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Abstract—Deep penetration of distributed energy resources
(DERs) and electric vehicles (EVs) introduce benefits but may
cause the overloading of service transformers in distribution
networks. Such situations require real-time transformer loading
information, where an accurate mapping between smart meters
and distribution transformers is a prerequisite, e.g., summing
the downstream smart meter consumptions. Due to arbitrary
curvature in streets, we propose to employ a density-based clus-
tering based on voltage magnitudes (continuous) and street name
(categorical) information. However, a density-based approach
may only be able to localize a meter to a street segment. Hence,
we use a second-stage spectral clustering with distance along
the street (DAS), a novel feature, to obtain meter clusters, each
with a common parent transformer. For mapping transformers
to meter clusters, we use the nearest cluster center approach
based on the location since voltage measurements may not be
available at transformers. Moreover, we provide a theoretical
guarantee for such an approach. Finally, we illustrate the
usefulness of the proposed algorithm on long streets, which is a
challenging scenario due to many possible incorrect combinations
of meter-transformer mapping. The proposed algorithm has been
tested on modified IEEE 8-, 69-, 123-bus test systems and real
distribution feeders from a utility in the Southwestern United
States, demonstrating outstanding performance.

I. INTRODUCTION

Distributed energy resources (DER) and electric vehicles
(EV) are environmentally beneficial. However, as their pene-
tration increases, they may cause service transformer overload
since their incorporation increases the forward and reverse
power flow via those transformers. Long-term overloading
of transformers causes insulation deterioration and shorter
lifespans. Additionally, because it is expensive to meter every
service transformer, many utilities do not have the real-time
loading information of transformers. For example, the cost of
remote sensing on a distribution transformer is around 1, 000
U.S. dollars [1]. Moreover, the cost of a Fluke 435-II meter [2]
is around 9, 000 U.S. dollars. Furthermore, many utilities do
not have detailed existing distribution system topologies [3].
Thus, it is hard to add the downstream meter consumptions to
determine how much their parent transformers are loaded [4].

One idea is to replicate the transmission grid’s methods
for determining topology. However, transmission grid tech-
niques [5]–[9] rely on established telemetry and rare topol-
ogy changes, making them unsuitable for distribution grids.
However, utilities can exploit the huge data from the imple-
mentation of advanced metering infrastructure (AMI) [10]–
[13]. In order to reconstruct the system topology using AMI
and micro-synchrophasor data, research has been done to de-
velop algorithms that use voltage magnitude correlations [14].

For instance, [15] estimates system topology using voltage
magnitudes but assumes that all lines have equal inductance-
to-resistance ratios per unit length. In addition, the Chow-
Liu method is used in [16] to determine radial topology.
References [17], [18] predict the topology and line character-
istics using historical data of real and reactive power, voltage
magnitudes, and voltage angle. Voltage magnitudes at each
system node are necessary for these procedures. However,
voltage magnitude sensing may not be available at poles
and transformers due to the enormous number of buses in
distribution networks.

Some efforts are dedicated to the distribution grid [19]–
[21]. However, they require the locations of all switches or
the most likely topology, which may be unavailable due to the
vast spread of distribution lines [22]. Other efforts even require
impedance [23], which may be unavailable in the secondary
distribution grids. References [24], [25] primarily use AMI
voltage data to recover the mapping between smart meters
and service transformers. Such a mapping can help utilities
estimate the loading of distribution transformers, e.g., the
utility can sum the powers flowing through the daughter smart
meters to estimate the power flowing through their parent
transformer.

However, analyses based solely on voltage magnitudes may
not be accurate because smart meters that are geographically
dispersed and unconnected can have similar voltage magnitude
profiles due to similar neighborhood consumption profiles.
Furthermore, high photovoltaic (PV) penetration makes the
meter consumptions and, therefore, the voltage magnitude sim-
ilar, even if the meters belong to different transformers. Such
similarity may cause problems for algorithms that consider
voltage magnitude only. However, considering information in
addition to the voltage magnitudes, e.g., location information,
can prevent wrong results by considering only voltage data.
Another challenge is that the meters close to different trans-
formers have similar voltage magnitudes in the case of similar
net consumptions flowing through transformers, and hence,
they tend to be clustered together. This occurs because the
impedance of primary conductors is negligible when referred
to the transformer’s secondary side.

Researchers also focus on using geographical information
to aid voltage magnitude-based methods, but geographical
information has not been effectively used. For example, many
voltage magnitude-based methods implicitly utilize geographic
information system (GIS) data only for selecting meters be-
longing to a geographical area and then use their voltage
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magnitude-based method on the selected meters. Moreover,
[26], [27] use the GIS information of meters only to estimate
voltage magnitudes at the point of connection by using average
energy and estimating the distance from a house to the nearest
pole. Reference [25] uses both voltage and geographical
information. However, it puts equal emphasis on both pieces
of information, which can not be altered. Furthermore, using
geographical information directly without preprocessing can
create problems. For instance, both sides of a street are typi-
cally supplied by the same transformer. However, without pre-
processing the GIS information, the results may be incorrect.
Based on the above discussion, one can raise the following
questions. How should one use the GIS information to aid
voltage magnitude-based clustering effectively? Moreover, as
measurements are unavailable at the transformers, can there
be a guarantee for matching transformers to meter clusters?
Finally, meters close to different transformers have similar
voltage magnitudes. How does one distinguish between them?
To resolve these issues, this paper has three contributions listed
below:

1) We propose to use the GIS information in the most
effective manner. For example, we first divide the data
into streets, using the street categorical information
along with the voltage magnitudes via density-based
clustering [28]. Next, we use the geocoded street center
as a categorical feature, which has the same value for all
meters in a particular street. Using voltage magnitudes
in conjunction with the street categorical information
also takes care of meters around the junction of two
streets. We designed density-based clustering as the first
stage due to arbitrarily shaped streets, and flexibility in
the amount of input data (parameters constant). Also,
density-based clusters contain whole numbers of trans-
former secondary circuits, e.g., a transformer secondary
is not split between the density-based clusters.

2) Next, we compute the distance along the street (DAS)
as a feature for the meters in the street, considering the
first street meter as the reference point for computing the
distance. We use DAS along with voltage magnitudes
as features for spectral clustering [29] to cluster meters
supplied by the same transformer together. We designed
the algorithm utilizing DAS as it is more useful than the
usual Euclidean or Haversine metrics because distribu-
tion lines are usually laid along the streets. Moreover,
the DAS metric treats both sides of a street equally and
is easy to compute. Due to its superior performance, we
choose spectral clustering [25]. Spectral clustering needs
the number of clusters (transformers), so we devised a
mechanism to identify the number of transformers in a
density-based cluster via discrete optimization.

3) Once the meter clusters are obtained, the next challenge
is identifying the parent transformers of the clusters.
As we assume no measurements on transformers, we
only use the location information to identify the parent
transformers. Furthermore, we propose a proof of a
novel probabilistic guarantee for identifying the parent
transformer using location information only. Such a

guarantee is possible by utilizing the categorical infor-
mation and the DAS metric. Another challenge is that
long streets have many transformers, i.e., many incorrect
possible choices, in contrast to only one correct choice.
Moreover, similar neighborhood consumptions are more
likely to occur in the case of more transformers, resulting
in similar voltage magnitudes for different transformer
secondary meters. Hence, we distinguish such meters
using our location information strategy described above.
Our method only needs smart meter data and no addi-
tional metering device.

Using such an approach, we can show benchmark and
real system scenarios not solvable by the earlier methods.
Furthermore, we have used diverse test-system topologies
to compare our proposed method. For example, we validate
using the IEEE 8-bus system, IEEE 69-bus system, IEEE
123-bus system, and our partner utility’s high PV penetration
distribution feeder with around 1, 800 customers. The results
demonstrate that the proposed method accurately segments the
smart meter data to identify meter-transformer mapping.

Our method is not just useful for identifying transformer
loading, but it also has an influence on classic estimation
problems in power system research. For example, we show
how our method can influence state estimation, topology
estimation, and line parameter estimation problems. Next, we
also discuss how voltage measurement errors can affect our
method and the estimation problems.

The rest of the paper is organized as follows: Section II
presents the problem formulation. Section III introduces the
location data preparation. Section IV shows how to merge
heterogeneous data to obtain meter clusters supplied by the
same transformer. Section V provides proof of the guarantee.
Section VI provides meter-transformer mapping identification
for long streets. Section VII discusses the influence on other
estimation problems. Section VIII discusses the operating
conditions. Section IX validates the idea numerically, and
Section X concludes the paper.

II. PROBLEM FORMULATION

To formulate the proposed algorithm, we assume that the
time series voltage magnitude information is available for N
smart meters x1, · · · ,xN . For instance, the addresses for N
smart meters a1, · · · ,aN are stored as rows in dataset A.
The latitude-longitude pairs in radians for N smart meters
l1, · · · , lN ∈ R2×1 are stored as row vectors in matrix
L ∈ RN×2, where R represents the set of real numbers. The
street centers’ global positioning system (GPS) coordinates
h1, · · · ,hN ∈ R2×1 are obtained by geocoding the street
information and stored as row vectors in the street location
matrix H ∈ RN×2. The voltage magnitude time-series with
T timeslots for N smart meters v1, · · · ,vN ∈ RT×1 are
stored as row vectors in matrix V ∈ RN×T . In addition
to smart meters, we assume that there are k transformers
forming k clusters of smart meters in the distribution grid.
Also, transformer locations are available. Cj represents a set
of indices of all smart meters in the jth cluster. A smart meter
i ∈ {1, · · · , N} is uniquely present in a cluster j ∈ {1, · · · , k}
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that is supplied by a common transformer. There exists a
many-to-one mapping f : i → j.

For correlating these variables, a distribution system is
characterized by buses V = 1, 2, · · · , N and by branches
E = (i, i′), i, i′ ∈ V . The voltage measurement data at bus i
and time t is represented as the magnitude of the instantaneous
voltage at bus i in per-unit |vi(t)| ∈ R. The voltage magnitude
readings taken by the meters in vi are root mean square values
over a time period based on the rate of utility collection. In this
study, it is assumed that there are various signal processing
techniques to denoise the data prior to our analysis. The
scenario being considered is:

• Problem: identify smart meter to transformer connectivity
• Given: smart meter voltage magnitude data V , the smart

meter address dataset A, and the smart meter street GPS
coordinates L.

• Find the M.T. mapping f : i → j.

III. GIS DATA PREPARATION

Previous methods for identifying meter-transformer map-
ping in the literature primarily use voltage magnitudes. How-
ever, voltage magnitudes are useful, but they do not give
complete information on meter-transformer mapping. For ex-
ample, it so happens that distant meters have similar voltage
magnitudes due to similar neighborhood consumption profiles
even when they don’t share a common distribution trans-
former. In fact, meters in different cities can have similar
voltage profiles, which is a source of error for methods that
use voltage information only. Therefore, the identification of
meter-transformer mapping needs information from multiple
sources to increase accuracy. For instance, location data can
be classified into three types: nodes, edges, and polygons. A
node is characterized by a latitude-longitude pair. An edge
is defined by two nodes as endpoints, whereas a polygon is
defined by multiple nodes as the corners. Below we classify
the GIS information in power systems into three classes to
describe how we use such information for meter-transformer
mapping.

A. Nodal Information

Nodal information comprises the GPS coordinates of the
distribution system devices, e.g., transformers, poles or under-
ground manholes, and meters. The following metric is helpful
for the identification of meter-transformer information.

Direct distance between two nodes (Haversine): The shortest
distance between two points on a spherical surface is the
Haversine distance. The Haversine distance is given by a
simple formula, assuming the planet Earth is a sphere. For
example, let l1, l2 ∈ L be two latitude-longitude pairs in
radians. The distance between them on planet Earth’s surface
is given using the Haversine formula. Let A1 := sin2

(
∆l1
2

)
and A2 := sin2

(
∆l2
2

)
. Then,

dHav(l
1, l2) = 2RE · arcsin

(√
A1 + cos(li1) cos(l

j
1)A2

)
,

(1)

where RE = 6371 km is the radius of planet Earth.

B. Edge-related Information
Although nodal information is important for GIS-based

identification, additional information is needed. Specifically,
GPS coordinates do not provide edge-related information, e.g.,
streets, street blocks, or street shape. Edge-related information
is helpful since distribution system lines are usually laid
along streets. As more information is better, we consider both
continuous and categorical information.

1) Categorical Street Information: Usually, the meters are
not supplied by transformers located on different streets. For
instance, the meters and their parent transformers are typically
located on the same street. This is especially true as making the
low voltage distribution lines cross wide streets is costlier. For
overhead distribution, taller and more expensive poles would
be needed to cross wide streets due to the clearance limit.
For underground distribution, it would be more expensive to
maintain when lines frequently cross streets.

Hence, a categorical street identifier is needed for recovering
meter-transformer mapping. For the identifier, one idea is to
use a unique random identifier for each street. It can be used
to construct a test case comprising n-nearest streets for each
meter in a central street. However, such a street identifier does
not carry useful information about the street concerning the
meter in consideration. A better idea is to use the latitude
and longitude of the street center h as a unique identifier for
each street. Such an identifier considers the relative position
of the street with the meter in consideration. Apart from the
categorical information, a street identifier is also needed to
formulate the following edge-related distance metric.

2) Distance Computation along the Streets (DAS): One way
to compute the distance between two nodes is to compute
DAS. Overhead and underground power distribution lines and
devices usually follow streets. DAS is a metric, which is thus
more useful than the Haversine distance for meter-transformer
mapping. For example, such a metric is related to the length
of lines, which should be kept shorter to reduce losses. DAS
can be obtained using the A* (A-star) search algorithm [30].
For instance, first, a graph is constructed by considering each
address and street junction stored as single points. Two points
represent a straight street. Irregular streets are stored as a series
of points, such that straight line segments drawn between
successive points appear as a curve. This series of points is
called a polyline.

After the graph construction, it is searched using the A*
algorithm [30]. The algorithm estimates the cost of reaching
the goal from the source and explores the paths that minimize
the total cost via best-first search [31]. Online map services
also use such an algorithm. Online maps services store location
information for all houses and streets in a GIS, in the form
of points with latitude, longitude, and altitude. DAS can be
easily computed using an online-maps service, e.g., Google
Maps, via an application programming interface (API). We
use dDAS(a

1,a2) to refer to the DAS in km between two
addresses a1,a2.

C. Polygon-related Information
Polygons can identify the boundaries of houses, zip codes,

cities, and other such relevant information. However, such data

This article has been accepted for publication in IEEE Transactions on Power Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2023.3281581

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



4

is not very useful for power distribution systems since such
features are already included in the edge-related information.
For example, online map services already process such infor-
mation to identify the directions and DAS.

IV. MERGING HETEROGENEOUS DATA FOR
METER-TRANSFORMER MAPPING IDENTIFICATION

In the previous section, we identified three metrics based
on geographical information, i.e., streets, direct distance, and
distance along streets. This section shows how to utilize the
information of the three distance metrics and information from
voltage magnitudes. Generator buses in a transmission system
have fixed voltages and are usually modeled as PV buses.
However, in distribution system, the buses associated with
distributed energy resources (DER) are usually modeled as
PQ buses.

For example, there are three different types of control
variables for DERs: voltage control, current control, and P-Q
control. The associated bus for DER with voltage controller is
modeled as a PV bus (fixed voltage). Moreover, the associated
bus for DER units that have either current controller or P-Q
controller is modeled as a PQ bus [32]. However, according
to the IEEE P1547 Standard for Interconnection [33]. DER’s
attempt to control distribution system voltage may clash with
utility voltage regulation plans already in place to change the
voltage at the same or a nearby site [34]. Thus, it is not advised
to use DERs with a voltage regulator. Therefore, in this study,
we model the DER bus as PQ bus rather than a PV bus.

As discussed in Section I, density-based clustering and
spectral clustering are utilized to characterize clusters. The
clustering methods are detailed below.

A. Density-Based Clustering with Categorical Information

Our proposed algorithm incorporates the street-crossing
constraint intelligently. For instance, the algorithm puts more
weight on meter-transformer mapping in the same street.
However, for cases with a high voltage magnitude similarity
with neighboring street meters, such meters are connected to
transformers of the neighboring street.

The proposed metric for density-based clustering contains
both continuous and categorical street information. For exam-
ple,

d(x1,x2) =γdcateg(x
1,x2) + dcont(x

1,x2), (2)

=γdHav(l
1, l2) + dvolt(v

1,v2), (3)

where categ stands for categorical information and cont
stands for continuous information. dcont represents the voltage
magnitude-distance of the two points x1,x2. We consider
the voltage magnitude-distance formed by mutual information
as 1

I(v1,v2) . For the categorical information, we consider the
distance between two points on the same street to be zero.
Moreover, the distance between two points on different streets
is the distance between the street centers l1, l2. γ is the
coefficient for merging categorical and continuous distance.

From Eq. 3, since dHav(l
1, l2) and dvolt are added to-

gether, they should be comparable. For instance, dHav(l
1, l2)

is a physical distance on the surface of Earth, and it

is measured in kilometers. However, dvolt(v
1,v2) is de-

fined as 1
I(v1,v2) , which is unit-less. So, γ has a unit

per km. Furthermore, the value of γ can be estimated
as the mean of the quantity dvolt(v

1,v2)/dHav(l
1, l2) for

a sample of meters. The allowed range of γ can be
written as dvolt(v

1,v2)/dHav(l
1, l2) ± ζ, where ζ can

be defined as the standard deviation of the quantity
dvolt(v

1,v2)/dHav(l
1, l2). Since dHav(l

1, l2) is measured in
km, usually dvolt(v

1,v2)/dHav(l
1, l2) is greater than 1.

1) Notion of Density in Euclidean Space: Consider a two-
dimensional XY space to define the concept of density in a
high-dimensional space. Consider any two points without the
loss of generality. (l11, l

1
2), (l

2
1, l

2
2) ∈ R2 in a 2-D space. In two

dimensions, the Euclidean distance is [(l11− l21)
2+(l12− l22)

2]
1
2 .

If we set the distances to be less than epsilon, we get: [(l11 −
l21)

2+(l12−l22)
2]

1
2 < ϵ. Squaring both sides of the last equation

yields: (l11 − l21)
2 + (l12 − l22)

2 < ϵ2. The equation represents
a circular disk with radius ϵ and center at the point (l21, l

2
2).

For high dimensions, if the count of data points in the sphere
of radius epsilon around a data point exceeds minPoints,
the algorithm considers the central data point as a core point.
Due to the planet Earth’s spherical shape, utilizing Euclidean
distance is incorrect, so we employ the Haversine distance,
which gives the distance on the Earth’s surface considering
the spherical path.

2) Notion of Density in the Combined Space: To define the
concept of density in the combined continuous and discrete
data with distance metric shown by (2), we need to define the
neighborhood of a datapoint.

Definition 1: (ϵ-neighborhood of a point) The ϵ-
neighborhood of a datapoint x1 denoted by Nr(x

1), is defined
by

Nr(x
1) =

{
x2 : dHav(x

1,x2) < ϵ
}
, (4)

where dHav(x
1,x2) is defined by (2).

The ϵ-neighborhood of a point is a notion of the density
of points. If Nr(x

1) > minPoints then x1 is a core point.
Datapoints at a cluster’s boundary may not qualify as core
points. For such points, we cluster them with a core point if
they are in the ϵ-neighborhood of a core point.

The density-based clustering stage segments the big utility
dataset into substreet clusters, which are processed by the stage
described below to recover the meter-transformer mapping.

B. Identify Meter-Transformer Mapping using DAS with Volt-
age Magnitude Information via Spectral Clustering

Spectral Clustering has been utilized in [25] to identify
meter-transformer mapping under two challenging scenarios,
large distances between a meter and its parent transformer or
high similarity of a meter’s consumption pattern to a non-
parent transformer’s meter. Such a method is based on similar
voltages for meters supplied by a distribution transformer.
The voltages within a distribution transformer secondary are
similar due to the voltage drop across the transformer. How-
ever, such an application does not utilize the DAS, which
is needed in the case of long streets. For example, such a
method can not identify the correct meter clusters in the
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case of long streets where it is difficult to choose the correct
transformer for a meter given the large number of transformers
to choose from. Therefore, location information is important.
Moreover, using location information directly is not logically
correct since it discriminates between the two sides of a street.
However, based on the distribution system planning, meters on
both sides of a street are supplied by the same transformer,
except in exceptional scenarios, e.g., a high power-consuming
commercial consumer in a residential area that may be routed
to a nearby transformer.

Given a sub-street cluster from the density-based clustering
step. Let the sub-street cluster have N smart meters, the
voltage magnitude time series v1, · · · ,vN and the distance
along the street information 0 = d1, d2, · · · , dN , where d1 = 0
is the reference point. Spectral clustering clusters them into k
transformer secondary clusters as follows:

1) Consider the voltage magnitude affinity matrix Mv ∈
RN×N as the Pearson Correlation Coefficient Ma-
trix [25].

2) Consider the distance affinity matrix Md ∈ RN×N with
element md,ij =

(
1 + βdDAS

(
a1,a2

))−1
, where β is

of the order of 100.
3) Define Dv to be a diagonal degree matrix with elements

dv,ii =
∑N

j=1 mv,ij , where mv,ij are the elements of
Mv . Similarly, Dd is the diagonal degree matrix with
elements dd,ii =

∑N
j=1 md,ij , where md,ij are the

elements of Md.
4) Construct the combined affinity matrix M = αMv +

(1 − α)Md and the combined diagonal degree matrix
D = αDv + (1− α)Dd. Moreover, construct the graph
Laplacian matrix L = D −M .

5) Select the number of groups k as the no. of transformers.
6) Find u(1), · · · ,u(k), the right eigenvectors correspond-

ing to k smallest eigenvalues λ1 ≤ · · · ≤ λk of L. Since
L is real and symmetric, the left eigenvectors are simply
the transpose of the right eigenvectors. Form the matrix
U =

[
u(1), · · · ,u(k)

]
∈ RN×k. Since eigenvectors are

orthogonal to each other, doing so will further distance
the points belonging to different clusters.

7) Treat each row of U as a point in Rk and cluster via
k−means++ [25]. Due to orthogonalizing using the
eigenvectors, the data points belonging to separate clus-
ters are almost orthogonal to each other, i.e., they have
approximately right angles at the origin with respect to
(w.r.t.) each other, so that k−means++ can cluster well.

8) For U ’s rows assigned to cluster C, the original corre-
sponding points si are present in cluster C [35].

C. Number of Transformers Within Density-Based Clusters

The density-based (DB) clusters cannot directly identify the
meter-transformer mapping. It is because such a method does
not utilize the information on the number of transformers.
However, as the density-based clustering uses the street cat-
egorical information and the voltage magnitude information,
the clusters comprise whole numbers of transformer secondary
distribution circuits. In other words, a transformer secondary
circuit is not split between two or more density-based clusters.

Furthermore, by utilizing the categorical street information,
the size of the DB clusters is not larger than the size of the
streets. Hence, we can utilize the distance along the street for
the next step. However, the number of transformers supplying
a DB cluster is unknown, which is required. For instance, if we
know the number of transformers supplying a DB cluster, we
can further decompose the DB clusters to obtain subclusters
with a single transformer so that the subclusters minimize the
sum of inter-subcluster similarity matrix elements Mij .

Density-based spatial clustering of applications with noise
(DBSCAN [36]) is also efficient in handling outliers. There-
fore, subsequent Spectral Clustering will improve the result
further. In addition, the final k-means++ step of Spectral
Clustering has a higher chance of convergence to the global
minimum if we have fewer clusters. However, for more
clusters, k-means++ is more likely to be trapped in a local
minimum. Therefore, we choose DBSCAN to precede Spectral
Clustering for reducing the number of clusters the final k-
means++ step needs to process at a given time.

The combined algorithm requires the hyper-parameters of
both Spectral Clustering and DBSCAN but performs better
than both algorithms working individually. The algorithm
specifically needs the total number of clusters m, the radius ϵ
for computing density, and the minimum points minPoints
inside the radius for density calculation. Let m be the number
of transformers feeding smart meters for the meter-transformer
mapping. Fig. 1 depicts the combined algorithm’s flowchart.

The DBSCAN method with the parameters ϵ and
minPoints is used to cluster the data in the first stage. p is
the number of clusters DBSCAN provides depending on the
two parameters. In the second stage, the p DBSCAN clusters
are further divided into m clusters by applying Spectral
Clustering to each DBSCAN cluster. In order to apply Spectral
Clustering, it is important to determine the number of clusters.
Determination of the number of clusters requires considering
the number of ways to choose p groups from m transformers.

We begin with the scenario of each segment having at least
one transformer. For example, if we draw m transformers in
a line, we get m− 1 spaces between the transformers. Hence,
we choose p − 1 spaces to form p segments. So, the total
number of choices is

(
m−1
p−1

)
. We can represent the number

of choices as the number of solutions to an equation. For
instance, if we consider Ei as the number of transformers
in segment i, then E1 + · · · + Ep = m, where Ei > 0. So,
we have

(
m−1
p−1

)
solutions. We will pick the solution where

the m subclusters minimize the the sum of inter-subcluster
similarity matrix elements Mij . Fig. 1 depicts the combined
algorithm’s flowchart.

Similarly, if we also consider the possibility of having
segments without transformers, then the number of ways we
can form p segments from m transformers can be represented
as the number of solutions of the equation E1+· · ·+ Ep = m,
where Ei ≥ 0. Therefore, if we define Fi = Ei + 1, then we
get F1 + · · · + Fp = m + p, where Fi > 0. This becomes
the same scenario as before. So, the number of solutions to
this equation is

(
m+p−1
p−1

)
, which is the number of ways we

can form p segments from m transformers by considering
segments may have zero transformers. However, a cluster is

This article has been accepted for publication in IEEE Transactions on Power Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2023.3281581

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



6

useless without a transformer. As a result, the minimal value
of k is 1, as considered before.

Consider the scenario when we know there are m = 5
transformers overall in our sample data and DBSCAN offers
p = 3 clusters. Thus, there are six ways to divide five clusters
into three groups since

(
5−1
3−1

)
=
(
4
2

)
= 6 k-sets. The ways

are as follows: (1,2,2), (2,1,2), (2,2,1), (1,1,3), (1,3,1), and
(3,1,1). As a result, we use Spectral Clustering to partition
each DBSCAN cluster into two and three subclusters. The
option with the smallest sum of inter-subcluster similarity
matrix elements, Mij is finally chosen.

Fig. 1. Block diagram of the new combined algorithm.

D. Identification of Loops for Meter-Transformer Mapping
The earlier method works fine for tree distribution, meshed

primary distribution, and mesh structures within one trans-
former secondary. For completely meshed secondary distri-
bution, all transformers’ secondary circuits are connected
together. In such a case, the meter-transformer mapping is
trivial. However, the method described previously could not
work in a looped structure, e.g., when the secondary circuits
of two transformers are interconnected. To make it work, we
need to identify the clusters that have transformer secondaries
connected. For example, knowing such information indicates
one cluster instead of two.

We devise a metric based on the sorted similarity matrix
by spectral clustering to determine if there is a loop in
the secondary distribution network. For example, in Fig. 2,
to check if the secondaries of transformers corresponding
to clusters C1 and C2 are connected, we devise a metric
confidence = C1 + C2 − 2I1, where Ci is the mean of
the diagonal submatrix and Ii is the mean of the off-diagonal
submatrix. In the case of separate secondaries, the similarity
of inter-cluster I will be lower, and therefore, the confidence
metric will be greater than 0.5. Similarly, in the case of
connected secondaries, the similarity of inter-cluster I will be
higher, and therefore the confidence metric will be lower than
0.5. Therefore, we can use 0.5 as a cut-off value to determine
if both transformers’ secondaries are connected.

E. Apply Clustering Results to Identify Smart Meter - Distri-
bution Transformer Mapping

In Section IV-C, we clustered smart meters so that each
cluster is supplied by one distribution transformer. The next

Fig. 2. Devise a metric to determine looped subsystems.

step is to identify the parent transformers for the smart meter
clusters. As there is no monitoring available on distribution
transformers, the only available information is the location of
the transformer. Therefore, we match the meter clusters to their
parent transformer using location information. The steps for
such a match problem are given below.

1) Using meter locations, identify the mean (center) loca-
tion for each meter cluster.

2) Find the nearest transformer to each meter cluster center
and assign the cluster to the transformer.

It is better to assign the nearest transformer to a meter cluster
center than vice versa, as meter clusters usually do not overlap.
For example, it is easier for utilities to route electrical wires
and cables, so that transformer secondary areas do not overlap.
In the next section, we derive a probabilistic guarantee for such
a method.

V. PROBABILISTIC GUARANTEE FOR FINDING THE PARENT
TRANSFORMER VIA CLUSTERING

As discussed in Section I, voltage measurements are gener-
ally unavailable on distribution transformers. In this section,
we provide proof of a probabilistic performance guarantee
for obtaining the mapping between the true meter clusters
and the parent transformer using the location information. For
example, we use the street categorical information and the
XY location information for meters and transformers. The
street categorical information filters out meter clusters and
transformers belonging to a street. Such a step is valid as it is
usually practiced in distribution systems. Next, meter clusters
are mapped to the transformers based on the nearness of the
XY location.

Assume k transformers supply a radial distribution system.
Therefore, there are k meter groups. Let Xj,i be the random
variable for the XY coordinates of the j-th parent transformer
considering the i-th meter. For instance, around each meter
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i, Xj,i has a 2-D Gaussian distribution with a peak at the
meter itself. Mathematically, the probability density is given
as Xj,i ∼ PXj,i(x|i, li, j) = N (li, σ2), where li represents the
XY coordinates of the i-th meter, and σ represents the standard
deviation of the distance between meters and their parent
transformers. Let C(j) be the set of meters supplied by the
j-th transformer. Hence, the location of the j-th transformer
Xj considering all C(j) meters is the average of Xj,i for all
i. For example, Xj =

1
|C(j)|

∑
i∈C(j) Xj,i, where the modulus

sign | · | represents the number of elements in a set. Since all
Xj,i are independent, their average is distributed as

Xj ∼ N

(∑
i∈C(j) l

i

|C(j)|
,

σ2

|C(j)|

)
, (5)

which suggests that the most likely value of finding the trans-
former is the mean location of the downstream smart meters.
σ can be estimated from the data using Bessel’s correction
formula. For instance, let a sample consist of n smart meters.
Then the distance between a meter i and its parent transformer
j is given as

∥∥li −Xj

∥∥2
2
. Let µ := 1

n

∑
j

∑
i∈C(j)

∥∥li −Xj

∥∥
2

be the mean of the distance between meters and transformers.
The estimator of σ is given via Bessel’s correction formula as√

1
n−1

∑
j

∑
i∈C(j)

(
∥li −Xj∥2 − µ

)2
. Moreover, the greater

the number of meters |C(·)| supplied, the lesser the variance
will be, which suggests that the transformer is more likely
to be found at the mean value of the daughter smart meter
locations. We know the probability density function of the k-
th transformer location.

It is required to know the probability of failure of the pro-
posed method-based transformer mapping identification. For
computing such a probability, we assume transformers supply
meters in the streets sequentially. For example, as primary
distribution lines extend along the street, the transformers
linearly partition the set of meters along the length of the
street. The probability of the event so that Xj is further to∑

i∈C(j) l
i

|C(j)| than the next neighboring transformer’s location
Xj+1. Mathematically,

PX

(∥∥∥∥∥Xj −
∑

i∈C(j) l
i

|C(j)|

∥∥∥∥∥
L2

≥

∥∥∥∥∥Xj+1 −
∑

i∈C(j) l
i

|C(j)|

∥∥∥∥∥
L2

)
,

(6)

=PX


∥∥∥∥∥∥Xj −

∑
i∈C(j) l

i

|C(j)|

σ
/√

|C(j)|

∥∥∥∥∥∥
L2

≥

∥∥∥∥∥∥Xj+1 −
∑

i∈C(j) l
i

mi

σ
/√

|C(j)|

∥∥∥∥∥∥
L2

 ,

=PX

∥Zj∥L2
≥

∥∥∥∥∥∥Xj+1 −
∑

i∈C(j) l
i

|C(j)|

σ
/√

|C(j)|

∥∥∥∥∥∥
L2

 .

Let dj,j+1 define the distance between the mean position

of meters for nearby transformers dj,j+1 =:
∑

i∈C(j+1) l
i

|C(j+1)| −∑
i∈C(j) l

i

|C(j)|

=PX

∥Zj∥L2
≥

∥∥∥∥∥∥∥∥
(

σZj+1√
|C(j+1)|

)
+ dj,j+1

σ
/√

|C(j)|

∥∥∥∥∥∥∥∥
L2

 ,

=PX

∥Zj∥L2
≥

∥∥∥∥∥∥Zj+1

√
|C(j)|√

|C(j + 1)|
+

dj,j+1

σ
/√

|C(j)|

∥∥∥∥∥∥
L2

 .

Without loss of generality, let us assume our frame of
reference (y-axis) is aligned with the street. Therefore, we
consider variation in one axis only.

PX

|Yj | ≥

∣∣∣∣∣∣Yj+1

√
|C(j)|√

|C(j + 1)|
+

dj,j+1

σ
/√

|C(j)|

∣∣∣∣∣∣
 .

Since neighboring transformers usually have a similar num-

ber of smart meters, we can consider the ratio
√

|C(j)|√
|C(j+1)|

≈ 1

PX

|Yj | ≥

∣∣∣∣∣∣Yj+1 +
dj,j+1

σ
/√

|C(j)|

∣∣∣∣∣∣
 ,

where dj,j+1 is the distance between neighboring transform-
ers on the same street, and σ is the average distance between
a meter and a transformer. Usually, the distance between
two neighboring transformers is at least twice the distance
between a meter and a transformer. Therefore, dj,j+1/σ ≥ 2.
Furthermore, let us consider the range of values of |C(j)| for
all j between cl and ch. For instance, if the minimum value
cl = 4, the value of dj,j+1

σ
/√

|C(j)|
≥ 4.

PX (|Yj | ≥ |Yj+1 + 4|) . (7)

Given that all Yi are standard normal variables, the empirical
probability computed using 106 samples in (7) corresponds to
around 0.232%.

Similarly, the probability of failure considering Xj is fur-

ther to
∑

i∈C(j) l
i

|C(j)| than the previous neighboring transformer’s
location Xj−1 is given as PX (|Yj | ≥ |Yj−1 + 4|), which
is the same as (7). Hence, the probability of failure is
twice PX (|Yj | ≥ |Yj+1 + 4|), which corresponds to around
0.464% ≈ 0.5% for 106 samples. Therefore, the empiri-
cal probability of success computed using 106 samples is
100%− 0.5% = 99.5%

The first assumption is having the street categorical informa-
tion so that meters are supplied by transformers in the same
street. Using such an assumption, we only consider meters
present in the same street. Such an assumption is the usual
practice in distribution systems, so it is valid. Moreover, we
assume transformers sequentially supply meters in the streets.
For example, as primary distribution lines extend along the
street, the transformers linearly partition the set of meters
along the length of the street.
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Fig. 3. Partition of meter set along the length of the street by transformers
shown by dotted red lines. The primary line is assumed along the street (not
shown in the figure).

VI. METER-TRANSFORMER MAPPING FOR LONG STREETS

In the case of long streets with many transformers, recov-
ering meter-transformer mapping can be a challenge. For in-
stance, due to many transformers, there are many possibilities
to assign a meter to a non-parent transformer, while only one
possibility for assigning to a parent transformer. Therefore,
there is a higher likelihood of making an incorrect decision by
the algorithm. Furthermore, such an effect is more profound
for higher primary voltage magnitudes since the impedance
of the primary lines is small when referred to the secondary,
resulting in similar secondary voltage magnitudes for meters
close to different transformers. Finally, for more transformers,
there may also be similar consumption for two transformer
secondary circuits, resulting in similar voltage magnitudes.

To resolve this issue, our algorithm also includes the dis-
tance along the street (DAS) metric. The reference for such
a distance is one of the meters starting the street. Such in-
formation can effectively distinguish between meters supplied
by various transformers. As opposed to the usual Haversine
distance, the DAS metric does not distinguish between meters
on both sides of the street. Moreover, DAS closely aligns
with the fact that overhead and underground electric lines
follow streets. Finally, the Haversine metric fails on curved
streets, however, the DAS effectively identifies the distance
covered by electrical lines. Therefore, such metrics aid the
voltage magnitude-based algorithm in determining the meter-
transformer mapping effectively, even for long streets.

VII. INFLUENCE ON OTHER ESTIMATION PROBLEMS &
VOLTAGE MEASUREMENT ERRORS

A. Influence on Estimation Problems

1) Influence on State Estimation: A thorough analysis of
state estimation [37] in a distribution system is given in
Reference [38]. The restricted observability (unavailability of
nodal admittance matrix) issue is attempted to be solved by a
number of contemporary approaches, such as [39], by inserting
pseudo measurements into the system. The pseudo measures
taken into account include those that use average power values
rather than the actual power values, which could not be a true
reflection of the measurement. The meter-transformer mapping
produced by our approach, however, can aid in providing an
exact estimation of the power passing through transformers.

Fig. 4. Comparison between the Haversine distance (dashed yellow line) and
distance along the street (solid blue line).

Hence, one can use the obtained power flowing through trans-
formers as measurements. More precise measurements can be
used to overcome the problem of restricted observability [25].

2) Influence on Topology Estimation: Topology estimation
is a challenging problem that calls for a variety of data.
Distribution systems, in contrast to transmission systems,
might not include a large range of sensors at several places [5].
To resolve this problem, researchers usually approximate
by making ideal assumptions of an isolated subnetwork or
the availability of measurement at every system node. Both
presumptions might not apply to distribution systems [24].
However, using our method as a preprocessor to identify the
meter-transformer mapping accurately, the topology identifi-
cation methods can use this mapping as an input to identify
the remaining topology.

3) Influence on Line Parameter Estimation: To estimate
line parameters assuming a pi-model, researchers often assume
voltage measurements at both ends of a line [40]. However,
measurements are rarely made at both ends of a distribu-
tion line, especially in the low-voltage range. Therefore, our
method can be used as a preprocessing step by identification of
the meter-transformer mapping. Such a mapping can help the
line parameter estimation. Assume a pad-mounted transformer
is used to power 14 smart meters. It is because, for pad-
mounted transformers, there is usually a dedicated cable from
the meter to the transformer for easy replacement of the
cable when needed. So our method has significance for line
parameter estimation.

B. Impact of Voltage Measurement Errors on Estimation Prob-
lems

1) Common Mode Error: Common mode errors can arise
when the ground terminals of the measuring device and the
voltage source are not at the same potential [41]. Since the
ground terminal of a smart meter is the same as the load, a
smart meter may not experience this issue.

2) AC Loading Error: The high source impedance and low
internal resistance of the meter lead to AC loading error [42].
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However, since the electric distribution network supplies high
electric power, it has a very low source resistance. As a result,
this inaccuracy barely affects our mapping method and the
estimating techniques.

3) Crest Factor Error: The AC waveforms that a smart me-
ter measures are not true sine waveforms, e.g., the non-linear
effect of transformer core clips the peaks of the waveform.
Meters often calculate the RMS voltage by multiplying the
average voltage of the full-wave rectified AC signal by the
ratio

(
1√
2

)
×
(
π
2

)
leading to crest factor errors. However, the

voltage non-linearity caused by the transformer will be the
same for all the meters supplied by the transformer. Therefore,
even though crest factor error may lead to inaccurate RMS
measurement, it has little impact on our mapping.

4) Quantization Error: Quantization error results due to the
low resolution of the analog-to-digital converter (ADC) for
measurement [43]. For example, in our case, the smart meter
ADC has a resolution of around 0.025 V. However, such an
error can be neglected given the allowed voltage range, i.e.,
±5% of the rated voltage. For example, if the rated voltage is
120 V, the allowed voltage variation is around 12 V. Therefore,
the estimation method using our mapping method will remain
unaffected.

5) Smart Meter Analog-to-Digital Converter (ADC) Mal-
functioning: In such a case, the estimating methods that
employ our mapping method will be ineffective. However,
the smart meter voltage reading may not stay within the
permitted range in this scenario, which is ±5% of the rated
voltage. Therefore, the relevant electric distribution company
(EDC) can identify and replace such a meter.

There are many methods that can be used as a preprocessing
step before our algorithm to detect smart meter malfunc-
tion, [44], [45]. In case of a smart meter malfunction, our
method can work by excluding the malfunctioning meters, and
recovering the topology for the working meters.

VIII. OPERATING CONDITIONS

A. Power Loads

Power load means the loads that mainly consume active
power, e.g., heaters and boilers [46]. Power loads use a lot
of active power and a little reactive power Due to parasitic
inductance and capacitance. When power loads are turned on,
their energy use remains largely constant. Power loads are
switched on for longer periods of time than other loads, which
turn on briefly.

At first glance, it could appear that power loads use power
pretty consistently, making it difficult to detect their use.
However, the thermostat turns them off and on to keep the
desired temperature. Such a signature is also reflected in the
voltage profile that is recorded in the voltage data input to the
algorithm. As a result, our method can effectively handle the
power load.

B. Renewables

The power output profiles are similar for renewable energy
sources like solar PV. They are typically connected behind

the meter. However, because of their similar profiles, the
meters with PV supplying behind the meter may have similar
voltages [47]. For identification techniques that solely con-
sider voltage data, this might be an issue.

However, this paper also focuses on using location data
intelligently. For example, we divide the smart meter data
into sub-street clusters using innovative categorical location
information, such as street names, zip codes, etc., in addition
to the voltage data. We propose employing the innovative
distance along the street (DAS) measure to determine the
meter-transformer mapping once the smart meter data has been
divided into streets. Therefore, our method is robust.

C. Switching

In the case of connection switching, e.g., a meter switch
from one transformer to another transformer, we use change-
point detection [48] to detect the timestep corresponding to
such changes. We separate the datasets before and after the
change-point to recover the two meter-transformer mappings
separately.

IX. NUMERICAL VALIDATION

A. Data Description

The simulations are implemented on the IEEE Power and
Energy Society (PES) distribution networks for IEEE bench-
mark systems, such as 123-bus systems. In addition, our
method is deployed on a high penetration medium voltage
(MV) feeder from a southwestern utility in the United States.
The feeder contains around 2,600 smart meters (including solar
meters), 1,737 customers, and 371 service transformers. In
addition, the feeder contains 4 MV capacitor banks, 765 PV
modules, and a total of 2,283 switches in the system. The
total installed PV capacity is around 765 kW. The length of
underground cables in the system is 130,956 meters.

B. Validation strategy

A detailed OpenDSS model of the feeder is available from
the utility as part of a recent project from the United States
Advanced Research Projects Agency-Energy (ARPA-E). The
meter-transformer mapping ground truth is extracted from the
model and used to validate our algorithm.

The computational environment consists Intel(R) Core(TM)
i7-10510U CPU with 16 GB RAM. We used Python with
Anaconda Spyder to code, debug, and evaluate the algorithm
on testbench systems and real utility systems.

C. Validation of the Proposed Method on Benchmark Systems

In order to show that the accuracy of our proposed method is
independent of the benchmark system, the validation is shown
on three benchmark systems, i.e., the IEEE 8-bus system,
the IEEE 69-bus radial distribution system from Das, and the
IEEE-123 bus system.
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Fig. 5. Big picture of the high penetration feeder from our partner utility.

1) Validation using the IEEE 8-bus system: We begin with
a simple analysis consisting of an 8-bus system. In the vast
majority of relay coordination literature, the 8-bus system is
frequently utilized as a standard test case [50]. We divide the
system into two streets with one transformer in each street to
construct the test case, as shown in Fig. 7. We also separate
the street locations. The first step of our algorithm accurately
separates the two streets, identifying the meter-transformer
mapping directly. The execution time for the first step of our
algorithm is 21 ms.

Gen

b8

b6

b5 b2

b7

b1

b3

b4

~

Bus

Fig. 7. IEEE 8-bus system modified and divided into two streets with one
transformer in each street.

2) Validation using the IEEE 69-bus system: The IEEE 69-
bus radial distribution system from [51] has been modified
into two streets, as shown in Fig. 9. The first street contains
only one transformer, while the second street contains two
transformers. The goal is to obtain the meter-transformer
mapping. The transformers are considered step-down trans-
formers. Hence, the conductors’ impedances between the two
transformers are negligible when referred to their secondary
sides. Therefore, if the net consumption of the loads belonging
to different transformers is similar, the voltage magnitudes
of the meters nearer to two different transformers will be
similar. Thus, they may be grouped together rather than
being grouped with their sibling meters. However, using
street categorical information aids the voltage magnitude-
based clustering to segment street-wise. Furthermore, within

each street, the distance along the street (DAS) metric aids
the voltage magnitude-based clustering to obtain the correct
meter-transformer mapping.

3) Validation on the IEEE 123-bus system: To validate the
chosen algorithm on a bigger system, the IEEE 123-bus system
was selected and modified, as shown in Fig. 10. Similar to
the IEEE 69-bus system, we created two streets with three
transformers each. To make the system more complex, we
assume the same node feeding all transformers of a street, as
shown. Such an assumption will make the voltage magnitudes
of the transformer secondary nodes more similar to each other
than otherwise. Hence, using voltage magnitudes alone does
not recover the correct meter-transformer mapping no matter
the chosen algorithm. However, using the proposed method
identifies the true meter-transformer mapping.

TABLE I
COMPARISON OF APPROACHES AND METHODS ON THE MODIFIED

IEEE-123 BUS SYSTEM.

AMI Adjusted Execution
Method Score Rand Score Time

The Proposed Method 1.000 1.000 1.84 s
Spectral Clustering-Voltage 0.509 0.356 0.13 s
Kmeans-Voltage 0.618 0.503 0.04 s
BIRCH-Voltage 0.660 0.468 0.36 s
DBSCAN-Voltage 0.598 0.535 0.08 s

Voltage refers to voltage magnitudes only.
AMI refers to Adjusted Mutual Information.

D. Validation of the Proposed Method on Real Systems
In addition to the benchmark systems, we also show the

capability of our method on real systems. For instance, we
show how we segment the data into street clusters using
voltage magnitude and street categorical information and how
we further separate the street clusters by transformers to obtain
transformer clusters. Finally, we show a large-scale example of
the recovered meter-transformer mapping from the complete
feeder of the partner utility.

1) Validation of Segmentation of Data into Streets: Fig. 11
shows the separation of utility systems into streets, which is
needed to use the distance along the street information. Such a
segmentation uses street categorical information to aid voltage
magnitude information via density-based clustering.

2) Validation of Streetwise Meter-Transformer Mapping
Identification: Once the data is separated into streets, the next
step is to obtain the distance along the street information for
each house. Our chosen reference point is the street end with
the lowest block number. Next, we obtain the DAS using an
online map service, e.g., Bing Maps API. Finally, we use DAS
with the voltage magnitude information to obtain the meter-
transformer mapping, as shown in Fig. 6c.

E. Bulk Area Validation
We performed extensive validation of the proposed method

on the entire feeder from our partner utility. Fig. 12 shows the
results of the bulk area validation we performed on the utility
area. For example, we can see that the proposed algorithm
correctly identified the meter-transformer mapping.
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(a) The recent method [49] for meter-transformer mapping identified only 3 clusters, which is incorrect.

(b) Regular spectral clustering with voltage magnitude only does not work well in scenarios with high PV
penetration due to voltage magnitude similarity. Erroneous results are marked with red arrows.

(c) Distance along the street (DAS) metric guides the algorithm on how the distribution line extends from one
section to another, following the street. The corrected results are marked with green arrows.

Fig. 6. Comparison of a recent method [49], spectral clustering without using the DAS metric, and spectral clustering using the DAS metric.
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(a) Result of the k−means clustering algorithm.
Specify k = 2 for k−means, but it identified in-
correct clusters since the within-cluster optimiza-
tion approach is unsuitable for voltage magnitude
data. Execution time for k−means is 44 ms.
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(b) Result of the BIRCH clustering algorithm.
BIRCH forms three instead of two clusters.
BIRCH is not suitable for voltage magnitude data
since the radius hyperparameter needs to be hard
coded. Execution time for BIRCH is 39 ms.
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(c) Result of spectral clustering algorithm with
voltage magnitude mutual information. Spectral
clustering gave correct results for the transformer
separation using voltage magnitude data alone.
Execution time for spectral clustering is 22 ms.

Fig. 8. Comparison of the three clustering algorithms using both voltage magnitude and location data on the modified IEEE-69 bus test feeder with two
streets and three transformers, as shown in Fig. 9. The dotted line for “Transformer Separation” shows the ground truth of the two clusters.
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Fig. 9. A realistic scenario showing the IEEE-69 bus feeder with two streets
and three transformers. The secondary nodes contain smart meters.

F. Validation of Guarantee Probability

Using the data of the real feeder given above, we validate the
probability proved in Section V, which suggests at least 99.5%
accuracy for mapping transformers to meter clustering using
the proposed method. We select a sample of 322 transformers
and their secondary circuits comprising 1, 584 smart meters.
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Fig. 10. A realistic scenario using the IEEE-123 bus system, which considers
negligible impedance of the primary circuit conductor between the transform-
ers of a street.

Here, we validate the assumption that the transformer nearest
to the true meter cluster is the parent transformer of the cluster
with at least 99.5% accuracy. Below is the bar chart showing
the correct results. For example, we get 100% probability
based on the sample.
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Fig. 11. The street categorical information helps voltage magnitude to identify
meters related to the street clusters accurately.

Fig. 12. Accurate results from our proposed method on the test system of the
high penetration PV feeder available from our partner utility. The node colors
indicate the meter clusters, whereas the yellow lines indicate the ground truth
circuit diagram.

Fig. 13. Validation of the assumption that the transformer nearest to the true
meter cluster is the parent transformer of the cluster with at least 99.5%
accuracy.

G. Impact of Voltage Measurement Accuracy

In section VII, we discussed the various types of voltage
measurement errors and the impact they can have on our
method and other estimation methods. For instance, we try to
implement two recent papers on topology identification [52]
and [53]. We show numerical validation and comparison of
our method against the two recent methods. For example, we

can observe that our method happens to be more robust than
the two recent methods.
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Fig. 14. The bar plot shows the adjusted mutual information between the
ground truth topology and the algorithmic outcome. For example, it shows
that our method gives 100% correct results if the measurement errors are
lesser than or equal to 0.01%.
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Fig. 15. The bar plot shows the adjusted Rand score between the ground
truth topology and the algorithmic outcome. For instance, it shows that our
method gives 100% correct results if the measurement errors are lesser than
or equal to 0.01%.

Based on the validations in Sections IX-C, IX-D, IX-E, and
IX-G, our proposed algorithm correctly identified the meter-
transformer mapping even for challenging scenarios.

X. CONCLUSION

While distributed energy resources (DERs) and electric
vehicles (EVs) introduce benefits, they increase the power
through a distribution transformer, requiring meter-transformer
mapping. Previous methods mostly ignored the location infor-
mation that is widely available. This paper focuses on using the
location information in a better way to aid voltage magnitude-
based identification. The first step involves street categorical
information that intelligently separates the data streetwise, and
the second step uses the distance along the street information
as a feature. By constructing complicated scenarios using the
IEEE 69-bus and IEEE 123-bus systems, we compared and
validated our algorithm, whereas previously known methods
could not obtain 100% accuracy. Future work can identify the
probabilistic guarantee to recover the meter-transformer map-
ping using both voltage magnitude and location information.
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