)

For the case in which established load time series are
specified (e.g. for validation), these are simply loaded and
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used as they are, and random noise is added to the rest of
parameters not given by the time series.

The process of modifying the benchmark electrical grid state
by adding noise to the specified parameters and changing the
topology of the grid, and initializing the voltage and power
generation values is repeated every time a batch of data is
needed by the proposed model, either for training, validation
or testing.

D. Input features

For the first PI-TGN layer, the input features are calculated
from the grid state data (power loads, branch features and grid
topology) and the initialization of the inference variables. For
all the other PI-TGN layers, the input features depend on the
grid state data and the updated inferred voltage and power
generation values from the previous PI-TGN layer.

As was mentioned in subsection II-A which discussed the
loss function, the three main aspects of the OPF problem
involve: the power losses in the transmission lines, the power
equilibrium equations and the operational limits of the electri-
cal grid. These components are correspondingly incorporated
into the input features of the different types of nodes, such
that the input feature set for every type of node is as shown
below:

x(l)
g = {V̂ (l−1)

g , θ̂(l−1)
g , P̃ (l−1)

g , Q̃(l−1)
g , η

(l−1)
Vg

, η
(l−1)
Pg

,

η
(l−1)
Qg
}, (26)

x
(l)
d = {V̂ (l−1)

d , θ̂
(l−1)
d , P̃

(l−1)
d , Q̃

(l−1)
d , η

(l−1)
V d }, (27)

x(l)
e = {ϵe, J (l−1)

loss,e}, (28)

∀g ∈ G, ∀d ∈ D, ∀e ∈ E

The inputs for generator type nodes include all their cor-
responding VDs (ηVg

, ηPg
, ηQg

) since generator nodes must
infer all the variables that are constrained by operation limits;
the deviation from both active and reactive power equilibrium
(P̃g, Q̃g) and the previously inferred voltage magnitude and
phase (V̂g, θ̂g) are also input features to this type of node.
For load type nodes, only voltage values are inferred, and
thus only the voltage magnitude VD (ηVd

) is considered as
input, along with the deviation from active and reactive power
equilibrium (P̃d, Q̃d) and the inferred voltage magnitude and
phase (V̂d, θ̂d). For branch type nodes, the branch power loss
from the previous step (Jloss,e) and the branch characteristics
(ϵe) which do not change from PI-TGN layer to layer, are used
as input features.

E. PI-TGN model

In this section, a description of the PI-TGN layer that is used
sequentially and recursively a determined number of times, L,
is described. The PI-TGN layer is composed of an encoder,
a message-passing and aggregation step, an embedded update
of all the nodes, and a decoder for the specified nodes with
outputs. Regarding the graph representation, it should be
noted that since in a transmission grid buses are not directly
connected, but instead must be connected to at least one branch

(islanding cases are not considered in this work), and each
branch must be connected to two different buses, only two
adjacency matrices are needed to represent the topology of
the PI-TGN layer:

Ad, e ∈ RND×NE (29)

Ag, e ∈ RNG×NE (30)

Where Ad, e represents the connectivity between load bus
nodes and branch nodes, and similarly Ag, e represents the
connectivity between generator bus nodes and branch nodes.
The adjacency matrices are determined directly from the
topology of the electrical grid to be modeled.

The process carried out in each PI-TGN layer begins with
encoding the inputs of each type of node (x); there are
encoding MLPs defined for every type of node (γνd

, γνg and
γνe ) that embed the input features into the latent space. This
process is demonstrated in eq. (31) for a PI-TGN layer l and
a node type χ.

ν(l)χ (0) = γνχ
(x(l)

χ ) (31)

where ν
(l)
χ (0) ∈ Rdχ represents the initial embedded state

of a χ type node.
After the initial encoding step, a predefined number T of

message-passing and embedded update steps are carried out,
as shown below:

ν
(l)
d (t+ 1) = σνd

(
ν
(l)
d (t), Ad, e · µe→d

(
ν(l)e (t)

))
(32)

ν(l)g (t+ 1) = σνg

(
ν(l)g (t), Ag, e · µe→g

(
ν(l)e (t)

))
(33)

ν(l)e (t+ 1) = σνe

(
ν(l)e (t), AT

d, e · µd→e

(
ν
(l)
d (t)

)
,

AT
g,e · µg→e

(
ν(l)g (t)

))
, (34)

∀νd ∈ VD, ∀νg ∈ VG, ∀νe ∈ VE

where ν
(l)
χ (t) ∈ Rdχ represents the tth embedded state of a

χ type node in PI-TGN layer l; σνd
, σνg and σνe are the update

MLPs for load, generation and branch nodes, respectively;
µe→d and µe→g are the aggregation MLPs from branch type
nodes to load and generator nodes, respectively; µd→e and
µg→e are the aggregation MLPs from load and generator type
nodes, respectively, to branch type nodes. These MLPs are the
same for all layers.

Decoding functions are defined for load and generation type
nodes (φνd

and φνg
), these functions serve to obtain the correct

number of outputs. The generator type node decoding function
has four outputs: voltage magnitude and phase changes, and
active and reactive power generation changes. The load type
node decoding function has two outputs: voltage magnitude
and phase changes. The outputs of the decoder functions of a
PI-TGN layer l for both types of nodes are shown below:
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y
(l)
d = φνd

(
ν
(l)
d (T )

)
= {∆V (l)

νd
, ∆θ(l)νd

} (35)

y(l)
g = φνg

(
ν(l)g (T )

)
= {∆V (l)

νg
, ∆θ(l)νg

, ∆Pg(l)νg
, ∆Qg(l)νg

}
(36)

∀νd ∈ VD, ∀νg ∈ VG
where ∆Vνχ and ∆θνχ represent the voltage magnitude and

phase modifications for a χ type bus; ∆Pgνg and ∆Qgνg

represent the active and reactive power modifications for the
generation type nodes.

F. Updated and final inference values

As explained in the previous section, the decoder outputs of
a certain PI-TGN layer are a modification value to be applied
to the inferred (or initial) state of the previous layer, for every
bus node. The final inference values of a layer l are calculated
as shown below:

V̂ (l)
νd

= V̂ (l−1)
νd

+∆V (l)
νd

(37)

θ̂(l)νd
= θ̂(l−1)

νd
+∆θ(l)νd

(38)
∀νd ∈ VD

V̂ (l)
νg

= V̂ (l−1)
νg

+∆V (l)
νg

(39)

θ̂(l)νg
= θ̂(l−1)

νg
+∆θ(l)νg

(40)

∀νg ∈ VG − slack

P̂ g(l)νg
= P̂ g(l−1)

νg
+∆Pg(l)νg

(41)

Q̂g(l)νg
= Q̂g(l−1)

νg
+∆Qg(l)νg

(42)

∀νg ∈ VG
Thus, for a layer l, eqs. (37) and (39) represent the voltage

magnitude output for load and generation nodes, respectively;
eqs. (38) and (40) represent the voltage phase output for load
and generation nodes, respectively; eqs. (41) and (42) represent
the active and reactive power generation for generation nodes,
respectively. Even though a slack node is not considered in this
model, one of the generator buses is indeed the slack bus, as
indicated by the benchmark case. For slack nodes, the output
features corresponding to the voltage magnitude and phase are
hard-coded to the upper limit for the magnitude, and to the
original value of the slack for the phase, i.e.

θ̂
(l)
slack = θ

(0)
slack (43)

V̂
(l)
slack = V max

slack (44)
l = 1, . . . , L

The complete PI-TGN layer-based model sequentially pro-
duces L outputs; the final outputs represent the final voltage
and power generation inferences.

G. Training

The training process embodies unsupervised learning, where
the network undergoes self-tuning of its weights. During this
process, only input data is supplied, without corresponding

output data. The algorithm autonomously adjusts its weights
by minimizing the pre-defined loss function, ensuring adher-
ence to the underlying physical principles.

Algorithm 1 Training algorithm for PI-TGN based OPF solver
1: REQUIRE: BUS, GENERATOR AND BRANCH DATA
2: WHILE i < imax

3: Ṗ d, Q̇d, Ḃs← Load noise
4: Ṗ gmin, Ṗ gmax ← Active power limits noise
5: Ṙ, Ẋ, Ḃ ← Branch noise
6: from, to← Configuration change
7: Ġ, V̇ min, V̇ max, Q̇gmin, Q̇gmax, τ̇ , ω̇ ← Benchmark
8: V̂ (0), θ̂(0), P̂ g(0), Q̂g(0) ← Initialize
9: Ad, e, Ag, e ← Adjacency matrices

10: FOR l = 1 . . . L
11: J

(l)
loss ← Branches power loss

12: P̃ (l), Q̃(l) ← Power equilibrium
13: η

(l)
min, η

(l)
max ← Violation degrees

14: x
(l)
νg , x

(l)
νd , x

(l)
νe ← Input features

15: y(l) ← TGN model(x(l), Ad, e, Ag, e)
16: V̂ (l), θ̂(l), P̂ g(l), Q̂g(l) ← Update inference variables
17: END FOR
18: L(J (L)

loss, P̃
(L), Q̃(L), η

(L)
min, η

(L)
max)← Final loss value

19: gradients← ∇w(L)
20: weights← w − α∇w(L)
21: END WHILE
22: Save trainable weights

The training process is described in algorithm 1, where
η
(l)
min and η

(l)
max summarize all VD values (voltage magni-

tude, active and reactive power generation). Similarly, x(l) =

{x(l)
νg , x

(l)
νd , x

(l)
νe } represents the input features of all types

of nodes of a layer l, and y(l) = {y(l)
νd , y

(l)
νg } represents

the PI-TGN model outputs for load bus and generation bus
type nodes. Lines 3 - 6 show the variables to which noise
is applied, while line 7 clarifies which variables are left as
the benchmark case. Line 8 indicates the initialization of the
inference variables, and line 9 shows the moment in which the
adjacency matrices can be calculated (which could be at any
point after the configuration changes are applied). Lines 10-
17 show the process that is repeated for each PI-TGN layer,
specifically lines 11-13 represent the calculation of the loss
function elements which are used to obtain part of the input
features of the different types of nodes (eqs.(26)-(28)). The
assembly of the input features is represented in line 14, and
the outputs of the decoder function for the load and generation
buses (after passing through the encoding, message-passing
and updating iterations of each PI-TGN layer) are represented
in line 15. Line 16 shows the updated inference variables of
the PI-TGN layer, which will be used as inputs for the next
layer. After the L PI-TGN layers are processed, the final loss
function is derived and the gradients of the loss function with
respect to the parameters of the NNs are calculated with the
backpropagation algorithm. These gradients are used to modify
the values of the NN parameters via the Adam optimization
algorithm, afterwards a new batch of data is introduced to
the PI-TGN model and the process is repeated until the
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maximum number of iterations is reached. The proposed PI-
TGN OPF solver is trained in batches; and the encoding,
message-passing, update and decoding NNs of the PI-TGN
model are trained simultaneously.

III. EXPERIMENTS

In this section, the predictive accuracy of the proposed PI-
TGN-based OPF solver is evaluated by comparing it to the
results obtained with the Matpower AC OPF solver. It also
analyzes various design decisions in detail. All the instances
of the proposed PI-TGN based OPF solver share the same
hyperparameters:

• Number of PI-TGN layers: L = 4.
• Number of message passing and update steps: T = 2.
• Embedded dimension of all node types: d = 16.
• Learning rate: α = 1× 10−3.

A. Simulation setup

To test the accuracy of the proposed solver, five different
test cases are analyzed, each based on a header from the IEEE
PES benchmarks [28]. The headers used are: ”PGLIB OPF
case14 IEEE”, ”PGLIB OPF case30 IEEE”, ”PGLIB OPF
case57 IEEE”, ”PGLIB OPF case118 IEEE” and ”PGLIB OPF
case200 activ” [29]. The characteristics of each of the grids
are given in Table II.

TABLE II
TEST CASE CHARACTERISTICS

Test case NB NG NE

max
∆Pd
(MW)

max
∆Qd
(MVAr)

max
∆Pg
(MW)

max
∆Qg
(MVAr)

14 ieee 14 5 19 18.3 3.7 90.8 14.4
30 ieee 30 6 40 17.2 5.8 44.1 79.4
57 ieee 57 7 79 74.7 16.3 241.2 82.7
118 ieee 118 54 185 55.0 22.4 301.3 450.3
200 activ 200 49 244 14.4 4.11 205.3 65.3

The noise added to each of the grids is specified in
subsection II-C, however, depending on the distribution and
characteristics of loads and generators of each grid, the real
load and generator noise applied to each of the grids differs.
The last four columns of Table II show the maximum amount
of load and generator alteration from the nominal case, in
MW and MVAr, respectively. It can be seen, that even in the
smallest grid of 14 buses, since three of the five generators are
only for voltage support (they do not produce active power),
all the active load has to be satisfied by only two generators,
and so the noise applied to them results in large modifications
from the nominal case. The opposite is true for the biggest
grid of 200 buses, in which most of the generators produce
active power and the load can be distributed between them,
thus, the noise applied does not cause such big variations from
the nominal case. As can be seen, in all cases the variation is
significant, and is additional to the noise introduced in branch
features, active power generation limits and shunt susceptance
of the buses; the biggest differences from the nominal cases
are shown in bold.

Furthermore, since in this work the branch flow limits are
not considered, the branch ratings of the cases are manually

modified to zero to make them unlimited when solving with
the Matpower AC OPF solver, for comparison purposes. In the
following tests, all Matpower results are included, even those
in which some of the established limits are breached.

B. Prediction accuracy with noisy benchmark cases test

For the first test, five instances of the proposed PI-TGN-
based solver are trained on the five different electrical grid
benchmark cases. The data is normalized using the per unit
system, and a batch of 20 samples is taken for testing each
instance.

Table III reports the average L2 loss (squared error loss)
obtained from the difference between the inferred values ob-
tained with the PI-TGN-based solver and the values obtained
with the Matpower AC OPF solver using the IPOPT method.
Each column shows the average predicted error in percentages:
1
Ny

∑
(y − ŷ)

2 × 100, for a variable y with Ny values.

TABLE III
OPF PREDICTION ERRORS (%)

V θ Pg Qg
14 buses 0.074 2.168 3.06 0.817
30 buses 0.056 1.554 1.98 3.03
57 buses 0.185 1.28 4.14 8.64
118 buses 0.079 1.06 13.31 14.58
200 buses 0.206 0.091 0.476 7.25

For illustration purposes, Figs. (3) and (4) show the mean
and standard deviation of the L2 loss of every bus of the
batch for the test cases with 30 and 200 buses, respectively.
The mean is represented with a blue line and the standard
deviation with the green shaded area. Figs. (3a), (3b), (3c),
and (3d) show the mean and standard deviation errors for
the benchmark case with 30 buses, of voltage magnitude,
phase, active power and reactive power, respectively. In this
case all generators are capable of producing active power,
and the generator most prone to divergence in the active and
reactive power generated with respect to the Matpower case
is generator 2. Figs. (4a), (4b), (4c), and (4d) show similar
graphs, but for the benchmark case of 200 buses. In this case,
most generators generate active power and are not too large;
the largest generators are 29, 30 and 47, which is where the
largest power generation errors are found. However, in general
very good results were obtained with this case even though it
is larger than the others. In all cases, the voltage phase of the
slack bus is hard-coded to the nominal value, which is why
the error in this point is close to zero. The voltage magnitude
of the slack bus is set to the maximum limit, which in this
case also results in a similar result to the Matpower solution.

In several trials, cases with many static synchronous or
static var compensators in relation to active power generators
seem to cause a negative effect on the predictive ability
of the proposed model on the generator buses that have to
compensate the load. The lack of active power generators
and the large amount of noise from the nominal case is
hypothesized to be the main reasons for this, although further
studies should be carried out.
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(a)

(b)

(c)

(d)
Fig. 3. Case 30 L2 error

In all cases the best approximation is made of the voltage
magnitude, and the power generation proves to be the most
difficult to infer similarly to the Matpower solution.

C. Loss function elements with noisy benchmark cases test

Some attention must be paid to the influence of the different
constraints included in the loss function to the results obtained
with the PI-TGN-based solver. As there are no target values,
the loss function elements greatly influence the behavior of the

(a)

(b)

(c)

(d)
Fig. 4. Case 200 L2 error

solver and may cause it to diverge from the Matpower results
by giving more or less importance to different aspects.

The main objective of the loss function is to minimize
branch power losses. In Fig. (5) the total active power loss of
all branches for every sample in the test batches is shown for
both the PI-TGN-based solution and the Matpower solution.
In this case, the loss is calculated as shown in eq. (1); as can
be seen, in general the total loss is lower with the proposed
solution.
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(a)

(b)

(c)

(d)
Fig. 5. Branch loss all cases

The violation of operational constraints is another element
of the loss function. In the test case with the 30 bus grid, none
of the operational limits are violated in the twenty test samples.
Table IV shows the highest amount of operation constraint
violation for the other test cases, for both power generation
and voltage magnitude; where the ”max” and ”min” in the
voltage magnitude column indicate whether it was an upper
or lower limit that was violated.

It should be noted that, except for the 118 bus case, no

TABLE IV
OPERATIONAL LIMIT VIOLATIONS

P (PU) V max (PU)
57 bus

case ≤ 0.0023 max: ≤ 0.0014

118 bus
case ≤ 0.0038 max: ≤ 0.004

200 bus
case None max: ≤ 0.01

more than five buses presented operational limit violations. In
the 118 bus case, around half of the buses exhibited a small
amount of operational limit breach, this could also be caused
by the high rate of compensators in the generator buses.

The last element of the loss function, which is essential, is
ensuring the power balance at every bus. Figs. (6) and (7) show
the average active and reactive power imbalance of every bus
for all the test cases, for both the solutions from the proposed
PI-TGN-solver and the solutions obtained with the Matpower
AC OPF solver. In most cases the imbalance of the proposed
solver is smaller at every bus than the imbalance obtained
with the Matpower solver, except for the case of 118 nodes,
as can be seen in Figs. (6c) and (7c). On the other hand, for
the 200 bus grid, the proposed solver successfully reduced the
imbalance to virtually zero for all nodes, as observed in Figs.
(6d) and (7d). The imbalances from the Matpower solutions
could be due to the fact that all solutions were included, even
those that did not converge in Matpower (no solution was
found that could respect all the specified constraints), showing
that the cases presented in the test were at times complicated
to solve.

In general it can be observed that the proposed solver does
a good job at minimizing the elements of the loss function,
which emphasizes the importance of the physics-informed
approach of adding the physical constraints into the loss
function.

D. Prediction accuracy with time series case test

In this subsection, instead of obtaining load data from
benchmark cases, time series data from a 14 bus grid is used
for training a distinct instance of the proposed PI-TGN-based
OPF solver. The load profiles are obtained from the Codalab
competition ”Learning to Run a Power Network 2019” [30],
which includes the active and reactive power load in intervals
of 5 minutes. The only data considered in the time series is the
active and reactive power load, the rest of the data is obtained
from the benchmark case of 14 buses, adding noise just as
with the noisy benchmark cases. Another important feature is
that for every sample, a random branch is disconnected just
as with the previous test cases, which would mean a very
extreme case of a different branch outage every five minutes.
The PI-TGN-based solver was trained and tested on batches
of 300 samples (equivalent to one day and one hour of data).
As with Table III, in Table V the average L2 loss (squared
error loss) calculated from the difference between the results
obtained with the proposed solver and the results obtained with
Matpower using the interior point optimizer (IPOPT) method
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(a)

(b)

(c)

(d)
Fig. 6. Active power imbalance in all cases

is reported. Each column shows the average predicted error of
each of the inference variables, in percentages.

TABLE V
PREDICTION ERRORS IN TIME SERIES CASE (%)

Test case V θ Pg Qg
14 ieee
(time series) 0.104 1.03 7.99 3.65

(a)

(b)

(c)

(d)
Fig. 7. Reactive power imbalance in all cases

For this time series test the average and standard deviation
of the L2 loss is also analyzed and shown in Fig. (8). Most
results obtained are slightly better than with the ones obtained
with noisy benchmark data for the 14 bus case, with the slack
bus being the most prone to obtaining solutions that differ
from the solution obtained with Matpower. Generator buses
3 to 5 do not produce active power which is why the active
power error is zero for these elements.
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(a)

(b)

(c)

(d)
Fig. 8. Case 14 time series L2 error

E. Loss function elements of test with time series case

In this subsection the influence of the loss function ele-
ments on the time series case results are shown. The main
objective function, which is to minimize the branch losses
is represented in Fig. (9a). It can be seen that the proposed
solver underestimates power losses. Furthermore, the VDs are
negligible (in the range of 1×10−5) and are thus not included.
The mean active and reactive power imbalance of every bus is
shown in Figs. (9b) and (9c). As with the previous examples,

(a)

(b)

(c)
Fig. 9. Case 14 time series loss function elements

the proposed solver achieves significantly lower active and
reactive power imbalance in every node. It should be noted
that in the time series case, with the added noise and network
topologies, most of the samples did not converge in Matpower.

F. Time considerations

Table VI illustrates the average time required to find an
AC OPF solution with the Matpower AC OPF solver and the
proposed PI-TGN-based OPF solver. It is important to note
that because of the noise and configuration changes applied to
the benchmark cases, the resulting cases are more challenging
to solve than their original counterparts. As shown in Table
VI, even for the smallest grid of only 14 nodes, the proposed
solver is nearly 20 times faster than the conventional AC
OPF solver. However, for larger grids the scalability of the
proposed solution is emphasized. For the largest analyzed case
of 200 buses, the proposed solver is more than 1000 times
faster than the conventional solver. The computational time
differences between classic methods and NN-based methods
in the literature are similar to those found in our calculations,
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often differing by one or two orders of magnitude. This aligns
with data for classical algorithms [31] and neural network-
based methods [32].

TABLE VI
AVERAGE RUNTIME IN SECONDS

Test case
Matpower
AC OPF
solver

PI-TGN-based
OPF
solver

14 ieee 0.0328 1.77× 10−3

30 ieee 0.1059 1.798× 10−3

57 ieee 0.3327 2.389× 10−3

118 ieee 0.5263 3.297× 10−3

200 activ 4.6744 3.646× 10−3

It should be noted that the time considered for the proposed
solver only includes the computation time of the PI-TGN
model with the different electrical grid sizes, but does not
include the time it takes to add noise to the data or to generate
the adjacency matrices.

Additionally, the training of all PI-TGN instances for this
application was very fast, each instance took less than 4000
training iterations (less than 10 minutes) to minimize the loss
function.

IV. CONCLUSION

In this chapter the potential of the proposed PI-TGN model
applied to the AC-OPF problem is investigated. The AC-
OPF problem involves finding the optimal values for variables
that determine the power flow in an electric power system,
while also taking into account the complex and changing
interactions between voltage and power flow in the system and
the physical and operational constraints that must be followed.
This optimization problem is non-convex and nonlinear.

In this work, the goal of the established optimization prob-
lem is to minimize the amount of power lost as it is transmitted
through the branches of the power system, while also taking
into account the constraints related to the magnitude of the
voltage and the operation of the power generation facilities.
In order to account for the various constraints that must be
considered when optimizing the power flow, the proposed PI-
TGN model is trained with a loss function that incorporates
several elements that not only considers the the main opti-
mization objective, but also the established constraints.

The proposed model was tested on a number of different
power networks of varying sizes, with a considerable amount
of noise added to different variables (including loads, genera-
tors, and branch characteristics) and with changing electrical
grid configurations in order to evaluate its performance. The
tests focused on the ability of the proposed model to accurately
predict the voltage magnitude and phase, and active and reac-
tive power generation, while also considering the feasibility for
use in real-world operations by analyzing the violation degrees
of the operational constraints and the computational time. The
model has proven to minimize the multi-target loss function,
and to achieve results not very different from a conventional
AC-OPF solver, while proving to be scalable and reducing
considerably the computation time needed.

It is important to note that the proposed method is com-
pletely unsupervised, meaning that it does not rely on any
target values in order to find a solution. While this makes the
optimization process entirely self-contained, and allows it to be
applied without the need of training data, the solutions are not
always the same as the solutions obtained with reliable, con-
ventional AC-OPF solvers. The proposed model could profit
from including into the loss function an element that depends
on target data in order to obtain results closer to those from
an already trusted numerical method. Otherwise, more precise
information from the physical system and the constraints could
be added to the model inputs and to the loss function to
improve the accuracy and to respect additional operational
limits, as it was shown that the loss function elements were
successfully minimized. In this work, the branch operational
constraints were not considered, but could straightforwardly
be added as additional violation degrees.

In this work, the different model instances were only
tested on power networks of the same size as the ones they
were trained on. The authors attempted to test the model
on different size networks, but found that the performance
was not satisfactory and that the differences between the
networks were too great for the model to be able to generalize
effectively. Additionally, improvement could be made in the
implementation of the proposed method in order to test it on
larger networks whose entire data sets may be too large to fit
in the memory of a graphics processing unit (GPU).

The results of this study suggest that the proposed method
may be a promising approach for approximating solutions to
the AC-OPF problem, which is a fundamental component of
many power system applications such as expansion planning
and security assessments. These applications often require
the use of a large number of simulations which can be
time-consuming and resource-intensive. The solution to this
problem will help to improve the efficiency of the power
system operation and ensure that it is working within the
established limits.
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