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Abstract—This work considers the European Resource Ade-
quacy Assessment, which is a pan-European resource adequacy
process that is being developed by the European Networks of
Transmission System Operators for Electricity (ENTSO-E). A
critical part of this process is the so-called Economic Viability
Assessment model, which aims at determining future expansion
and retirement capacity opportunities for the entire European
network. As such, the problem is stochastic. Nevertheless, due
to computational constraints, simplified approaches have been
followed by ENTSO-E. Our work formulates the problem as a
two-stage stochastic problem and proposes two decomposition
algorithms for solving the problem which are implemented in
a high-performance computing infrastructure. The first is a
subgradient-based algorithm, and the second uses a relaxation
of the second stage (the economic dispatch) in order to speed
up the subgradient calculation thus achieving a considerable
reduction in solution time. We compare our schemes against
the commonly used Bender’s decomposition. We compare the
obtained stochastic solution against the deterministic solution
proposed by ENTSO-E for their 2021 study and analyze the
impact of the stochastic solution on various adequacy indicators.

Index Terms—Stochastic capacity generation expansion, Par-
allel & Decomposition algorithms, Large-scale optimization

I. INTRODUCTION

W ITHIN an uncertain world, measuring and analyzing
the ability of the electric power system to react to ad-

verse uncertain conditions has become increasingly important.
The Clean Energy Package [1] has recognized the importance
of this task with Regulation (EU) 941\2019 [2] and Regulation
(EU) 943\2019 [3]. The latter stipulates the need for a robust
European resource adequacy assessment that provides an in-
strument for detecting and measuring adequacy concerns [4].
In particular, resource adequacy concerns identified through
the European Resource Adequacy Assessment (ERAA) are to
become the basis for justifying the implementation of capacity
mechanisms within European Member States. As required in
Regulation (EU) 943\2019 [3], Member States wishing to
introduce capacity mechanisms must do so on the basis of
an adequacy concern that is identified in the ERAA study,
complemented possibly with a national resource adequacy
study. Consequently, there is an institutional urge to develop
a reliable and robust ERAA study at a pan-European level.

The European Network of Transmission System Operators
for Electricity (ENTSO-E) is the body mandated by regulation
to develop the methodology and conduct the study on an
annual basis [5]. The ERAA is a pan-European resource

1 The information and views set out in this paper are those of the authors
solely and do not necessarily reflect the official opinion of ENTSO-E

adequacy assessment for up to 10 years ahead, which aims
at measuring the ability of the power system to react to a
set of future uncertain events [4]. The ERAA study covers
the entire pan-European interconnected system, thus modeling
56 bidding zones in 37 countries. Adequacy concerns are
identified with the help of adequacy indicators, with the Loss
of Load Expectation (LOLE) being the most common indicator
used among the EU Member States to define the respective
reliability standards. The Expected Energy not Served (EENS)
indicator is also computed in the ERAA study, in order to
assess the depth (MW) of the curtailments. Such indicators
are naturally linked to the installed capacity mix. For the
purpose of determining the installed capacity mix, the ERAA
study introduces the so-called Economic Viability Assessment
(EVA), which aims at modeling economic parameters that
affect the available generation capacity within Europe. Un-
fortunately, due to the scale of the ERAA, incorporating an
EVA that integrates the stochastic nature of future events has
thus far been considered as being out of scope. Therefore,
a deterministic approach has been followed in ERAA 2021
[6], while in ERAA 2022 a tractable formulation is obtained
by considering a reduced stochastic model, this simplification
consists of using 3 of 35 uncertainty realizations. ENTSO-E
is moving towards a stochastic programming formulation [7],
endorsed by ACER, but currently limited to three scenarios.
This motivates the development of a framework which allows
tackling the EVA in its stochastic version.

Our work aims at bridging this methodological gap by
proposing a novel parallel computing algorithm, based on
ideas from stochastic programming, and implemented on high-
performance computing infrastructure. Our approach allows us
to account for the stochastic nature of the EVA study in ERAA.
Furthermore, we study the potential impact of ignoring the
stochastic nature of the EVA on the capacity mix, and in turn,
the consequences that this could have on adequacy indicators.

The EVA aims at determining capacity expansion and capac-
ity retirement opportunities for the entire European network.
As such, it relates to two streams of literature: (i) stochastic
capacity generation expansion, with the added complexity
of considering retirement opportunities; (ii) large-scale opti-
mization, which is tackled with the aid of high-performance
computing.

A. Stochastic capacity generation expansion

The stochastic capacity generation expansion literature
presents a variety of strategies for addressing generation
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expansion1. When the size of the problem is manageable, the
problem is solved directly by a commercial solver [8]–[11].
In order to decrease the computational burden, certain authors
have followed scenario selection techniques, and report solving
time improvements with corresponding losses in the quality
of the solution [10], [12]–[17]. Note that these approaches
typically still rely entirely on a commercial solver for solving
the reduced problem. By relying on stochastic programming
formulations [18], certain authors use Bender’s decomposition
in order to tackle the problem [19]–[22]. Furthermore, mod-
elling tools have been developed in order to solve the problem
pragmatically. Examples of open-source software include the
EMPIRE model [23] which solves the problem as a large-
scale linear problem, while [24] has proposed extensions
of EMPIRE where the problem is decomposed by using
progressive hedging. Recent approaches [25], applied to the
Brazilian power system, have proposed extensions to Benders
decomposition in order to speed up convergence. Examples
of commercial tools include the PLEXOS software, which
allows solving the problem as a large-scale linear problem
or using Bender’s decomposition. Certain heuristics have also
been proposed, including a rolling-horizon scheme [26] and
an hourly aggregation of time series [27].

The modelling specifications of the EVA prevent us from
solving the problem directly using a commercial solver. These
specifications result in a large-scale problem, due to its wide
geographical scope, combined with the time step chosen by
ENTSO-E, as well as the endogenous representation of uncer-
tainty. We highlight that a small set of uncertainty realizations
are already enough to produce a problem of considerable
size, thus preventing the use of a scenario reduction technique
which allows tackling the problem in its extended form without
using a decomposition strategy. On the other hand, a drawback
of Bender’s decomposition is that its performance diminishes
as the number of expansion/retirement candidates increases.
The progressive hedging algorithm presented in [24] appears
to deteriorate in performance as the size of each scenario
subproblem increases, which renders it impractical for our
purposes.

Some early theoretical work from 1986 [28] presented the
possibility of employing subgradient schemes in determinis-
tic capacity expansion problems. Furthermore, past research
has proven the effectiveness of subgradient algorithms when
dealing with large instances of stochastic unit-commitment
[29], [30]. Consequently, our work aims at translating this
success into the ERAA study. Due to the EVA modelling
specifications, the calculation of each subgradient is time-
consuming. Therefore, our work, in addition to putting forward
a subgradient-based algorithmic framework, proposes a further
algorithm that calculates approximations of the subgradients
efficiently, thus providing notable computational benefits.

B. High performance computing

High-performance computing has become critical in tack-
ling large-scale power system optimization problems. Early

1Note that transmission expansion is out of scope for the EVA, and thus
we do not concern ourselves with this aspect in the present paper.

work on the topic [31], [32] describes parallel computing
schemes for addressing security-constrained optimal power
flow and hydro systems, respectively, using Bender’s de-
composition. Parallel computing schemes for Lagrangian de-
composition have been developed for solving optimal power
flow problems [33], [34]. In recent years, parallel computing
has enabled tackling large-scale instances of stochastic unit
commitment [35]. In particular, the usage of asynchronous
parallel computing has resulted in a reduction of computa-
tion time from weeks to a few hours for certain stochastic
unit commitment instances [30]. The hydrothermal scheduling
literature has benefited from the usage of high-performance
computing as well. While the known Stochastic Dual Dynamic
Programming (SDDP) algorithm [36] has been developed for
tackling such a problem, as explained in [37] SDDP can
encounter challenges, and several parallel computing studies
have followed. For instance, in [38] the authors propose a
synchronous parallel scheme, while [39], [40] have proposed
asynchronous implementations. In [41] the authors have com-
pared these different parallel implementations. Some recent
work [42] has shown further parallelization strategies that are
capable of outperforming the commercial implementation of
PSR-SDDP 2 which is targeted for hydrothermal scheduling.

The parallelization of decomposition techniques such as
Bender’s decomposition or subgradient methods has been
studied in the past [31], [32], [34], [35], [43]. Nevertheless,
the stochastic capacity expansion literature has been short in
exploiting the benefits of parallel computing. In this work, we
bridge this methodological gap by proposing a parallelization
strategy for the considered algorithms, which allows us to
arrive at solutions for the stochastic formulation of EVA within
a few hours of computation.

C. Organization & contributions
(i) In terms of methodological contribution, we solve the

stochastic EVA considering all available uncertainty condi-
tions. (ii) Our algorithmic contribution amounts to proposing
a parallel computing subgradient-based method and a novel
parallel computing second-stage relaxation scheme, which de-
creases computational burden significantly. These algorithms
are benchmarked against the commonly used Benders de-
composition (which is also the algorithm that the PLEXOS
commercial software uses). (iii) Our policy analysis contribu-
tion amounts to further testing the quality of the solution by
comparing it against the ERAA 2021 deterministic approach.

The organization of the work is as follows. The EVA
is formulated as a two-stage stochastic capacity expansion
problem in section III. This formulation leads to a large-scale
stochastic programming problem. A customized algorithm for
tackling such a problem is proposed in section IV. Section
V proposes parallel schemes for the described algorithms.
Finally, the results are discussed in section VI.

II. EUROPEAN RESOURCE ADEQUACY ASSESSMENT

The European resource adequacy assessment proposes a
methodology for measuring the ability of the power system

2PSR is a consulting firm based in Rio de Janeiro that has pioneered the
commercialization of the SDDP algorithm for hydro-thermal planning
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Fig. 1. The ERAA methodology consists of 2 steps. The first step, the so-
called economic viability assessment, is calculated using a set of uncertain
climatic conditions. The second step computes adequacy indicators, which use
the previously computed expansion plan over an uncertainty set that consists
of climatic conditions as well as random outages.

to react to uncertain events [44]. The overall methodology
consists of two main blocks. The first block aims at determin-
ing investment and retirement opportunities (which we refer
to as the expansion plan), the so-called Economic Viability
Assessment (EVA). The second block uses these opportunities
in order to measure adequacy indicators.

Figure 1 provides a visual representation of the overall
ERAA methodology. During the first step (the EVA), a variety
of uncertain climate conditions are considered (ENTSO-E
considers a total of 35 climatic years for ERAA 2021 and
ERAA 2022). The objective is to decide on investment and
retirement that minimize the expected operational cost of the
system. Note that this has to be decided before the realization
of uncertainty, thus leading to a stochastic problem. During
the second step, the adequacy indicators are calculated. The
previously computed expansion plan is used for this purpose,
and it is evaluated over an uncertainty set that consists of
climate years as well as random outage patterns.

We highlight a critical difference between these steps. Step
2 can be decoupled into several independent problems, one
for each climate year and outage pattern. This implies that it
is computationally tractable. The situation regarding step 1 is
considerably more involved, as it naturally links all climate
years into a single problem, meaning that it is not possible
to decouple the climatic years into independent problems. In
our work, we focus on the first step. In order to tackle it, we
propose a parallel computing algorithmic framework.

Due to increased computational complexity, ENTSO-E has
considered simplified approaches in order to tackle step 1. For
ERAA 2021 the simplification has been two-fold. (i) On the
one hand, a scenario reduction methodology is applied which
selects 7 out of 35 climatic years. (ii) The optimal expansion
plan for each one of the selected climatic years is calculated,
thus obtaining 7 expansion plans. The average between these

Fig. 2. The pan-European power system modelled in the ERAA 2021.

expansion plans is selected as the approximate solution of the
stochastic problem. For ERAA 2022, a stochastic model is
proposed. However, due to increased computational complex-
ity, the model is reduced to 3 out of 35 climatic years, which
are selected using a scenario reduction technique.

ENTSO-E has provided access to the ERAA 2021 input data
for our team in the context of this work. For ERAA 2021, the
EVA is modeled as a two-stage problem: the expansion plan is
decided for a single target year. Note that ERAA 2022 adopts a
multi-stage approach, namely there are consecutive years and
the expansion is decided just before each year. In this work,
we focus on ERAA 2021, which is the more natural step, since
not even this model can be tackled in its stochastic form by
state-of-the-art solvers.

The ERAA 2021 data considers the entire interconnected
pan-European network, which is represented by considering
56 bidding zones that correspond to 36 countries. This is
depicted in Figure 2. In terms of generators, the data contains
the installed capacity mix per zone. We highlight that the
generator data is aggregated per technology, per zone. A
detailed overview of the installed capacity mix per zone can
be found in [45]. The generator data also contains time series
of planned maintenance of generators, de-rating factors, and
must-run profiles of the generators. The data represents the
transmission network as a transportation network, and includes
transmission lines between zones, together with their limits.
The data contains several candidate retirement opportunities,
per zone, for thermal generators. Two thermal investment
candidates, per zone, are considered. The uncertainty arises
in the form of the so-called climatic years, each one being
a time series (per zone) of demand, PV, wind, and inflow
profiles. ENTSO-E has considered 35 climatic years for the
EVA of the ERAA 2021 edition, which are depicted in Fig. 3.

ENTSO-E uses the ERAA 2021 data as input for their
modeling tool for compiling the EVA expansion problem. As
this tool is unable to tackle the problem in its stochastic form,
we instead use the exact same input data in order to put
together an open-source Julia [46] version, which enables us
to develop a decomposition scheme for solving the problem,
using the full set of 35 climatic years. We highlight that
both models are built with the same modelling specifications.
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Fig. 3. An overview of climatic years of the 4 main European regions. The
upper and lower bounds represent the 0.75 and 0.25 quantiles. The upper left
panel presents wind production, the upper right is PV production, while the
lower figure corresponds to hydrological inflows.

In particular, similarly to the EVA ENTSO-E model, ours
is a linear model which takes into account the installed
capacity mix per zone for proposing investment and retirement
decisions (meaning that it is not a greenfield model).

III. EXPANSION PROBLEM

The stochastic capacity expansion problem is formulated as
a two-stage stochastic program [18]. The first stage determines
investments and retirements of technologies. The second stage
solves an economic dispatch over a target year. The introduc-
tion of uncertainty takes place during the second stage. Each
uncertainty realization corresponds to a so-called climatic year,
which consists of a time series of demand, solar production,
wind production, and hydro inflows. In order to ease the
exposition, the sets, variables, and parameters of the problem
are presented in the appendix. Furthermore, parameters are
denoted in upper case while optimization variables are in lower
case.

A. Expansion constraints
There is a maximum amount of plausible invested/retired

capacity. This is modeled with the following constraints:

xn,g ≤ Xn,g for all n ∈ N , g ∈ G (1)
x∗
n,g ≤ X∗

n,g for all n ∈ N , g ∈ G∗ (2)

B. Generator constraints
Given ω ∈ Ω, the minimum and maximum power generation

capabilities of units are described by the following constraints:

p∗n,g,t,ω ≤ x∗
n,g for all n ∈ N , g ∈ G∗, t ∈ T , ω ∈ Ω (3)

pn,g,t,ω ≤ Pmax
t,n,g − xn,g (4)

Pmin
t,n,g ≤ pn,g,t,ω (5)

for all n ∈ N , g ∈ G, t ∈ T

Constraints 3, 4 model the power production of new and
existing capacity. Constraint 5 models must-run obligations.

C. Transmission network

The transmission network is modeled as a transportation
network. The constraints are then bounds on the transfer
capacity. Given ω ∈ Ω, these can be described by the following
constraints:

Lmin
n,l ≤ fn,l,t,ω ≤ Lmax

n,l (6)

for all n ∈ N , l ∈ L(n), t ∈ T

Transportation models fail to accurately represent the true
physics of power flow in European network models. This has
motivated the introduction of a zonal PTDF approximation in
European market clearing models. This implies the addition
of linear constraints, which do not affect the overall structure
of the decomposition schemes that are proposed in this paper.

D. Batteries

Batteries are modeled as energy storage resources available
per zone. For a given ω ∈ Ω, they are modeled as follows:

bvn,t,ω = bvn,t−1,ω +BCE · bcn,t,ω −BDE · bdn,t,ω (7)
bvn,t,ω ≤ BV (8)
bcn,t,ω ≤ BC (9)
bdn,t,ω ≤ BD (10)
for all n ∈ N , t ∈ T

Constraint 7 models the load balance of the battery. Constraints
8, 9, 10 model the maximum capacity, charge, and discharge
capabilities of the battery.

E. Hydro power

Hydropower generation is modeled using four different
hydro technologies: run-of-river, reservoir, pumped storage
open loop, and pumped storage closed loop. The hydrology
is simplified by ENTSO-E by considering the aggregated hy-
drological capabilities of each zone. The inflows are measured
as equivalent energy inflows (MW). For a given ω ∈ Ω, each
one of these technologies is modeled as follows. For ease of
exposition, a variable associated with a certain technology has
an associated subscript: run-of-river R, reservoir S, pumped
storage open loop O, and pumped storage closed loop C.
• Run-of-River. There is no storage capability, therefore the
net inflows are considered as turbined water.

qn,R,t,ω = An,R,t,ω for all n ∈ N , t ∈ T (11)

• Reservoir: There is storage capability, consequently the
water can be turbined or stored.

vn,S,t,ω = vn,S,t−1,ω +An,S,t,ω − qn,S,t,ω − sn,S,t,ω (12)
vn,S,t,ω ≤ Vn,S (13)
qn,S,t,ω ≤ Qn,S (14)
for all n ∈ N , t ∈ T

Constraint 12 describes the reservoir dynamics, while con-
straints 13, 14 describe the maximum storage and maximum
power production capacities respectively.
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• Pumped storage open loop: There are head and tail reser-
voirs. The head turbines water to the tail reservoir, thus
producing power. In low-demand periods the tail pumps water
back to the head reservoir, thus consuming power. The system
is exposed to natural inflows.

vHn,O,t,ω = vHn,O,t−1,ω +An,O,t,ω + PE · dn,O,t,ω

− qn,O,t,ω − sn,O,t,ω (15)

vTn,O,t,ω = vTn,O,t−1,ω − PE · dn,O,t,ω + qn,O,t,ω (16)

vHn,O,t,ω ≤ Vn,O (17)

qn,O,t,ω ≤ Qn,O (18)
dn,O,t,ω ≤ Dn,O (19)
for all n ∈ N , t ∈ T

Constraints 15, 16 are the water balance constraints of the head
and tail reservoirs respectively. Note that the head reservoir
is subject to rainfall uncertainty. Constraint 17 bounds the
maximum storage, while constraints 18, 19 bound the turbined
and pumped water respectively.
• Pumped storage closed loop: this is modeled in the same
way as the open loop case, with the difference that no natural
inflows are considered.

vHn,C,t,ω = vHn,C,t−1,ω + PE · dn,C,t,ω

− qn,C,t,ω − sn,C,t,ω (20)

vTn,C,t,ω = vTn,C,t−1,ω − PE · dn,C,t,ω + qn,C,t,ω (21)

vHn,C,t,ω ≤ Vn,C (22)

qn,C,t,ω ≤ Qn,C (23)
dn,C,t,ω ≤ Dn,C (24)
for all n ∈ N , t ∈ T

F. Load balance

The load balance constraint aims at satisfying the demand
of each zone using the resources of each zone plus imports
from neighbouring zones. For a given ω ∈ Ω, it is formulated
as follows:

pn,g,t,ω + p∗n,g,t,ω + bdn,t,ω +
∑

h∈H(n)

qn,h,t,ω +
∑

l∈L(n)

fn,l,t,ω

+ lsn,t,ω + PVn,t,ω +Wn,t,ω

= Dn,t,ω + psn,t,ω + bcn,t,ω +
∑

r∈{C,O}

dn,r,t,ω (25)

for all n ∈ N , t ∈ T

We highlight that reserve requirements are modelled in the
ERAA 2021 study as extra load. More accurate models for
reserve requirements have been studied in the past [47], their
inclusion implies the addition of linear constraints which do
not disrupt the overall structure of the algorithms developed
in this paper.

G. Objective function

For a given ω ∈ Ω, we define the following quantities:

∑
n∈N ,g∈G∗

ICg · x∗
n,g + FOMg · x∗

n,g −
∑

n∈N ,g∈G
FOMg · xn,g

(26)∑
n∈N ,g∈G,t∈T

V OMg · pn,g,t,ω + FCg · pn,g,t,ω (27)

∑
n∈N ,g∈G∗,t∈T

V OMg · p∗n,g,t,ω + FCg · p∗n,g,t,ω (28)∑
n∈N ,l∈L(n),t∈T

fn,l,t,ω ·WC (29)

∑
n∈N ,h∈H(n),t∈T

sn,h,t,ω · SC (30)

∑
n∈N ,t∈T

lsn,t,ω · VOLL (31)

Eq. (26) is the first-stage cost. It consists of the investment
cost plus the fixed maintenance cost of new capacity x∗

n,g ,
minus the fixed maintenance cost of retired capacity xn,g . Eq.
(27) corresponds to the cost of producing pn,g,t,ω units of
power, similarly Eq. (28) corresponds to the generation cost of
new capacity. Eq. (29) corresponds to the cost of transporting
power through the transmission network. Eq. (30) corresponds
to a penalty for water spillage. Finally, Eq. (31) is the cost
of involuntary load shedding, which is penalized at VOLL.
Putting these elements together leads to the stochastic capacity
expansion problem, which is described as follows:

min
x,x∗

(26) + Eω

[
min

pω,p∗
ω,fω,lsω

(27) + (28) + (29) + (30) + (31)
]

s.t. (1)− (2)

(3)− (25) for all ω ∈ Ω

(CEP)

Note that we have distinguished between two sets of con-
straints. The former refers to the so-called first-stage con-
straints, therefore they do not depend on ω ∈ Ω. The latter set
of constraints is the second-stage constraints, they do depend
on uncertainty, and there is one such set of constraints for each
ω ∈ Ω. Note that this formulation implies that the first-stage
variables xn,g, x

∗
n,g are decided before uncertainty realizes,

and thus do not depend on ω ∈ Ω.

IV. SOLUTION STRATEGY

The stochastic capacity generation expansion literature
has often relied on Bender’s decomposition (also known
as the L-Shaped method when uncertainty is introduced)
[18]. This scheme performs poorly as the number of ex-
pansion/retirement possibilities increases. In view of this, we
propose a subgradient algorithm that is better suited for such
situations. This technique allows us to reduce the number of
iterations. However, it can still be computationally costly as the
calculation of each subgradient is non-trivial. Consequently,
we further propose a relaxation of the economic dispatch,
which allows us to calculate subgradient approximations ef-
ficiently. The approximation is refined throughout iterations,
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Fig. 4. Decomposition of the two-stage stochastic problem. Each node
represents an uncertainty realization and has associated with it an optimization
problem that aims at minimizing the costs of the stage.

thus ensuring convergence. Such a technique allows us to
reduce the computational burden significantly. We begin by
briefly describing the L-shaped technique, followed by our
algorithmic contributions.

The L-shaped method breaks down the overall problem
into smaller subproblems, first by considering separate sub-
problems for the first and second stages, and secondly by
considering a subproblem for each uncertainty realization
for the second stage, as presented in Figure 4. Given an
uncertainty realization ω and a first-stage decision x, x∗, the
second-stage subproblem for a given ω is as follows:

V(x, x∗, ω) = min
pω,p∗

ω,fω,lsω
(27) + (28) + (29) + (30) + (31)

s.t. (3) (λ∗
n,g,t,ω)

(4) (λn,g,t,ω)

(5)− (25)

where λ∗
n,g,t,ω, λn,g,t,ω are dual multipliers of constraints (3),

(4) respectively. These subproblems allow us to re-write the
CEP problem as

min
x,x∗

(26) + Eω

[
V(x, x∗, ω)

]
s.t. (1)− (2) (CEP-R)

The function Eω

[
V(x, x∗, ω)

]
is piece-wise linear convex

in x, x∗ [18], and can therefore be under-approximated by
supporting hyperplanes, commonly referred as to cuts. These
cuts are computed by calculating the subgradients of the
second-stage functions V(x, x∗, ω) [18]. Consequently, given
a collection of supporting hyperplanes {ci(x, x∗)}Ni=1, the
previous problem can be approximated as follows:

min
x,x∗,θ

(26) + θ

s.t. (1)− (2)

θ ≥ ci(x, x
∗) for all i ∈ 1, . . . , N (M)

The L-Shaped algorithm advances by finding, at each itera-
tion, a new supporting hyperplane for problem M. Each itera-
tion begins by solving problem M which leads to a trial action
x̂i, x̂∗i. The second-stage subproblems V(x, x∗, ω) are then
solved around x̂i, x̂∗i. The dual multipliers λn,g,t,ω, λ

∗
n,g,t,ω

are a subgradient of V(x, x∗, ω) at x̂i, x̂∗i, and can there-
fore be used for computing a supporting hyperplane [18],

which is added to problem M. As we move through itera-
tions, the method starts building an accurate representation of
Eω

[
V(x, x∗, ω)

]
around the optimal region, eventually finding

the optimal value. In fact, the method converges after finitely
many iterations [48].

A. Subgradient algorithm

A drawback of the L-Shaped scheme is that, as the dimen-
sionality of x, x∗ increases, additional supporting hyperplanes
are required in order to describe Eω

[
V(x, x∗, ω)

]
. As a con-

sequence, finding the optimal region may require many extra
costly iterations. Instead, in this work we use a subgradient
algorithm. Given an initial expansion candidate x̂, x̂∗, we
specifically calculate a subgradient of the objective function
of the CEP-R problem around x̂, x̂∗ and update the candidate
expansion plan along the direction of such a subgradient. This
method has the following advantages: (i) it does not require a
hyperplane description of Eω

[
V(x, x∗, ω)

]
in order to advance

to the next candidate x̂, x̂∗; (ii) it can be initialized around a
trial x̂, x̂∗ which is known in advance to be somewhat close
to the optimal value, thus ensuring that if the starting value is
close to the optimal solution the iterates remain in the optimal
region and will need few iterations.

We start by decomposing problem CEP by rewriting it
as CEP-R. Note that a subgradient of the objective function
along the x∗

n,g coordinate is: ρ∗n,g = ICn,g + FOMn,g +

Eω

[∑
t∈T λ∗

n,g,t,ω

]
. And a subgradient along the xn,g coor-

dinate is: ρn,g = −FOMn,g +Eω

[∑
t∈T λn,g,t,ω

]
.

Due to the reformulation CEP-R, the calculation of these
slopes can be decomposed into calculating several subprob-
lems, concretely by solving V(x, x∗, ω) for each ω ∈ Ω. This
decomposition allows us to apply the following scheme. We
commence by providing an initial candidate action x̂1, x̂∗1.
During each iteration, the subproblems V(x̂i, x̂∗i, ω) are
solved for all ω ∈ Ω. Using the dual multipliers of these
subproblems, the subgradients ρn,g, ρ

∗
n,g are calculated. Fi-

nally, the trial action is updated through a projected subgra-
dient step: x̂i+1

n,g = min{Xn,g, x̂
i
n,g + αi · ρin,g}, x̂∗i+1

n,g =
min{X∗

n,g, x̂
∗i
n,g + αi · ρ∗in,g}. The term αi is a stepsize

that is crucial to the performance of the algorithm [49].
We have selected the Polyak stepsize [49], which ensures
convergence. The Polyak stepsize can be described as follows:
αi = W∗−W i∑

(pi
n,g)

2+
∑

(p∗i
n,g)

2 . Here, W ∗ is the optimal value of
the CEP problem, while W i is the current iterate objective
value. As the optimal value W ∗ is not known in advance, an
approximate value can be used. No lower bound is obtained,
thus its stabilization is used as a stopping criterion.

B. Second-stage relaxation algorithm

Each iteration of the subgradient scheme can be costly
because it carries the computational burden of solving each
second-stage subproblem. For this reason, we propose a
scheme that relaxes the second stage, namely the economic
dispatch. Using such a relaxation, each iterate of a trial x̂i, x̂∗i

becomes efficient, thus allowing us to increase the search
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Fig. 5. Chronological decomposition. The second stage is partitioned into
several consecutive chronological blocks.

speed. The relaxation can then be refined in order to tighten
the search and ensure convergence.

Let us begin by describing the second-stage relaxation. To
achieve this, we resort to dynamic programming [50], and
partition the second-stage horizon 1, . . . , T into K consecutive
blocks: {1, t1}, {t1+1, t2}, · · · , {tK−1+1, T }. This leads to
the representation shown in Figure 5, where the second stage
has been partitioned into several blocks. The subproblems at
each block are given by the dynamic programming equations.
The equation at block k is given by:

Vk(x, x
∗, bvtk−1,ω, vtk−1,ω, ω) =

min
[
(27) + (28) + (29) + (30) + (31)

]tk
t=tk−1+1

+ Vk+1(x, x
∗, bvtk,ω, vtk,ω, ω)

s.t.
[
(3)− (25)

]tk
t=tk−1+1

Here, the notation indicates that the objective function and
the constraints are restricted to t = tk−1+1, . . . , tk. Note that,
at the initial time boundary, i.e. at t = tk−1+1, constraint (7)
requires the battery state of charge at t = tk−1. Consequently,
the notation indicates that Vk depends on bvtk−1,ω , the battery
state of charge at stage tk−1. Similarly, Eqs. (12), (15), (16),
(20), (21) require the reservoir level at stage tk−1, and this
information is summarized in the vector vtk−1,ω . At the final
time boundary at t = tk, the objective function includes
Vk+1, which captures the future costs of the system. Note
that the subproblem of the first block satisfies V1(x, x

∗, ω) =
V(x, x∗, ω).

Each function Vk+1 is piecewise linear convex in
x, x∗, bvtk,ω, vtk,ω [18], and so we can approximate it using
supporting hyperplanes. Thus, given a collection of supporting
hyperplanes {ci(x, x∗, bvtk,ω, vtk,ω)}Ni=1 an approximation of
the subproblem at the k-th block is given by:

V̂k(x, x
∗, bvtk−1,ω, vtk−1,ω, ω) =

min
[
(27) + (28) + (29) + (30) + (31)

]tk
t=tk−1+1

+ θk+1,ω

s.t.
[
(3)− (25)

]tk
t=tk−1+1

θk+1,ω ≥ ci(x, x
∗, bvtk,ω, vtk,ω), i = 1 . . . N

In particular, the approximation of the first-block subprob-
lem V̂1 is an approximation of the second-stage subproblem,

Fig. 6. Step 2) of the second-stage relaxation algorithm. Step 2.1) solves the
current approximation of problem CEP. Step 2.2) refines the approximation
of problem CEP around the trial expansion plan found during step 2.1).

namely the economic dispatch. Consequently, we can approx-
imate problem CEP-R as follows:

min
x,x∗

(26) + Eω

[
V̂1(x, x

∗, ω)
]

s.t. (1)− (2) (CEP-A)

Calculating each V̂1 is straightforward, therefore problem
CEP-A can be solved efficiently. Note, however, that, due to
the approximation, the subgradients we may obtain are not
necessarily tight. Consequently, the approximation is tightened
throughout iterations, thus ensuring convergence. An initial
approximation of V1(x, x

∗, ω) is calculated at the beginning of
the algorithm. The objective of doing so is to, similarly to the
subgradient scheme, have an initial candidate expansion plan
to start the search. These ideas are the basis of our algorithmic
scheme, which is depicted in pseudo-code in algorithm 1.

The second-stage relaxation algorithm is illustrated graphi-
cally in Fig. 6. The figure presents step 2) of the algorithm. For
ease of exposition, step 1), where a warm-start is calculated, is
described afterward. Step 2) is subdivided into two steps. Step
2.1) focuses on the first node and the first-time step/nodes of
the second stage. This corresponds to problem CEP-A. The
algorithm uses the current approximation of V1(x, x

∗, ω) to
solve problem CEP-A (which approximates CEP) and obtain
a candidate expansion plan x̂i, x̂∗i. The algorithm proceeds
with step 2.2), which aims at refining the approximation of
V1(x, x

∗, ω) around x̂i, x̂∗i. To do so, the algorithm performs
a forward pass (step 2.2.1) and a backward pass (step 2.2.2).
The forward pass proceeds forward in the number of second-
stage nodes, solving the first-node subproblem and proceeding
until arriving at the last node. The algorithm continues with
the backward pass. This step computes supporting hyperplanes
around the storages found during the forward pass and around
the trial expansion plan x̂i, x̂∗i. Starting from the last second-
stage node, the subproblem is solved, using the dual multipli-
ers for estimating a supporting hyperplane for the subproblem
of the preceding node. The process is repeated until reaching
the node associated with the first node of the second stage.
The algorithm performs this procedure for all uncertainty
realizations. Having described step 2), we can now describe
the warm-start of step 1). Given an initial candidate expansion
plan x̂0, x̂∗0 the objective is to provide an approximation of
V1(x, x

∗, ω) around the given initial point. To do so, the warm-
start performs step 2.2) throughout several iterations. These
several iterations are performed in order to ensure that the

This article has been accepted for publication in IEEE Transactions on Power Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2023.3304717

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



8

storages found during the forward pass provide a reasonable
approximation.

Remark IV.1. Note that both steps 2.1) and 2.2) can be solved
efficiently. The former is a relatively small problem, which can
be solved either by Bender’s decomposition or subgradient
schemes. In this work, we use Bender’s decomposition. The
latter step involves solving several small subproblems and thus
does not pose a computational burden. As a consequence, this
algorithmic approach is able to perform far more iterations
than the subgradient algorithm.

Upper and lower bounds can be obtained as follows. An
upper bound is computed by using the optimal values found
during step 2.1) and during step 2.2.1). A lower bound can
be obtained by the solution of step 2.1). By comparing upper
and lower bounds, one can measure the optimality gap which
can be used as a stopping criterion. The convergence of the
decomposition algorithm is guaranteed due to the following
lemma.

Algorithm 1 Second-stage relaxation algorithm

INPUT: Provide a lower bound for θk,ω for k = 1, . . . ,K,
ω ∈ Ω, and an initial trial action x̂0, x̂∗0.

1) WARM-START: Calculate an initial approximation of
V1 for all ω ∈ Ω, around x̂0, x̂∗0.

2) for i = 1, · · · , N .
(2.1) Solve CEP-A using the current approximation of

V1. Thus, obtaining trial action x̂i, x̂∗i.
(2.2) for ω ∈ Ω:

(2.2.1) Forward Pass. for k = 1, . . . ,K:
Solve the approximated problem
V̂k(x̂

i, x̂∗i, b̂v
i

tk−1,ω
, v̂itk−1,ω

, ω) and get

the optimal storage b̂v
i

tk,ω
, v̂itk,ω .

(2.2.2) Backward Pass. for k = K, . . . , 2:
(2.2.2.1) Solve the approximation problem

V̂k(x̂
i, x̂∗i, b̂v

i

tk−1,ω
, v̂itk−1,ω

, ω).
(2.2.2.2) Using the dual multipliers compute

a supporting hyperplane around
x̂i, x̂∗i, b̂v

i

tk−1,ω
, v̂itk−1,ω

.
(2.2.2.3) Add the supporting hyperplane to prob-

lem V̂k−1(x, x
∗, bvtk−2,ω, vtk−2,ω, ω).

Lemma IV.2. Algorithm 1 converges in a finite number of
iterations to CEP.

Proof. We prove that if no new cuts are added to V̂1(x, x
∗, ω)

for ω ∈ Ω, then we are at the optimal of CEP. Suppose that
no new cuts are obtained after iteration i and consider the
expansion plan at that iteration xi, xi∗. Note that, if no new
cuts are added, then V̂1(x

i, xi∗, ω) = V1(x
i, xi∗, ω) (otherwise

during the i + 1 iteration we would have found a new cut).
Now let us assume that we have not converged, therefore there
exists x̄, x̄∗ for which (26) + Eω

[
V1(x̄, x̄

∗, ω)
]

< (26) +

Eω

[
V1(x

i, x∗i, ω)
]
. CEP-A is an under approximation of CEP.

Fig. 7. Parallel subgradient algorithm. The master CPU provides a trial
expansion plan, which is sent to the subproblems. The subproblems are
distributed among the CPUs and solved, the dual multipliers are sent to the
master CPU.

Thus, its maximum possible value is the left-hand side of the
previous inequality. As a consequence,

(26) + Eω

[
V̂1(x

i, x∗i, ω)
]
< (26) + Eω

[
V1(x̄, x̄

∗, ω)
]

< (26) + Eω

[
V1(x

i, x∗i, ω)
]

= (26) + Eω

[
V̂1(x

i, x∗i, ω)
]

This leads to a contradiction, therefore we conclude that xi, x∗i

is optimal.
Finally, let us show that this can be achieved in fi-

nite iterations. Following the same idea as in [48], where
it is shown that SDDP-type [36] algorithms converge, we
start from the subproblem of the last block. Note that
the set of dual multipliers of the subproblem associated to
VK(x, x∗, bvtK−1,ω, vtK−1,ω, ω) corresponds to the vertices of
the feasibility set of the dual problem, and it does not depend
on x, x∗, bvtK−1,ω, vtK−1,ω . Consequently, there are finitely
many supporting hyperplanes for the last subproblem, and
thus after finitely many iterations we arrive at the supporting
hyperplane description of VK(x, x∗, bvtK−1,ω, vtK−1,ω, ω). We
can now use such a description for the subproblem at block
K − 1, and apply the same argument. Inductively, we can
proceed backward in the number of blocks.

V. PARALLEL SCHEME

The present section aims at describing a parallel scheme for
the algorithms presented in section IV. In this work, we have
considered synchronous parallel implementations.
• Parallel subgradient algorithm: The parallelization strat-
egy followed for the subgradient algorithm is presented graph-
ically in Fig. 7 Each iteration proceeds as follows. The
master CPU provides an initial candidate expansion plan. The
second-stage subproblems are distributed among the available
CPUs. Each CPU solves its associated subproblem, the dual
multipliers are collected and sent to the master CPU. At this
point, the CPUs synchronize, i.e, a CPU stays idle until all
other CPUs have finished their job. The master CPU uses the
dual information in order to apply a projected subgradient and
update the trial expansion plan.
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• Parallel L-shaped algorithm: The parallelization follows
a similar strategy as in the previous scheme. The difference is
that during each iteration the master CPU calculates problem
M.
• Parallel second-stage relaxation algorithm: The parallel
scheme for our subgradient-relaxation algorithm follows a
similar procedure. Step 2.1) is parallelized using the strategy
described in Fig. 7. Step 2.2) is parallelized as follows. The
uncertainty realizations are distributed among the available
CPUs. Each CPU performs steps 2.2.1 and 2.2.2 of algorithm
1 (see Fig. 6). At this point, the CPUs synchronize, so that
the fastest CPU waits for the slowest CPU.

VI. CASE STUDY

The EVA problem aims at determining the expan-
sion/retirement plans that will occur, and our study considers
the 2025 target year. We have considered a total of 12 blocks
per day.

Our algorithms are implemented in Julia v1.5 and JuMP
v22. The chosen linear programming solver is Gurobi 9.
The computational work is performed on the Lemaitre3 clus-
ter of UCLouvain, which is hosted at the Consortium des
Equipements de Calcul Intensif (CECI). The cluster consists
of 80 compute nodes with two 12-core Intel SkyLake 5118
processors at 2.3 GHz and 95 GB of RAM (3970MB/core),
interconnected with an OmniPath network (OPA-56Gbps).

A. Value of the stochastic solution

Due to the scale of the model, ENTSO-E has considered
an approximate solution in ERAA 2021. This approximation
proceeds by solving the so-called wait-and-see solution [18]
of problem CEP. This leads to a candidate expansion plan
xω, x

∗
ω , for each ω ∈ Ω. The average expansion plan x̄, x̄∗

is used as an approximation of the stochastic expansion plan.
A natural question is whether this is a good approximation.
To measure this, we can use well-established bounds. The
following relationship holds [18]:

Wait-and-see ≤ CEP ≤ (26) +Eω

[
V(x̄, x̄∗, ω)

]
Note that the right-hand side is the objective of CEP when
using the sub-optimal average expansion plan x̄, x̄∗. We refer
to this as the average-W.S. solution. Note that these bounds do
not require the calculation of the stochastic solution, and thus
provide a reasonable way to measure if a stochastic solution
is of interest for the problem. The wait-and-see solution
has a cost of 5.0220e10 C, while the average wait-and-see
solution has a cost of 5.2298e10 C. As one can observe, the
relative difference between both quantities is approximately
4.13%, and thus the stochastic solution stands to improve
the deterministic approximation by at most this quantity. This
difference is of interest: adequacy studies such as ERAA aim
at capturing adequacy metrics that involve curtailments. These
curtailments, calculated as in Eq. (31), represent less than 2%
of the total costs, and thus a solution whose total costs differ
in 4% is clearly of interest.

Fig. 8. The optimality gap evolution of the L-shaped method and our
subgradient-relaxation algorithm. The x-axis is the elapsed time, while the
y-axis is the relative difference between the upper and lower bounds.

B. Stochastic solution

The previous subsection presented the relevance of a
stochastic solution. The present subsection discusses how to
obtain such a solution using the previously discussed algo-
rithms. The algorithms have been run using 35 CPUs. In the
case of the subgradient relaxation, we have decomposed the
second stage into 92 blocks.

We begin by examining the convergence evolution of the
L-shaped method. To do so, we examine the optimality gap
evolution, which is presented in Fig. 8. As one can observe,
the L-shaped method struggles to close the optimality gap. In
fact, after more than a day of computation, the obtained gap
is not of practical use. On the other hand, our subgradient-
relaxation scheme is able to provide an optimality gap near
1% after about 4 hours of computation.

The proposed subgradient algorithm does not provide a
lower bound estimate, therefore the calculation of an op-
timality gap is not presented. Figure 9 presents the up-
per bound evolution of the subgradient algorithm and the
subgradient-relaxation scheme. Recall that the subgradient-
relaxation scheme uses an approximation of the economic
dispatch, thus it does not correspond to the true value of
using the expansion plan. Consequently, in order to have
comparable upper bound values, after running the subgradient-
relaxation algorithm we have evaluated the true cost of using
the obtained expansion plan, this corresponds to the horizontal
non-dashed green line. This quantity and the upper bound
of the subgradient algorithm are comparable. The left panel
of Fig. 9 presents the results when using 12 blocks per
day, while the right panel presents the results when using
24 blocks per day. We note that both algorithmic schemes
are able to converge. However, it can be observed that the
subgradient-relaxation scheme converges considerably faster.
In fact, for the 12-block, system after 30 hours of computation,
the subgradient scheme has not attained the bound that the
subgradient-relaxation scheme is able to find in just 4 hours.
For the 24-block system, after almost 2 days of computation,
the subgradient scheme fails to attain the bound that the
subgradient-relaxation scheme finds in 15 hours. This indicates
that the subgradient-relaxation scheme is better suited as the
size of the problem increases. We note that the obtained run
times can be used in practice. ENTSO-E’s experience with a
stochastic model, which consists of climate years and is solved
as a large LP for a variety of target years, is that it requires
longer run times.
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Fig. 9. The convergence evolution of the subgradient algorithm and the
subgradient-relaxation scheme. The x-axis is the elapsed time while the y-
axis is the cost. The yellow horizontal lines correspond to the wait-and-see
solution and ENTSO-E’s solution. The left panel corresponds to a setting with
12 blocks per day, while the right panel uses 24 blocks per day.

Fig. 10. Relative total cost comparison between average wait-and-see (Av.
W.S.), Wait-and-See (W.S.), and Stochastic (St.) solutions.

Alternative approaches are considered for solving the prob-
lem, as a means of further comparison. This includes the pro-
gressive hedging algorithm [24] and Benders Decomposition
With Multiple Master Problems (BDMM) [25]. Unfortunately,
these schemes are not suitable for our setting. On the one
hand, each subproblem of progressive hedging is harder than
Benders as (i) it includes a quadratic term in the objective, and
(ii) includes the optimization of the first and second stage. This
renders each iteration prohibitably expensive. On the other
hand, BDMM increases the amount of second-stage Benders
subproblems. In the case of the problem that we are interested
in this is not tractable, as each Benders subproblem is large.

We highlight that the use of parallel computing has been
crucial in order to obtain the solutions that are indicated here.
In fact, as each CPU is handling one of the 35 climatic years,
we expect a serial run to be approximately 35 times more
time-consuming.

C. Solution analysis

The present subsection aims at studying the differences
between the stochastic solution obtained in subsection B and
the deterministic solution obtained in subsection A. In terms
of total costs, as presented in Fig. 10, we observe a difference
of nearly 2.7% between the stochastic solution and the wait-
and-see solution, a difference that supports the value of having
computed a stochastic solution. Furthermore, we observe that
the stochastic solution provides an improvement of nearly
1.5% with respect to the average W.S. solution, implemented
by ENTSO-E in ERAA 2021.

This difference in total costs is examined in Fig. 11 by
decomposing the total costs into operational costs, retired
capacity savings, expansion plan costs, and curtailment costs.
The upper panel presents the costs for both approaches, the
stochastic solution, and the average W.S. solution, while the
lower panel presents the relative difference between these

Fig. 11. Cost breakdown. The upper panel presents the total costs, while the
lower panel presents the relative difference between the quantities shown in
the upper panel.

solutions (a positive number indicates that the average W.S.
solution has a higher value). Note that the stochastic solution
tends to result in significantly fewer curtailments, which can be
explained by the increased investments and fewer retirements,
that is to say, we arrive at a more conservative solution. On
the other hand, the lack of information regarding the future
possible outcomes in the average expansion plan approach
makes the solution prone to over-retiring and underestimating
the required investments, which in turn implies that the power
system is unable to satisfy the demand more effectively.

D. Adequacy metrics

One objective of the ERAA study is to measure the abil-
ity of the system to maintain secure levels of supply. Two
adequacy metrics are of particular interest to ENTSO-E. The
first one is the loss of load expectation (LOLE), defined as
LOLE = Eω

[
LOLω

]
. Here, LOLω is the number of hours

during which demand is not served for the climatic year
ω ∈ Ω. The second metric is the expected value of energy
not served (EENS), which is defined as EENS = Eω

[
ENSω

]
.

Here, ENSω is the number of curtailments obtained in climatic
year ω ∈ Ω. We consider the 35 climatic years that are
used for formulating the stochastic model, thereby aiming
to compare its performance against the approximate solution
that is obtained by averaging the expansion plans (which is
the approach used by ENTSO-E in ERAA 2021). Therefore,
there is no out-of-sample testing. We calculate the metrics of
interest and present the results in Fig. 12. We consider both the
LOLE and the EENS for the 4 main European regions: Central
and Eastern Europe, Western Europe, Southern Europe, and
Northern Europe. Fig. 12 effectively demonstrates how the
use of a stochastic solution is able to provide consistent and
significantly more accurate metrics, which can lead to a better-
informed adequacy assessment in Europe. This attribute is of
particular interest to studies such as ERAA.
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Fig. 12. The LOLE and EENS metrics for different European regions.

VII. CONCLUSIONS

In this work, we present a high-performance computing
approach for obtaining a stochastic solution for the EVA of
ERAA 2021. We specifically propose a subgradient algorithm
implemented in parallel computing infrastructure, as well
as a subgradient-relaxation approach that emerges as being
practically attractive due to its capability to tackle large-scale
problems efficiently. We further observe that the commonly
used L-Shaped method is unable to provide a solution of
practical use in a reasonable amount of time. Finally, we
compare the stochastic solution against a deterministic ap-
proach implemented by ENTSO-E for the ERAA 2021 edition.
A noticeable difference between both solutions in terms of
commonly used adequacy metrics emerges, which highlights
the practical value of the stochastic solution that we are able
to compute.

Future ERAA studies aim at improving the EVA on two
fronts. (i) On the one hand, a multi-year stochastic model is
considered, that decides investments and retirements before
the realization of each year. (ii) On the other hand, a more
robust model is considered, which includes further sources of
uncertainty, such as random outage patterns. These increased
uncertainty motivates the study of scenario reduction tech-
niques.

Furthermore, fuel price assumptions can have a significant
impact on the results, and are also quite volatile, as the recent
energy crisis suggests. The proposed approach can handle
objective function uncertainty, thus allowing us to include
these assumptions directly into the model. On the other hand,
ENTSO-E’s interaction with industry stakeholders points that
this uncertainty can be considered as a sensitivity run of the
model with different assumptions. This can provide insights
on the impact without introducing further computational com-
plexity to the model.
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NOMENCLATURE

• Sets: Ω: The set of uncertainty realizations.
N : The set of zones.
G: The set of existing generators.
G∗: The set of new generators.
T : The time horizon of the economic dispatch.
L(n): The set of lines for zone n.
H(n): The set of hydro technologies for zone n.

• Parameters: IC: The annualized investment cost (C/MW).
FOM: The fixed operational and maintenance cost (C/MW).
VOM: The variable cost (C/MW).
FC: The fuel costs (C/MW).
WC: The wheeling charge cost (C/MW).
SC: The spillage cost (C/MW).
VOLL: A high cost for curtailment (C/MW).
Xn,g: Retirement limit for n ∈ N , g ∈ G (MW).
Xn,g: Expansion limit for n ∈ N , g ∈ G∗ (MW).
Pmax
t,n,g : Maximum production, t ∈ T , n ∈ N , g ∈ G∗ (MW).

Pmin
t,n,g: Minimum production, t ∈ T , n ∈ N , g ∈ G∗ (MW).

Xn,g: Expansion limit for n ∈ N , g ∈ G∗ (MW).
Lmax
n,l : Transfer limit, n ∈ N , l ∈ L(n) (MW).

Lmin
n,l : Transfer minimum, n ∈ N , l ∈ L(n) (MW).

BCE: Battery charge efficiency (%).
BDE: Battery discharge efficiency (%).
BV: Battery capacity (MW).
BC: Maximum charge capacity (MW).
BD: Minimum discharge capacity (MW).
Vn,h: Maximum storage for zone n, technology h (MWh).
Qn,h: Turbine capacity for zone n, technology h (MW).
Dn,h: Pump capacity for zone n, technology h (MW).
PE: Pump efficiency (%).

• Parameters with uncertainty: An,h,t,ω: Inflow for n ∈ N ,
h ∈ H(n), t ∈ T , ω ∈ Ω (MW).
PVn,t,ω: PV production for n ∈ N , t ∈ T , ω ∈ Ω (MW).
Wn,t,ω: Wind production for n ∈ N , t ∈ T , ω ∈ Ω (MW).
Dn,t,ω: Demand for n ∈ N , t ∈ T , ω ∈ Ω (MW).

• Variables: x∗
n,g: The invested capacity (MW).

xn,g: The retired capacity(MW).
pn,g,t,ω/p

∗
n,g,t,ω: Power produced with existing/new genera-

tors (MW).
fn,l,t,ω: Power transferred through lines (MW).
sn,h,t,ω: The amount of spillage (MW).
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lsn,t,ω: The load shedding (MW).
bvn,t,ω: The battery state of charge (MWh).
bcn,t,ω: Power charged into the battery (MW).
bcn,t,ω: The amount of charged power into the battery (MW).
bdn,t,ω: The battery discharged power (MW).
qn,h,t,ω : The hydro turbined produced power (MW).
vn,h,t,ω : The state of storage of the reservoir (MWh).
dn,h,t,ω : The pumped power (MW).
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