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Abstract—Uncertain power generations and loads are contin-
ually integrated into the power system, causing high risks of
dynamic events. To better monitor systems, advanced meters like
Phasor Measurement Units (PMUs) can record high-resolution
system dynamic states in real time. However, due to the high
cost, the placement of PMUs is limited in a system. Thus, it’s
hard to obtain all the dynamic system states via PMUs. On
the other hand, traditional sensors in a Supervisory Control
and Data Acquisition (SCADA) system can broadly cover the
system, though they only provide low-resolution measurements.
In this paper, we propose to utilize PMU and SCADA sensor data
to recover the missing dynamic states in the power generation
system. The problem has the following challenges based on
unique properties of data: (1) Spatially, PMU and SCADA
sensors have different locations. Thus, it’s a must to approximate
the data correlations to estimate the missing data accurately.
(2) Temporally, the dynamic transitions in SCADA samples
are scarce, urging efficient utilization of the SCADA data to
approximate the dynamics. For challenge (1), we employ Deep
Neural Networks (DNNs) with high capacities to capture spatial-
temporal information to predict dynamic states. For challenge
(2), we develop a new mechanism to utilize SCADA data
efficiently. Specifically, we iteratively reuse the predicted dynamic
states in the SCADA data to retrain the DNN model, gradually
increasing the performance. The effectiveness of the proposed
training procedure is theoretically verified via the framework
of Expectation-Maximization (EM). Thus, our model to fuse
heterogeneous data is termed Heterogeneous data Deep EM (Hd-
Deep-EM). Finally, we demonstrate the high performance of the
Hd-Deep-EM in diversified synthetic and realistic power systems.

Index Terms—Dynamic state estimation, power systems, lim-
ited PMUs, deep learning, expectation maximization

I. INTRODUCTION

A power-generation system integrates stochastic compo-
nents and loads to facilitate clean and low-cost production
and consumption, such as Photovoltaic (PV) power and wind
power that highly depend on uncertain weather conditions.
These components make the power system vulnerable to
dynamic environmental events. To better capture system dy-
namics, Phasor Measurement Units (PMUs) are continually
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integrated into the power system to provide synchronized pha-
sor measurements with 30-120 samples per second [1]. Such
a high resolution enables accurate monitoring of the dynamic
states. However, these deployments of PMUs come with high
costs, resulting in relatively low penetrations throughout the
system.

Meanwhile, the conventional measuring system of power
systems, i.e., Remote Terminal Unit (RTU) based SCADA
system, has been largely deployed over the last decade [2].
Compared to PMUs, SCADA measurements have relatively
low resolution and can’t fully record system dynamics. For
example, the SCADA system provides only 0.5-2 measure-
ment samples per second [3]. Therefore, the dilemma exists
of limited PMUs with large dynamic data and broad SCADA
sensors with few dynamic records. To improve the knowledge
of system dynamics, we combine the information of SCADA
data and PMU measurements to accurately estimate the miss-
ing dynamic states between SCADA data.

To integrate PMU and SCADA data, there are many ex-
isting studies, categorized into model-based and model-free
approaches. In the model-based approach, system dynamic
models are utilized to identify the relationship of future states
and historical states [4]–[6]. For example, a Kalman filter [7]
predicts the future states using historical states of both PMU
and SCADA data. In these methods, nonlinear differential
equations of power systems are employed. However, these
system equations are usually inaccurate [8], leading to non-
negligible errors for the dynamic state estimation.

Therefore, model-free approaches are introduced to mine
information in historical measurements for accurate predic-
tion [9]–[11]. Model-free methods generally build a map to
estimate hidden dynamic states using corresponding PMU
measurements. For example, one can train a Linear Regression
(LR) model [12] using synchronized PMU and SCADA mea-
surements, and the hidden states can be predicted via inputting
the intermediate PMU data at the same time. Though the LR-
based method is simple and easy to understand, the model
capacity is limited. To increase the capacity, improvements can
be done by (1) increasing the single model nonlinearity for
better approximation or (2) aggregating different models. For
example, [13] examines the k-nearest neighbor (KNN) algo-
rithm with non-linear mapping rules. [14] proposes a Bagged
Averaging of Multiple Linear Regression model by integrating
and bootstrapping several different LRs. However, it’s still
hard for these methods to capture the complex temporal and
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spatial correlations of data in PMUs and SCADA.
To identify hidden states effectively under a complex

spatial-temporal correlation, deep learning methods are in-
creasingly proposed. These methods utilize hierarchical feature
learning to extract features spatially or temporally. To capture
spatial correlations, methods like Convolutional Neural Net-
works (CNNs) [15]–[17] and Graph Neural Network (GNN)
can employ square or graph-based kernels for convolution
and extraction of local features. To obtain temporal corre-
lations, Recursive Neural Networks (RNNs) [18], [19] and
Long Short-Term Memory (LSTM) [20] employ gates to filter
sequential information and learn useful patterns. In this paper,
we make use of the capacity of DNN to analyze spatial-
temporal data for dynamic state estimation. However, DNN-
based methods require relatively large datasets with diversified
information. DNNs may overfit when the information is lim-
ited to uncover the dynamic states. Notably, such a scenario
often happens for SCADA data due to the low resolution.
Thus, it’s quite challenging to build a good DNN model to
predict the dynamic states of SCADA systems.

This paper addresses the system problem by explicitly
introducing “more” training data with dynamic information.
Specifically, the new training data is derived from the predicted
hidden states and the corresponding input PMU data, contain-
ing rich dynamic information. Subsequently, the DNN can be
trained with all the data to further improve the prediction.
These two steps form an iterative way to renew the NN model
towards better performance. To elaborate on the effective-
ness of the procedure, we show that the iterative process is
essentially an Expectation-Maximization (EM) method with
good convergence performance. Thus, our method is named
as Heterogeneous data Deep EM (Hd-Deep-EM).

There are also other studies to combine deep learning and
EM algorithms for different domains. Specifically, in signal
processing, [21] develops a generalized expectation maximiza-
tion to estimate channel states and detect signals. [22] detects
signals by leveraging the deep unfolding to represent the
iterative EM algorithm and improve the detection accuracy. In
computer vision, [23] utilizes online EM algorithm to improve
the inference in the deep Bayesian network, achieving good
image classification performances. [23] reconstructs images
via EM network and employs the power of EM algorithm
to tackle noises. In general, those methods can hardly be
applied to power system PMU and SCADA data due to
different resolutions. They also don’t provide solid theoretical
guarantees. In this paper, we theoretically and experimentally
clarify the effectiveness and efficiency of Hd-Deep-EM for
dynamic hidden state estimation.

For the numerical verification, the Hd-Deep-EM method is
tested extensively at various conditions on the synthetic 200-
and 500-bus systems datasets, where the loading conditions
and PMU/SCADA sensor penetrations are diversified for ex-
tensive testing. To show the power of Hd-Deep-EM in facing
the spatial and temporal difference, we compare the proposed
Hd-Deep-EM method with shallow EM algorithm and EM
algorithm with a Vanilla neural network. To show the power of
Hd-Deep-EM in tackling the temporal trend from the SCADA
measurements, we compare Hd-Deep-EM with the traditional

neural network. The benchmark methods include EM and deep
learning approaches, and Mean Square Error (MSE) is used for
evaluating interpolation model accuracy. The results show that
our proposed Hd-Deep-EM method can efficiently interpolate
missing data to the SCADA measurement.

The rest of the paper is organized as follows: Section II
defines the problem. Section III proposes our Hd-Deep-EM.
Section IV conduct experiments for baselines and Hd-Deep-
EM and Section V concludes the paper.

Fig. 1: A moving window-based segmentation procedure to
process the PMU streams.

II. PROBLEM FORMULATION

This section defines the problem with clear notations, which
lays the foundations for the following derivations. We denote
that Np samples for dp numbers of PMUs and Ns samples
for ds numbers of SCADA data. Then, let Dp ∈ RNp×dp

represent the PMU data matrix and Ds ∈ RNs×ds for the
SCADA data. Moreover, due to the difference in resolution
among PMUs and SCADA data, we have Np ≫ Ns. Then,
we denote the missing data matrix Z ∈ R(Np−Ns)×ds .

With defined PMU and SCADA data flows, we need to
process the raw data and formalize the training data to
estimate the dynamic states. While one can build a one-to-
one mapping from the PMU measurements to the SCADA
data simultaneously, the mapping may not be robust if data
on either sides have outliers. Thus, to improve the robustness,
we propose to utilize the PMU data of neighboring time slots
as the input. Fig. 1 illustrates the process where we utilize a
group of PMU data (i.e., the blue box) as input to estimate
the SCADA sample (i.e., the green box). Naturally, if we input
the intermediate PMU data that don’t have the corresponding
SCADA data, the prediction will be an estimate of the missing
dynamic states of the SCADA data.

This article has been accepted for publication in IEEE Transactions on Power Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2023.3288005

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



3

To predict the measurement states, mathematically, we em-
ploy a moving window to segment PMU streams based on the
resolution of the SCADA data. As shown in Fig. 1, for each
timestamp of SCADA data, the PMUs data will extract a k×dp
moving window that has a center of the target timestamp.
Subsequently, each extracted moving window will be vector-
ized into an input vector. This procedure makes the processed
PMUs and SCADA data have the same number of samples
Ns. Therefore, we have Xp ∈ RNs×(k×dp) as the input PMU
data matrix and Ds ∈ RNs×ds as the output SCADA data.
In order to recover the Z with function f , we also apply the
moving window to the intermediate PMU streams to predict
the missing states Z. Specifically, we denote the PMU data
matrix for recovering Z as X̃p ∈ R(Np−Ns)×(k×dp). Finally,
the strategy of this paper is to learn the mapping rule

f : Xp ∪ X̃p → Ds ∪Z. (1)

The complete problem definition can be summarized as fol-
lows.

• Problem: Deep expectation maximization for data inter-
polation.

• Given: a set of PMU-based samples with Dp ∈ RNp×dp

as the high resolution data and Ds ∈ RNs×ds as the low
resolution data, respectively.

• Output: a regression model to learn data mapping f
between PMU data and SCADA data and interpolate the
missing value of the SCADA data.

III. PROPOSED MODEL

The design of the above mapping f can be diversified.
However, existing works can not sufficiently capture the
spatial-temporal correlations of PMU and SCADA data. In
this section, we first illustrate that a well-designed DNN
for the function f can efficiently handle the spatial-temporal
correlations and estimate the dynamic states. However, the
training of the DNN may suffer overfitting due to the scarce
dynamic information in SCADA data. Then, we show the key
to resolve the issue is to completely make use of the hidden
dynamic states to update the mapping. Such a hidden value
estimation and parameter updating process lies in the domain
of Expectation-Maximization (EM) algorithm. In particular,
EM algorithms impact on numerous topics in power systems.
They mostly target on probabilistic load or power source mon-
itoring [24]–[26], where EM helps to estimate the underlying
distributions with the maximal likelihood. For example, [24]–
[26] develop a Gaussian Mixture Model (GMM) to model the
density function of the load/source, and utilize EM algorithm
to find a suboptimal solution. Some other applications appear
in PMU-based cyber attack detection [27] and joint impedance
and topology estimation [28]. For example, in [27], the objec-
tive becomes the log-likelihood of data with underlying cyber
attack.

A. Expectation-Maximization Algorithm for Hidden State Es-
timation

EM algorithms are developed to tackle problems with latent
variables, e.g., the hidden states in SCADA data streams.

Specifically, the EM algorithm is an iterative process to
separately estimate the statistics of latent variables and the
corresponding parameters that determine the likelihood of the
latent data. Thus, to apply EM algorithms to our problem,
the first step is to identify what parameters should be used to
determine the latent variables (i.e., the hidden states).

In general, one can categorize the parametric models into
the generative and the discriminative models. The generative
model estimates the joint distributions between the known and
the unknown variables to generate new data. However, it’s
hard to choose an appropriate model to estimate hidden states.
For example, GMM is usually used in most EM algorithms.
However, the GMM model is not capable to represent the
distribution of hidden states in power systems with complex
spatial-temporal correlations.

Thus, in this paper, we propose to utilize a discriminative
mapping f to directly map from PMU data to SCADA data.
The advantage of a discriminative design is to maintain the
spatial-temporal correlations in the PMU data, thus boosting
the approximation accuracy of the hidden states. Mathemati-
cally, we can write the EM steps as follows.

• E step: Estimate the expected values of the hidden states
in SCADA data streams. Namely, input the corresponding
PMU data to f and output hidden states.

• M step: Update parameters of f for better estimation.
Obviously, the design of f should be carefully considered.

In the following section, we display our design using deep
learning techniques to achieve accurate dynamic state estima-
tion.

Fig. 2: An illustration of
the EM algorithm.

Fig. 2 visualizes the process of the EM algorithms. To
investigate the convergence of the EM algorithm, many studies
are done and one can refer to [29] for more details.

B. Deep Neural Networks to Capture Spatial-Temporal Cor-
relations

The core of our Hd-Deep-EM algorithm is the deep neural
network (DNN) model, which is applied to approximate the
data interpolation mapping between PMU to SCADA measure-
ment. Intuitively, a DNN model can help capture the temporal-
spatial correlations and learn useful features for the task.
Specifically, the DNN model has multi-layer feed-forward
neural network structure, which consists of typical three-level
network architecture: one input layer, several hidden layers,
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and one output layer. Since the input data comes from PMU
data Xp and the output data comes from the SCADA data Ds,
we denote x as the variable for Xp, y as the truth variable
for Ds, and ŷ as the predicted variable using the DNN. Then,
the DNN function can be written as follows.

h0 = x,

hi = gi (W ihi−1 + bi−1) ,∀ i = 1, · · ·, Nl,

ŷ = gNl+1 (WNl+1hNl
+ bNl

) ,

(2)

where Nl denotes the number of layers for the neural network,
h0 denotes the input matrix of the network, hi is the output
matrix of the i-th hidden layer, bi is the bias term, and g is the
activation function for each hidden layer. We elaborate more
on the model of the DNN based on the following perspectives.

1) Structure and Activations: DNN has a hierarchical struc-
ture to gradually extract non-linear features for the task. Gen-
erally, the i-th hidden layer models the interactions between
the (i − 1)-th features by introducing a connection weight
matrix W i and a bias vector bi. Then, the result is activated
via a non-linear activation function g(·). The choice of g can
vary, and some common options include Rectified Linear Unit
(ReLU), sigmoid function, and tangent function, etc. Notably,
ReLU is the most commonly used because ReLU-based DNN
can efficiently tackle the gradient vanishing problem and has
a high efficiency to compute [30].

2) Loss function: After defining the structure and the inner
activation functions, we need to train the DNN with a loss
function. For this regression problem, the Mean Square Error
(MSE) can smoothly measure the difference between the
predicted output ŷ and the true output y:

L(W,B,x,y) =
1

|Ns|
∑
i∈Ns

(ŷ − y)
2
, (3)

where W = {W i}i is the set of layer-wise weights of the
DNN, and B = {bi}i is the set of bias terms.

3) Training Process: With the defined loss function, train-
ing is conducted via minimizing the loss with given in-
put/output data. The minimization can be written as:

min
W,B

L(W,B,x,y). (4)

To solve the optimization, many algorithms can be utilized.
For example, one can utilize either Stochastic Gradient De-
scent (SGD) [31] or the Adam [32] to train the model.

The defined DNN has the ability to learn the local features
and determine the spatial-temporal correlations. To well-train
the DNN model to approximate the dynamic states, we require
the data to contain enough dynamic information. Nevertheless,
the SCADA data has little dynamic information, decreasing the
DNN model performance.

C. Deep Expectation Maximization to Boost the Training of
the DNN

To resolve SCADA data scarcity, the key is to introduce
more SCADA data with system dynamic information. As the

dynamic systems states of the SCADA system are hidden,
the problem can be decomposed into (1) estimating hidden
values and (2) updating the model parameters as shown in Fig.
3. Mathematically, this iterative procedure is an Expectation-
Maximization (EM) algorithm. This subsection derives the Hd-
Deep-EM algorithm from training the DNN model, leading to
the so-called Hd-Deep-EM model.

In general, the EM algorithm tries to solve an optimization
with missing quantities. For the optimization to train the DNN
in Equation (4), the hidden dynamic states of the SCADA data
are introduced. Thus, the optimization can be rewritten as:

min
W,B

L(W,B, z,x,y), (5)

where z represents the variable of missing values in the
SCADA data. Namely, Z = {zi}

Np−Ns

i=1 . Clearly, z is also
the output of the DNN f given the input PMU data x at the
corresponding time. However, the unknown knowledge of z
makes the direct optimization of Equation (5) impossible.

Therefore, the EM algorithm solves Equation (5) in an
iterative manner. In the Expectation (E) step, the algorithm
tries to approximate the expected values of z using the current
model and data. Then, in the Maximization (M) step, the
model tries to maximize the profit, i.e., minimize the loss, to
obtain a better model. More specifically, for the k-th iteration,
EM algorithm has the following formulations.

• E step: Estimate the missing values of SCADA data zk.
Based on the definition of z, the expected estimation of
zk can be written as:

zk = f(x;W k, Bk), (6)

where W k and Bk represent the parameters of the DNN
at the k-th iteration. The input data x comes from the
intermediate PMU matrix X̃p that corresponds to the
hidden timestamps of the SCADA system. Then, the
estimated values of zk can be added to train the (k+1)-
th DNN model, which improves the training with more
accurate dynamic information in zk. Thus, the training
process is the M step, shown as follows.

• M step: Retrain the DNN model to minimize the loss:

(W k+1, Bk+1) = arg min
Wk+1,Bk+1

L(W k, Bk, zk,x,y).

(7)
The obtained parameters W k+1 and Bk+1 can formalize
the (k + 1)-th DNN model. Since zk is known values,
Equation (7) can be conveniently trained using SGD
or Adam algorithms. All quantities of variable zk can
formulate the missing state matrix Z. For different iter-
ations, the values of Z can change. Thus, we also add
the superscript and utilize Zk to represent the predicted
missing values in the kth iteration, as shown in Fig. 3.

Finally, we summarize the complete algorithm for the Hd-
Deep-EM model in Algorithm 1.
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Fig. 3: Illustration of the computations for proposed Hd-Deep-EM
method.

Algorithm 1 Hd-Deep-EM algorithm.

Input: PMU data matrix Xp, SCADA data matrix Ds, PMU
data matrix for recovering data X̃p.
Hyper-parameters: number of iterations K and DNN-related
parameters like batch size and learning rate.
Output: Missing data matrix Z for the dynamic states.

1: Initial parameters of the DNN f .
2: for k = 1 to K do
3: E step: Use Equation (6) to estimate the k-th dynamic

states.
4: M step: Optimize Equation (7) to update parameters of

the k-th DNN.
5: end for

D. Double Expectation Maximization Algorithms for Noisy
Data

For realistic datasets, noise may lower the performance of
the state estimation. To tackle noise data, we modify our
Hd-Deep-EM algorithm for better estimation. Specifically, we
can assume the noises are independent of measurements and
can be easily modeled via a distribution model like GMM.
Then, a natural idea is to decompose the model for estimating
hidden states and noises. Since both data can be estimated via
EM algorithms, we modify our Hd-Deep-EM and propose a
Double Hd-Deep-EM algorithms for noisy data.

Specifically, in each iteration, we utilize the DNN model f
to represent the mapping from input PMU data to the output. In
the meantime, we propose to leverage another Gaussian model
to estimate the noises, formulating the double EM algorithms
(Fig 3). Mathematically, the double EM steps can be written
as follows:

• E1 step: Estimate the missing values of SCADA data zk

using Equation (6).
• E2 step: Compute the noise data

nk = y − f(x;W k, Bk). (8)

• M1 step: Update the parameters of Gaussian model using
nk. Then, obtain nk+1 using the Gaussian model.

• M2 step: Update parameters of DNN model f via:

min
Wk+1,Bk+1

L(W k, Bk, zk,x,y − nk+1). (9)

Note that for known SCADA data, we utilize y − nk+1

to take place of y to achieve the denoising.
In general, the algorithm can be summarized as Algorithm

2. We denote our algorithm as the Double Hd-Deep-EM
algorithm.

Algorithm 2 Double Hd-Deep-EM algorithm for noisy data.

Input: PMU data matrix Xp, SCADA data matrix Ds, PMU
data matrix for recovering data X̃p.
Hyper-parameters: number of iterations K and DNN-related
parameters like batch size and learning rate.
Output: Missing data matrix Z without noise for the dynamic
states.

1: for k = 1 to K do
2: Initial parameters of the DNN f and the Gaussian

model.
3: E step: Use Equations (6) and (8) to estimate the k-th

dynamic states and the noise.
4: M step: Utilize the noise data to update the Gaussian

model. Then, optimize Equation (9) to update parameters
of the k-th DNN.

5: end for

E. Theoretical Support of Double Hd-Deep-EM Algorithm for
Denoising

In the Double Hd-Deep-EM algorithm, we estimate parame-
ters for both the DNN model and the underlying distribution of
noises, which requires certain guarantees for the convergence
to the true noise distribution, where the EM algorithm can
provide the convergence theorem. Such convergence states the
decreasing distance between the true likelihood of the noise
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distribution and the estimated likelihood using the data in
Equation (8). Specifically, we modify the convergence theorem
from [29] and propose the following theorem.

Theorem 1: Let θ denote the parameters of the noise
distribution. Then, let {θt} denote the parameter sequence in
the EM iteration and t represents the iteration index. If θ∗ is
a limit point of {θt}, then (1) θ∗ is a stationary point of the
likelihood function of the noise data in Equation (8), and (2)
the sequence {l(θt)} is non-decreasing and converges to l(θ∗),
where l(θ) represents the likelihood of the noise distribution.

The proofs of Theorem 1 can be seen in [29]. Basically,
Theorem 1 justifies the convergent dynamics of the EM algo-
rithm. More specifically, Theorem 1 proves that the convergent
point θ∗ exists for the parameters of the true distribution of
the noises. Then, Theorem 1 illustrates the convergence to θ∗

using the EM algorithm.
The convergence is further supported in the numerical

validations where we investigate the proposed Hd-Deep-EM
algorithm and the Double Hd-Deep-EM for noiseless and
noisy data, respectively. The results demonstrate that our
method has excellent denoising capacities under different noise
levels.

IV. EXPERIMENTS

A. Dataset Description

In the experiment, we employ synthetic datasets from 200-
and 500- bus systems [33], [34]. For data preparation, we
employ a commercial-grade simulator, Positive Sequence Load
Flow (PSLF) to simulate PMU data with 60 samples per
second. To diversify datasets, we vary the loading conditions
during the simulation, which leads to different system dynam-
ics. Moreover, we introduce three different fault events to our
data set to validate robustness of our algorithm. As shown
in Fig. 4, we visualize the event using Voltage Magnitude
(VM) data obtained from PSLF. Further, we assume PMUs
only locate at partial buses, with a penetration η = 0.05.
For the rest data, we assume they are SCADA data with a
sampling process. Then, we can obtain the SCADA data with
0.5 samples per second.

Totally, we have over 40 files of 10-second simulated data
for each test system. To obtain Xp from these time series, we
utilize the moving window with the length to be 0.33 seconds
(i.e., k = 20 samples) to reformalize the training data. Thus,
we have dp = 200 × η = 10; ds = 200 × (1 − η) = 190
for 200−bus test system and dp = 500 × η = 25; ds =
500 × (1 − η) = 475 for 500−bus test system. In general,
we have Ds ∈ R20×190 and Xp ∈ R20×(20×10) for the 200-
bus system and Ds ∈ R20×475 and Xp ∈ R20×(20×25) for
the 500-bus system. They are matrices of PMUs and SCADA
measurements data for one window. Further, we have Z ∈
R580×190 X̃ ∈ R580×200 for the 200-bus system and Z ∈
R580×475 X̃ ∈ R580×500 for the 500-bus system. They are
total extracted matrices for missing SCADA data and PMU
data to recover Z.

B. Benchmark Method

To demonstrate the effectiveness of proposed model, we
employ three different methods as benchmarks. The details of
these methods are as follows.

• EM algorithm + Linear Regression (LR): LR fits a
linear model with coefficients to minimize the error [35].
However, the LR model doesn’t consider the spatial
differences between PMU and SCADA data.

• EM algorithm + Vanilla Deep Neural Network: For this
method, we also consider a Hd-Deep-EM framework.
However, we utilize a vanilla DNN without the con-
sideration of temporal correlations. Specifically, we set
k = 1 for the window-based segmentation and don’t
consider the neighboring data for training. To distinguish
our model and this method, we name this method as Hd-
Deep-EM0 and our noiseless model as Hd-Deep-EM1.
Further, we still name the noise version of Double Hd-
Deep-EM model.

• Deep Neural Network (DNN) [36]: We utilize the same
DNN in the Double Hd-Deep-EM to directly train the
mapping without EM algorithm. The proposed DNN can
effectively make use of spatial and temporal correlations.
However, the scarce dynamic information of SCADA data
may prevent the good training of the DNN.

In general, by comparing the testing accuracy of the pro-
posed model and the benchmark models, we can evaluate the
effectiveness of Hd-Deep-EM. As claimed in the proposed
model, our Hd-Deep-EM can (1) capture the complex spatial
correlations between PMU and SCADA data, (2) incorporate
temporal correlations for a robust estimator, and (3) use the
EM framework to iteratively incorporate the temporal dynam-
ics of the SCADA data for better DNN training. Especially,
we compare our Double Hd-Deep-EM with the LR+ EM
to illustrate the high representational power of the DNN
to capture spatial correlations. Then, we compare Double
Hd-Deep-EM with Hd-Deep-EM0 to understand to impacts
of considering temporal correlations to estimate the hidden
states. Finally, we compare Double Hd-Deep-EM with DNN
to illustrate the design of the EM framework.

During the testing, the hyper-parameters for all models are
fine-tuned to achieve the best accuracy. Especially, we report
the detailed results with respect to Mean Square Error (MSE)
between the truth and predict Z matrix (i.e., missing dynamic
states of the SCADA system) for all methods.

C. Deep Model Is Better Than Linear Model

In this subsection, we evaluate the effectiveness of our
Hd-Deep-EM algorithm in tackling the spatial difference by
comparing our Hd-Deep-EM algorithm to LR + EM. The
results show that our model performs better than benchmarks.
Specifically, we report the prediction performance of simulated
data as follows.

Fig. 5 and Fig. 6 demonstrates the performances for the
two methods in two different test system. The y-axis is the
MSE error, and the x-axis represents the number of iterations
during training. From the above figures, we find that our Hd-
Deep-EM algorithm is lower than the MSE error of 0.05 and
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Fig. 4: The visualization of 10 PMUs’ Voltage Magnitude (VM) measurements for three different events.

Fig. 5: Testing error for the 200-bus system.

Fig. 6: Testing error for the 500-bus system.

0.4, compared to shallow EM+ LR in 200- and 500- bus test
system after convergence. The better performance of the Hd-
Deep-EM algorithm shows that the deep learning model can
be better than the LR model in our complex scenario.

D. Consider Temporal Correlations Increase DNN Perfor-
mance

In this subsection, we evaluate the effectiveness of our
Hd-Deep-EM algorithm in integrating the temporal correla-
tions. Specifically, we compare Hd-Deep-EM0 and Double

Hd-Deep-EM. Due to the window-based segmentation, our
Double Hd-Deep-EM can successfully integrate neighboring
measurements in the temporal domain to estimate the dynamic
states at one time slot. However, Hd-Deep-EM0 doesn’t have
this treatment. Then, we report the results of simulated data
as follows.

Fig. 5 and Fig. 6 demonstrate the performances for the two
methods. From the above figures, we find that our Double
Hd-Deep-EM has an average of 0.05 and 0.06 testing MSE
error for both test systems after convergence. In comparison,
Hd-Deep-EM0 has an error of 0.07 and 0.2. The performance
of these two methods can be explained as follow. Window
segmentation can capture the data before and after the SCADA
time stamp, which can benefit from finding the temporal
trending of the PMU data and avoiding the negative impacts
of the outliers. The better performance of the Hd-Deep-
EM algorithm with window segmented data shows that our
proposed deep learning model can easily capture the temporal
trend for PMU data in our complex scenario. Finally, we
observe that in Fig. 6, DNN model can perform better than
Hd-Deep-EM0 that doesn’t consider the temporal correlations.
This verifies our claims that considering proper temporal
correlations in the DNN and Hd-Deep-EM1 (noiseless) can
improve the performance of estimating dynamic hidden states.

E. EM Procedure Provides Better Training of the DNN

In this subsection, we evaluate the effectiveness of intro-
ducing the EM procedure by comparing Hd-Deep-EM1 and a
DNN model. Specifically, we report the results of simulated
data as follows. Fig. 5 and Fig. 6 demonstrate the performances
for the two methods. We find that our Double Hd-Deep-
EM has an average testing error reduction of 0.01 and 0.02,
compared to the DNN method. The reasons, when training
the DNN model, the output SCADA data has limited dynamic
information. Thus, direct training can’t guarantee the DNN
model performance to predict dynamic states. On the other
hand, our Hd-Deep-EM can iterative predict the dynamic states
and reuse the predicted results for training, leading to a better
training procedure to incorporate dynamic information.

F. Double Hd-Deep-EM Provides Better Performance in Tack-
ling Noise

In this subsection, we evaluate the effectiveness of interpo-
lating noisy data by comparing Double Hd-Deep-EM among
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Fig. 7: Testing error for the 200-bus system with noisy data.

Fig. 8: Testing error for the 500-bus system with noisy data.

all three benchmark models and our Hd-Deep-EM1 method. In
the experiment, we introduce noise into our dataset to validate
the effectiveness in tackling noisy data. Specifically, we report
the results of simulated data as follows. As shown in Fig.
7 and Fig. 8, we find that our Double Hd-Deep-EM has an
average testing error reduction of 0.04, 0.02, 0.02 and 0.01,
compared to EM+LR, Hd-Deep-EM0, DNN method and our
proposed Hd-Deep-EM1 for the 200 bus system. Furthermore,
Double Hd-Deep-EM has an average testing error reduction of
0.01, 0.02, 0.03 and 0.005, compared to bench mark methods
and Hd-Deep-EM1 for the 500 bus system. The results show
that our Double Hd-Deep-EM has the best performance of
robustness to noisy data.

G. Sensitivity Analysis with respect to Noise Levels

Moreover, we further evaluate Double Hd-Deep-EM perfor-
mance with other benchmarks models in 3 different level of
noise injection to the simulated data. To quantify the level of
the noise, we utilize the Signal-to-Noise Ratio (SNR) which
compares the level of a desired signal to the level of noise.
Signal-to-Noise Ratio can be defined as the ratio of signal
power to noise power. The result of MSE error is shown in
the tables below.

TABLE I: The MSE for different data interpolation methods
in different noise level for Illinois 200-bus systems.

SNR
RATIO
(DB)

DOUBLE
HD-

DEEP-
EM

HD-
DEEP-
EM1

EM+
LR

DEEP
EM0

DNN

25 0.03914 0.04874 0.08002 0.05214 0.05513

15 0.03923 0.05045 0.08204 0.05426 0.05525

10 0.04035 0.05765 0.08234 0.05987 0.05947

TABLE II: The MSE for different data interpolation methods
in different noise level for South Carolina 500-bus systems.

SNR
RATIO
(DB)

DOUBLE
HD-

DEEP-
EM

DEEP
EM1

EM+
LR

DEEP
EM0

DNN

25 0.17596 0.17723 0.21794 0.17873 0.20601
15 0.17601 0.17983 0.21819 0.18073 0.20730

10 0.17616 0.18177 0.22056 0.18395 0.21049

According to the performance in Table I and Table II, we
find that our Double Hd-Deep-EM has an average testing error
reduction over different noise level of 0.013, 0.017, 0.014 and
0.042, compared to Hd-Deep-EM1, EM+LR, Hd-Deep-EM0
and DNN method for 200 bus system. And Double Hd-Deep-
EM has an average testing error reduction over different noise
level of 0.004, 0.031, 0.005 and 0.043, compared to bench
mark methods for 500 bus system.

H. Event Identification Accuracy Comparison with Different
Dataset

Fig. 9: Event identification for different datasets.

To evaluate the effectiveness of interpolation, we propose to
compare the interpolated SCADA data, original SCADA data
and PMU data for the data-driven task: identifying system
events. Specifically, the same event identification algorithm is
performed among the three datasets. We utilize the 5 different
popular Supervised Learning methods to evaluate the results.
The selected methods are K Nearest Neighbor (KNN), Naive
Bayes (NB), Decision Tree (DT), Logistic Regression (LR),
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and Support Vector Machine (SVM). As shown in Fig. 9, we
find that our interpolated data can best improve the different
learning methods, with KNN the best. Averagely, our merged
dataset has average increase of 7.92%, and 36.35%, compared
to the original PMU and SCADA datasets.

V. CONCLUSION

The increasing integration of renewable energy brings risks
of system dynamic events. To achieve better monitoring of
system dynamics, Phasor Measurement Units (PMUs) are
placed to yield high-resolution data files. However, PMU units
are limited in a system due to the high cost. For regions
without PMUs, we propose to estimate the dynamic states
using PMU and SCADA data. The problem is challenging
due to the spatial differences between PMU and SCADA data
and the temporal scarcity of the SCADA measurements. To
solve these issues, we employ Deep Neural Networks (DNNs)
to capture the spatial-temporal correlations efficiently. The
DNN can be trained to map from PMU data to SCADA data,
bringing a reasonable estimate of the missing measurements
of SCADA data. However, the lack of dynamic information in
the SCADA data disables a well-trained DNN.

Thus, we propose to utilize the estimated data to retrain the
DNN model and build the complete algorithm in an iterative
approach of estimation and retraining. Such a process can be
explained under the framework of Expectation-Maximization
(EM) algorithm. Thus, we name our method Hd-Deep-EM.
Subsequently, we improve our Hd-Deep-EM in realistic ap-
plications by considering the noises. Specifically, we propose
to utilize another EM algorithm to estimate the distribution
of the noise data, bringing a Double Hd-Deep-EM algorithm.
To validate the Hd-Deep-EM model, we utilize diversified
synthetic and real-world datasets. All results show that Hd-
Deep-EM and Double Hd-Deep-EM perform better than other
existing methods.
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