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The Role of Weather Predictions in Electricity Price
Forecasting Beyond the Day-Ahead Horizon

Raffaele Sgarlato and Florian Ziel

Abstract—Forecasts of meteorology-driven factors, such as inter-
mittent renewable generation, are commonly included in electricity
price forecasting models. We show that meteorological forecasts
can be used directly to improve price forecasts multiple days in
advance. We introduce an autoregressive multivariate linear model
with exogenous variables and LASSO for variable selection and
regularization. We used variants of this model to forecast German
wholesale prices up to ten days in advance and evaluate the benefit
of adding meteorological forecasts, namely wind speed and direc-
tion, solar irradiation, cloud cover, and temperature forecasts of
selected locations across Europe. The resulting regression coeffi-
cients are analyzed with regard to their spatial as well as temporal
distribution and are put in context with underlying power market
fundamentals. Wind speed in northern Germany emerges as a
particularly strong explanatory variable. The benefit of adding
meteorological forecasts is strongest when autoregressive effects are
weak, yet the accuracy of the meteorological forecasts is sufficient
for the model to identify patterns. Forecasts produced 2–4 days in
advance exhibit an improvement in RMSE by 10–20%. Further-
more, the forecasting horizon is shown to impact the choice of the
regularization penalty that tends to increase at longer forecasting
horizons.

Index Terms—Forecasting, meteorological factors, regression
analysis, power system economics.

I. INTRODUCTION

E LECTRICITY prices fluctuate substantially over time, be-
cause the possibility to economically store electricity is

limited. This holds true, even when electricity is temporarily
transformed into mechanical energy (e.g. by pumped-storage
plants), or into chemical energy (e.g. by batteries). Short-term
fluctuations of the wholesale electricity price are not only
driven by variations in the demand, but also by the supply
function changing over time. Intermittent renewable sources,
whose generation depends on the weather conditions, are a major
contributor.

In Europe, wholesale physical trading is carried out in the
day-ahead market and in the intraday market. These markets
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have hourly or quarter-hourly resolution. At this timescale, the
operations of supply units, storage units as well as demand-side
flexibility can be subject to intertemporal constraints. For ex-
ample, thermal generation units, generally, cannot adjust their
output by an arbitrary amount due to technical constraints,
storage units can supply electricity only if they had accumulated
enough energy by that point in time, and industrial demand can
be shed or shifted only if underlying processes are scheduled
accordingly. These intertemporal dependencies let the bidding
strategy depend on future prices. Therefore, price forecasts can
support the decision-making of producers with regard to their
bidding strategies as well as large consumers with regard to
production schedule. Forecasts up to a few days ahead are
decisive in day-to-day market operations [1]. Furthermore, op-
erations might depend on prices beyond the next day, when the
intertemporal constraints of a unit are particularly pronounced.
This is the case for (i) relatively inflexible thermal generation
units due to long start-up times and costs associated with cycling
activities, (ii) storage units with a duration of more than a few
hours, and (iii) large consumers whose (opportunity) costs of
re-scheduling power intensive processes decrease for longer lead
time. On one hand, this motivates financial trading in the form
of future contracts, but also points at the value of forecasting
horizons that go beyond the impending day-ahead auction.

In the short-term electricity price forecasting literature,
weather effects are usually not incorporated directly. They are in-
corporated into forecasts of meteorology driven energy produc-
tion and consumption components [1]–[3]. These components
include, most notably, wind and solar power production as well
as the electricity load. When forecasting day-ahead electricity
prices, taking into account available forecasts of wind power
production, solar power production, and load for the next day
is an established practice [4]–[7]. This holds basically for all
model structures, ranging from high-dimensional linear models
to nonlinear ones like deep neural networks [8].

Matsumoto and Endo [9] propose and compare parsimonious
models that forecast the weekly average spot price in Japan
with the help of temperature forecasts.1 We are not aware of
other academic publications that integrate meteorology based
forecasts to forecast electricity prices beyond the impending
day-ahead auction. Not accounting for meteorology based fore-
casts is reasonable for mid- to long-term electricity price fore-
casting, which cover horizons of months and years [10]. In fact,

1In Japan, the contribution of photovoltaic and wind generation to the elec-
tricity mix is modest. In this regional context, prioritizing the integration of
temperature rather than wind or solar forecasts is not surprising.
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the predictive power of weather forecasts for those horizons is
very limited, and basically matches the long-term periodically
stationary behavior. Yet, weather forecasts with a horizon of
few days (or even weeks) have a reasonable accuracy, which
should be utilized in electricity price forecasting. Furthermore,
Steinert and Ziel [11] elaborate that these forecasting horizons
are highly relevant in practice and corresponding electricity
futures markets are highly liquid. We regard the lack of publicly
accessible forecasts of intermittent renewable generation and
load that reach beyond the day-ahead auction as a key reason
for the outlined literature gap. For instance, in Europe the TSOs
publish forecasts of wind generation, solar generation and load
with (quarter-)hourly granularity, but only at 6pm for the next
day [12]. It is worth noting that electricity system forecasts based
on weather predictions are highly relevant for a variety of use
cases, and multiple business models that offer these products
exist [13]. Hence, renewable generation forecasts with longer
lead times are likely to exist too for in-house use or for sale in
the private sector.

To overcome this limitation, we propose to utilize weather
forecasts directly rather than the derived forecasts of production
and consumption components. In general, weather data is rarely
used directly in the electricity price forecasting literature. An
example is given by Ludwig et al. [14] that analyze the perfor-
mance of day-ahead price predictions using ARIMA, ARIMAX,
LASSO, and random forest formulations. The authors use actual
weather data of stations located in Germany as exogenous vari-
ables. The generated insights can be used and further developed
by accounting for weather forecasts rather than weather actuals,
and by increasing the geographical scope to account for ex-
planatory variables (weather conditions in neighboring regions)
that may correlate with German prices because of their impact
on cross-border flows. Therefore, we contribute to the literature
by:

i) Proposing an hourly electricity price forecasting model
which covers horizons beyond the impending day-ahead
auction.

ii) Incorporating Europe-wide weather forecasts (tempera-
ture, wind speed and direction, irradiation and cloud cover)
in addition to established features such as lagged elec-
tricity prices, commodity prices, as well as seasonal and
calendar effects.

iii) Considering a regularized high-dimensional forecasting
model using LASSO to performs efficient automatic fea-
ture selection.

iv) Conducting a forecasting study for the German electricity
market, including a detailed evaluation of the predictive
performance with significance tests.

v) Interpreting the model components, especially the impact
of weather forecasts with respect to their temporal and
geographic distribution.

In the context of our analysis, we use a high-dimensional
linear model with LASSO regularization because of the en-
couraging results shown by previous studies [14]–[17], the
ability to perform feature selection, and the interpretability of
results provided by the preservation of linearity. Furthermore,
Lago et al. [8] illustrate that well-trained high-dimensional

linear models and sophisticated deep neural networks
achieve similar predictive accuracy, especially for European
markets.

The general model structure is introduced in Section II, fol-
lowed by a detailed description of data sets and implementation
remarks in Section III. Section IV describes the setup of the
experiment. Section V discusses the results and Section VI
concludes.

II. MATHEMATICAL FORMULATION

In this section we outline the structure of the model (II-A), the
composition of the feature space (II-B) and the determination of
the regression coefficients (II-C).

A. Model Definition

Electricity day-ahead markets are organized in auctions that
are cleared daily for delivery on the next day. This implies that a
daily structure is embedded into the auction design, and that the
price forecast should be produced before the auction closes. In
Germany, the day-ahead auction closes at noon, whereas the last
known price point refers to 11pm-midnight. Therefore, the point
in time when data is collected and the time of the last known
target variable do not coincide. We define a notation to reflect
this daily structure, and differentiate, where necessary, between
the time when the forecast is produced and the time of the last
known price.

We denote with t the timestamp with hourly granularity, dt
the day, and st the hour of the day. The day when the forecast
is produced can thus be indicated with dt.2 Further, we use h
to indicate the forecasting horizon. We choose h ∈ {1, . . . , H}
with H = 240, because 10 days is the forecasting horizon of
the used meteorological forecasts. Similarly to t, dh and sh are
the corresponding day-hour decomposition for h. For example,
for h = 30 = 24 + 5 + 1, we predict the price for the product at
5am-6am (sh = 5) on the 2nd horizon day (dh = 2).3 When it is
necessary to differentiate, we use t to represent the hour of the
last known price and t′ to represent the hour when the forecast
is produced, which we chose to be 2 hours before the day-ahead
auction closes, i.e. 10am. Because dt = dt′ , this differentiation
is mainly relevant when selecting the meteorological forecast
in terms of publication time, see Section III-B. A graphical
representation of the relationship between the electricity price
forecasting horizon and the meteorological forecasting horizon
is provided by Fig. 1.

Power prices (y) are represented via a linear combination
of a feature vector (x) weighted by a column vector of co-
efficients (β), plus an error term (ε). The feature vector x
contains information available at the time when the forecast is
produced and relative to the corresponding auction. Thus, its
information depends on the forecasting horizon. For instance,
we can describe prices in three days as a function of the day of

2As we produce forecasts with a periodicity of S, where S = 24 for hourly
day-ahead markets, st can be omitted.

3The timestamp notation h can be derived from the date-hour notation us-
ing h = S(dh − 1) + sh. Conversely, sh = (h− 1 mod S) + 1 and dh =
(h− sh)/S + 1).
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Fig. 1. This graphical representation summarizes how the proposed notation is used to capture: (i) the daily price structure, (ii) the relationship between the price
forecasting horizon and the closure of the day-ahead auction, and (iii) the relationship between the price forecasting horizon and the meteorological forecasting
horizon.

the week, but not of the result of the preceding auction that is
yet unknown. We use the notation xdt,dh

for the feature vector
to indicate its dependency on the day dt and the forecasting
horizon dh. The feature space does not depend on sh because of
the market design, i.e. the auction being cleared at once for the
whole day. Using this notation, the model can be formulated as:

yt+h
def
= ydt+dh,sh = xᵀ

dt,dh
βdt,dh,sh + εdt,dh,sh . (1)

The price ydt+dh,st corresponds to the feature vector xᵀ
dt,dh

.
Since the prices on the day dt + dh are unknown on the day
dt, the training data can only reach to the price ydt+��dh−��dh,sh
corresponding to xᵀ

dt−dh,dh
. We let the training data cover 12

weeks, rendering T + 1 = 84 observations, and organize this
data in a target vector and a training matrix:

ydt,sh =

⎡
⎢⎢⎢⎢⎣

ydt,sh

ydt−1,sh

...

ydt−T,sh

⎤
⎥⎥⎥⎥⎦ , Xdt,dh

=

⎡
⎢⎢⎢⎢⎣

xᵀ
dt−dh,dh

xᵀ
dt−dh−1,dh

...

xᵀ
dt−dh−T,dh

⎤
⎥⎥⎥⎥⎦ . (2)

B. Feature Space

The feature space accounts for dummy variables to capture
weekly patterns and holiday effects (xD

dt,dh
), for weather fore-

casts for the selected location and weather attributes (xW
dt,dh

), for
lagged power prices to capture autoregressive effects (xP

dt
) and

for commodities prices, namely gas, coal and EUA futures (xC
dt

).
Lagged power prices and commodity futures depend only on dt
because the same data points are fed to the model regardless
of the forecasting horizon dh. Conversely, the dummy variables
depend on dh because dt + dh is used to incorporate the effect
of the day of the week and holiday patterns. Also the weather
forecast vector depends on the horizon because dh is used to
determine which parts of the weather forecasts are fed to the
model with hourly granularity (see formulation in Section III-B).
The individual components of the feature space are described in
detail in Section III and summarized by the vector:

xdt,dh
=

⎡
⎢⎢⎢⎣
xD
dt,dh

xW
dt,dh

xP
dt

xC
dt

⎤
⎥⎥⎥⎦ . (3)

C. Regression Coefficients

The feature matrix and target vector are standardized. We
call g the function that takes two arguments (matrices or col-
umn vectors), and returns the second argument, standardized
according to the column-wise mean and variance of the first
one. Furthermore, we define g−1 as the function reversing the
standardization.4 The standardized training matrix, the stan-
dardized feature vector, and the standardized target vector are
denoted by an underscore ( ) and defined as follows:

Xdt,dh

def
= g(Xdt,dh

,Xdt,dh
), (4)

xdt,dh

def
= g(Xdt,dh

,xᵀ
dt,dh

)ᵀ, (5)

ydt,dh

def
= g(ydt,sh ,ydt,sh). (6)

The regression results in a coefficient vector:

β̂dt,dh,sh(λ) = arg minβ

∥∥Xdt,dh
βdt,dh,sh − ydt,sh

∥∥2
2

+ λ ‖βdt,dh,sh‖1 , (7)

that is a function of the regularization parameter λ ≥ 0 charac-
terizing the LASSO. This penalty modulates the shrinking effect
towards zero on all parameters to reduce the estimation risk and
the feature selection.

In a very limited number of forecasts, the solver [18] gen-
erates an unstable result characterized by an implausibly high
price. This issue was solely affecting the Expanded model
(see Section IV) in a few hours and is imputable to the high
dimensionality of the feature space. Even if rare, the magnitude
of such a forecast error would substantially distort the evalua-
tion of the overall performance. Hence, standardized forecasted
prices have been constrained to a predefined interval. This is
not unprecedented. For example, Uniejewski et al. [19] used
an interval of ±3. We opted for a less stringent constraint
(±6), because it showed to sufficiently mitigate the effect of
the unstable results on the evaluation:

ŷ
dt,dh,sh

(λ) = min(max(xᵀ
dt,dh

β̂dt,dh,sh(λ),−6), 6). (8)

4For conciseness, g(A)
def
= g(A,A) ∀A could be introduced such that

Xdt,dh = g(Xdt,dh ,Xdt,dh ) = g(Xdt,dh ).
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Finally, the predicted price is obtained by reversing the stan-
dardization applied before the regression:

ŷdt,dh,sh(λ) = g−1(ydt,sh , ŷdt,dh,sh
(λ)). (9)

The model is tested for multiple values of λ ∈ Λ and a number
of consecutive days, starting with dt = 0 representing the 1st

of March 2021. The regularization penalty λ̂ is then chosen for
each horizon day dh such the mean-squared error of the prices
until dt is lowest:

λ̂dt,dh
= arg min

λ∈Λ

dt∑
i=dh

∑
sh

(ŷi−dh,dh,sh(λ)− yi,sh)
2. (10)

III. DATA SOURCES AND IMPLEMENTATION

A. Power Prices

We consider German day-ahead auction prices, available at
ENTSO-E transparency [20]. Besides being the target vector of
the model, they are also used as explanatory variables in the form
of lagged prices. For convenience, they are organized in daily
vectors ydt

. Furthermore, we define the vector yf
dt

as containing
values resulting from applying the generic function f to each of
the daily vectors of the last 28 days. This allows to define the
feature vector xP

dt
as comprising hourly lagged prices of the last

7 days (including dt) and the average, the minimum, and the
maximum daily prices of the last 28 days (including dt) for a
total of 252 variables.

ydt
=

⎡
⎢⎢⎢⎢⎣

ydt,0

ydt,1

...

ydt,S−1

⎤
⎥⎥⎥⎥⎦ , yf

dt
=

⎡
⎢⎢⎢⎢⎣

f(ydt
)

f(ydt−1)
...

f(ydt−27)

⎤
⎥⎥⎥⎥⎦ (11)

xP
dt

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ydt

ydt−1

...

ydt−6

yavg
dt

ymin
dt

ymax
dt

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(12)

B. Meteorological Forecast Data

Meteorological forecasts are provided by the Deutscher Wet-
terdienst for 5400 locations worldwide, each with an hourly
forecast horizon of 10 days. From an area covering approxi-
mately continental Europe, we create L = 100 partitions with
k-means clustering, and use the locations closest to the respective
centroids as our 100 selected location (see Fig. 2). The selec-
tion is aimed at preserving computational tractability, and the
clustering procedure at preserving the original density of the
locations’ distribution.

From the data provided by the Deutscher Wetterdienst, we
use the MOSMIX_S data package, that is updated hourly and
contains 40 weathers attributes [21]. From these attributes, we

Fig. 2. A selection of one hundred representative locations is used to preserve
computational tractability.

select those that are expected to be correlated with power prices
because of their impact on the residual load and on cross-border
flows. The latter motivates the selection not to be limited to
locations within Germany. On the supply side, wind speed and
wind direction are expected to be correlated with the generation
from onshore and offshore wind units.5 Global irradiance and
effective could cover are expected to be correlated with the
generation of PV units. On the demand side, temperature is
expected to be correlated with the electricity load.6

Let us denote withwa,l
t′,h′ the meteorological forecast produced

at time t′ with horizon h′ ∈ {1, . . . , H} for the weather attribute
a and one of the hundred selected locations l. Note that whereas
the horizons h′ and h are characterized by the same domain
1, . . . , H , t′ precedes t by 13 hours, since we are using the
weather forecast issued at 10am. This is taken into account when
weather attributes are grouped in vectors wa,l

dt,dw
h

that depend

on the horizon day dwh ∈ {0, 1, . . . , 10} by introducing smin
dw
h

and smax
dw
h

. For each forecasting horizon dh, a vector va,l
dt,dh

is
constructed containing the hourly meteorological forecasts for
that particular daywa,l

dt,dh
as well as the averaged meteorological

forecast for all horizon days w̄a,l
dt,dw

h
. This aggregation is meant

to reduce the dimensionality of the feature space whilst preserv-
ing intertemporal dependencies that span across multiple days.
Finally, the meteorological covariates vectorxW

dt,dh
is defined as

the vectorized matrix W dt,dh
containing the compound vectors

va,l
dt,dh

for all meteorological attributes and all locations for a

5To allow for the wind direction, published in radiant, to be sensibly processed
by the model, it has been split into a north-south and a west-east component by
applying respectively the cosine and sine functions.

6The mentioned weather attributes correspond to the Deutscher Wetterdienst
abbreviations: FF (wind speed), DD (wind direction), Rad1h (global irradi-
ance), Neff (effective could cover), TTT (temperature)
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total of 19800 elements.

wa,l
dt,dw

h
=

⎡
⎢⎢⎢⎣
wa,l

dt,dw
h ,smin

dw
h

...

wa,l
dt,dw

h ,smax
dw
h

⎤
⎥⎥⎥⎦ (13)

smin
dw
h

=

{
11 if dwh = 0

0 otherwise
, smax

dw
h

=

{
10 if dwh = 10

23 otherwise
(14)

va,l
dt,dh

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

wa,l
dt,dh

w̄a,l
dt,0

w̄a,l
dt,1
...

w̄a,l
dt,10

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, W dt,dh
=

[
v
(a,l)
dt,dh

]
(15)

xW
dt,dh

= vec(W dt,dh
) (16)

C. Commodity Prices

Commodity prices are downloaded from the Quandl database
CHRIS [22] and include gas NCG, EUA and coal ARA futures
prices. Because these futures contracts commit traders to buy or
sell these commodities at a predefined price when the contract
expires, their price does account for the market expectation on
the future price development. During this work, the database
CHRIS has been partially discontinued. The selected gas and
EUA futures prices have been last updated on the 16th of April
2021, which poses a limit on the duration of experiment outlined
in Section IV. This motivates our experiment period ending on
this date to allow for a consistent evaluation throughout the entire
duration of the experiment.

The definition of the vector representing commodity prices is
straight forward, as it only contains three values corresponding
to the latest settlement prices known by dt for the selected
commodities. This vector is used as is for the entire forecasting
horizon, thus it does not depend on dh:

xC
dt

=

⎡
⎢⎣Coaldt

Gasdt

EUAdt

⎤
⎥⎦ . (17)

D. Dummy Variables

To capture seasonal patterns with weekly periodicity, we im-
plement weekday dummy variables (Weekdayni ) and cumulated
weekday dummy variables (WeekdayCn

i ), where n represents
one of the weekdays and i the day to be forecasted. Furthermore,
a holiday dummy variable (Holidayi) is used to account for
holiday effects.7 These dummies count 15 elements in total; they
are defined in (18)–(20) and added to the feature space according

7Note that the only bank holidays within the experiment period are the Eastern
ones. Therefore, we decided to (partially) flag also Saturdays and Sundays as
holidays.

to (21) and (23).

Weekdayni =

{
1 if i is thenthday of the week

0 otherwise
(18)

WeekdayCn
i =

n∑
j=1

Weekdaynj (19)

Holidayi =

⎧⎪⎨
⎪⎩
1 if i is a Sunday or a Holiday

0.5 if i is a Saturday

0 otherwise

(20)

Weekdayi =

⎡
⎢⎢⎢⎢⎣
Weekday1i
Weekday2i

...

Weekday7i

⎤
⎥⎥⎥⎥⎦ (21)

WeekdayCi =

⎡
⎢⎢⎢⎢⎣
WeekdayC1

i

WeekdayC2
i

...

WeekdayC6
i

⎤
⎥⎥⎥⎥⎦ (22)

xD
dt,dh

=

⎡
⎢⎣ Weekdaydt+dh

WeekdayCdt+dh

Holidaydt+dh

⎤
⎥⎦ (23)

IV. EXPERIMENT SETUP

Not only do weather conditions affect power prices, the rela-
tionship between weather conditions and renewable generation
is also not linear. Wind power is known to have a strong cubic
relation to the wind speed [23]. To evaluate the benefits of
using weather forecasts and explore the impact of nonlinear
relationships, we perform the experiment using three different
variants of the feature matrices, thus resulting in three model
variants:
� Baseline – Excludes weather attributes xW

dt,dh
from the

feature matrix to recreate a consistent benchmark model.
� Linear – Accounts for weather attributes, as in (3). The

only transformations are the standardization and the de-
composition of the wind direction in a north-south and a
west-east component.

� Expanded – Adds to the feature matrix shown in (3) and
used by the Linear variant squared and cubed weather data
xW
dt,dh

.
On each day from the 1st of March 2021 to the 16th of April

2021 the models are (re-)estimated and used to generate hourly
forecasts for the following 10 days.8 Because each weather
forecast is stored on the Deutscher Wetterdienst server only
for a few days, the 1st of March 2021 was the point in time
when enough weather forecasts had been regularly downloaded
to cover the model estimation window (see Section II-A). Longer

8In total, 72000 models are trained daily. This corresponds to the combination
of 3 model variants, 240 hours composing the forecasting horizon (due to the
multivariate model structure), and 100 values of λ.
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estimation windows (up to a few years) are beneficial to capture
trends, whereas shorter windows (down to a few weeks) allow
for a faster adaptation of the model [24]–[26]. Although elec-
tricity price forecasting models tend to use longer estimation
windows [7], [11], [14], [15], [27]–[30], this option is not viable
in the context of this experiment because: (i) such a long esti-
mation window paired with the exceptionally large number of
features used in this study would make the model training com-
putationally intractable,9 and (ii) not enough historic weather
forecasts had been stored at the time of writing. One could also
hypothesize, that adopting a longer estimation window is more
likely to benefit highly dimensional model variants Linear and
Expanded, therefore, further highlighting the benefit of adding
weather forecast data. The estimation window covers 84 days
(12 weeks). For example, the forecast generated on the 1st of
March 2021 is trained on the 84 daily observations ranging from
the 6th of December 2020 to the 28th of February 2021. The
observation on the 6th of December 2020 is described by the
corresponding feature vector as summarized by (3) (including
the weather forecast published at 10am on that day and lagged
prices that reach back to 8th of November), whose components
are described in detail in Section III. The experiment reaches
until the 16th of April 2021 because commodity prices were no
longer provided by the chosen data source (see Section III-C),
totaling 47 forecasts for each λ and model variant. Eventually,
the accuracy achieved by these three variations are compared
and the significance of the results is quantified with the Diebold-
Mariano test. The latter step is particularly important due to the
limited number of forecasts.

V. RESULTS

Whereas the models are re-estimated using a rolling window,
the selection of the λdt,dh

is based on an expanding window,
as described by (10). For the sake of simplicity, the follow-
ing analyses will refer to the best performing regularization
parameter reached at the end of the experiment horizon λdh

.
This is motivated by the observation that the selection appears
to converge towards a more stable value after an initial burn-in
period, as shown in Fig. 3. Part of this stabilizing behavior is due
to the nature of the expanding window. As will become apparent
in the following analysis, adding weather forecasts when the
price forecasting horizon exceeds 5 days does not materialize
in accuracy improvements plausibly because of the diminishing
precision of the weather forecast. But even for dh ≤ 5 noticeable
fluctuations λ̂dh

remain, especially for the variants Linear and
Expanded. Part of these fluctuations are caused by the model
adapting when the exceptionally low prices observed around
Eastern (4th of March 2021) become part of the training set.
Note that, as discussed in Section II-A and described by (2), the
point in time when the results of an auction become part of the
training matrix depends on the dh. This is the reason for models
trained on longer horizons exhibiting a stronger adaptation delay.
The delayed adaptation is particularly apparent in the case of the

9By comparison, other proposed parameter rich models contain approxi-
mately 400 explanatory variables [29], whereas the weather data alone proposed
in (16) counts 19800 elements.

Fig. 3. The best performing regularization parameter (λ̂dt,dh ) changes over
time due to the expanding window evaluation, but tends to stabilize towards
the end of the experiment period (dt = 16th of April 2021) for most of the
forecasting horizons (dh).

Fig. 4. The hourly RMSE (RMSEdh,sh ) exhibits a strong daily pattern; error
peaks around 8am and noon are explained by the higher variance of historic
prices in these hours.

Linear variant, where all horizon days dh increase sequentially.
TheExpanded variant seems to be characterized by more noise,
indicating that longer evaluation periods could be beneficial.

The RMSEdh,sh is characterized by a pronounced daily
pattern, see Fig. 4. All three models exhibit a similar error
distribution across the day, peaking in the morning (7am and
8am) and in the afternoon. This is explained by the standard
deviation of historic prices being highest in these hours of the
day (see Appendix C, Fig. 13). For the sake of simplicity, we
do not focus further on the daily distribution of the error, but
refer to the daily error RMSEdh

, where the mean squared error
is calculated for all hours of the day.

A. Accuracy

Fig. 5 shows the RMSEdh
for all three variants, and the ac-

curacy improvements relative to the Baseline variant quantified
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Fig. 5. Adding meteorological forecasts is particularly beneficial when fore-
casting prices between 2 and 4 days before delivery, whereas the benefit of
accounting for non-linear weather effects is ambiguous.

Fig. 6. The correlation between prices and forecasted wind speed is almost
constant for the first 4 days of the forecasting horizon. When the last known
price y0,23 and the price of the last known auction at the corresponding hour
y0,sh are accounted for. The correlation conditional on the lagged prices
Cor(ydh,sh ,winddh,sh | y0,sh , y0,23) shows that the contribution of wind
speed is partially captured by lagged prices when forecasting up to 1 d in advance.

Fig. 7. The best performing regularization parameter (λ̂dh ) tends to increase
at longer forecasting horizons (dh) especially for the models containing mete-
orological data.

by the skill score:

SSdh
= 1− RMSEdh

RMSEBaseline
dh

. (24)

All model variants exhibit a similarly low error on the first day
of the forecasting horizon. This is caused by the autoregressive
effects, which are more pronounced at shorter horizons. Hence,
the benefit of adding meteorological data when forecasting the
next day appears perceptible with a skill score of about 5%,
but moderate relative to the following horizon days. In fact, we
observe that the Linear and the Expanded variants outperform

Fig. 8. The p-value derived from the Diebold-Mariano test shows that im-
provements observed on the 2nd and 3rd day of the forecast horizon are statisti-
cally significant.

Fig. 9. The lowest error is used to select the regularization penalty λ̂ (black
dots). Especially when forecasting multiple days in advance, the RMSE is par-
ticularly sensitive to suboptimal regularization penalties λ ∈ Λ, and susceptible
to overfitting.

the reference variant (Baseline) with a skill score of between
10% and 20% when forecasting 2-4 days in advance. On the 5th

horizon day, the improvements are less pronounced, and from the
6th horizon day onward, adding meteorological forecasts results
in a less accurate forecast. It is worth noting that, exception
made for the 3rd horizon day, adding squared and cubed model
meteorological data (Expanded) does not seem to substantially
improve the accuracy over the simpler linear model (Linear).

The autocorrelation of prices and the correlation between
prices and the forecasted weather explains why weather fore-
casts are particularly beneficial when forecasting prices 2-4 days
in advance. Wind speed forecasted at the location close to Bad
Oldesloe, Germany (winddh,sh ) exhibited a pronounced predic-
tive power (see section V-B, Fig. 12). Therefore, wind speed at
this location has been used as representative weather forecast
element to evaluate the correlation with prices. As summarized
by Fig. 6, the correlation between prices and the forecasted wind
speed Cor(ydh,sh ,winddh,sh) is pronounced at the beginning of
the forecasting horizon and starts decaying substantially only at
forecasting horizons that exceed 4 days. This indicates that wind
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Fig. 10. Coefficients of feature groups over time are aggregated by positive and negative values to highlight the relationship with the electricity price; weather
attributes decrease over time due to the deteriorating accuracy of the meteorological forecast.

Fig. 11. The sum of negative and positive meteorological coefficients grouped
by the horizon of the meteorological forecast for different price forecast horizons
(Linearvariant) shows that only wind speed and irradiation exhibit a pronounced
alignment between the meteorological and the price forecasting horizon.

speed preserves its predictive power over several days. Wind
speed itself is also characterized by autocorrelation. Therefore,
when the forecasting horizon is short, part of the information
contained in the forecasted wind speed is already contained in
the lagged prices. This is captured by the correlation between
prices and forecasted wind speed, conditional on the lagged
prices Cor(ydh,sh ,winddh,sh | y0,sh , y0,23). In fact, the condi-
tional correlation is much weaker only in the first few hours of
the forecasting horizon. Therefore, the conditional correlation
is highest for horizons between 2 and 4 days, which is in line
with the observed accuracy gains observed in Fig. 5.

The negative impact of meteorological data when the horizon
exceeds 5 days is explained by Fig. 7. It shows that the models
Linear and Expanded require a more stringent regularization
to avoid overfitting, thus penalizing also other features like
the dummy ones. The downsides of the stronger regularization

Fig. 12. The geographical distribution of meteorological coefficients (Linear
variant) exhibits forecasted wind speed in northern Germany are the most
important predictor; the size of the pie charts is proportional to the sum of
the absolute coefficients.

prevails in this case over the benefits of adding meteorological
forecast.

The Diebold-Mariano test estimates the significance of the
observed model predictive performance differences. When we
compare the errors generated by the Linear and Expanded
variants against the Baseline variant in Fig. 5, we observe a
similar pattern. This pattern is reflected in Fig. 8 that shows
the p-value associated to the Diebold-Mariano test (for further
details, refer to Appendix B). Both comparisons exhibit a p-value
of 0.071 or lower when the horizon does not exceed 4 days, and in
particular for horizon days dh = 2 and dh = 3 the p-value does
not exceed 0.002. After dh = 4 the p-value increases quickly.

Fig. 9 highlights the sensitivity of the forecasting error when
suboptimal regularization penalties are used by focusing on
the Linear model, and showing the RMSEdh

(λ) as a function
of λ ∈ Λ and dh ∈ {1, . . . , 7}. For each horizon day dh, the
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minimum reached by the surface corresponds to the expected
error shown in Fig. 5, and the regularization penalty λ̂dh

shown
in Fig. 7. When λ is lower than λ̂dh

, the poor accuracy is due to
overfitting. Within the tested range λ ∈ Λ, the loss in accuracy
due to overfitting is more pronounced the longer the forecast
horizon. Conversely, when λ is higher, the model is underfitted.
Because of the scaling described in (5)–(8), whenλ is sufficiently
high to cause all coefficients to be zero, the forecasted price
is simply the average of the past prices at that hour of the
day. This is why part of the surface is characterized by a
constant error.

B. Validation of the Regression Coefficients β

As discussed in Section II-B, and in more detail in Section III,
we account for a variety of features. Hereinafter, we discuss the
coefficients associated with these features, and highlight their
temporal and geographical distribution. The regression coeffi-
cients highlight interactions that potentially depend on the period
of the year. Interactions that could cause a different distribution
of coefficients depending on the period of the year are, for
example, the correlation between temperature and electricity
demand [31] and electricity generation from PV units. Hence, it
is worth highlighting that these coefficients refer to the training
of the last Linear forecast generated on the 16th of April. This
causes the coefficients to reflect the training period from the 22nd

of January to the 15th for April 2021 (i.e. 84 days preceding dt).
Fig. 10 shows the sum of all negative and all positive coeffi-

cients associated with a feature10 as a function of the forecasting
horizon. For example, the sum of negative coefficients associated
with the meteorological attribute Wind speed and the 2nd day for
the forecasting horizon,11 are represented by the negative light
blue bars in dh = 2 (∀sh ∈ {0, . . . , 23}). All three models are
shown:
� The Baseline variant does by definition not include mete-

orological data. We see that especially coefficients related
to the lagged electricity prices are dominant. A positive
correlation prevails in the beginning (the higher the lagged
prices, the higher the forecasted price). After approxi-
mately 6 hours, also a negative correlation emerges. It is
expected to observe negative coefficients since they enable
the representation of trends and seasonalities. Neverthe-
less, the magnitude is surprising and possibly caused by
the interplay between the true underlying autoregressive
process and the shrinkage of weakly correlated coefficients
caused by the LASSO regularization.12 Holiday and week-
day dummies exhibit a negative correlation. This is in line
with intuition, since holidays and weekends are typically

10For the sake of simplicity, dummy variables are grouped under the labels
Holiday and Weekday.

11The sum does not differentiate between locations and horizons of the
meteorological forecast (dwh , see Section III-B).

12E.g. imagine an autoregressive process described by many small positive
coefficients and fewer larger negative coefficients. In such a configuration, a
L1 regularization would tend to shrink and eliminate predominantly positive
coefficients.

characterized by lower power prices. Commodity prices
play a minor role.13

� The Linear variant exhibits a relatively smooth reduction
of coefficients over the consecutive horizon days. Autore-
gressive effects play a significant role only during the first
horizon day, with a predominantly positive correlation.
Wind speed, especially after the first horizon day, appears
to be the major price driver. Like wind speed, also the
temperature exhibits a negative relationship, since lower
temperatures in colder periods are correlated with a higher
electricity demand, especially in northern European re-
gions [31]. It is worth nothing that irradiation has a positive
relationship during nighttime. This suggests that higher
PV generation at daytime tends to cause higher prices at
nighttime.14 This effect could be explained by the costs and
constraints faced by inflexible thermal units. In fact, a low
residual load at daytime (caused by high PV generation)
causes the load gradient between daytime and nighttime
to be smaller. Hence, fewer inflexible units are required
to adjust their output and are, thus, willing to bid below
marginal costs in order to run-though at nighttime.

� The Expanded variant shows more pronounced coeffi-
cients, in particular on the 2nd and 3rd horizon day. Never-
theless, observed patterns are similar to the Linear variant.
It is interesting to note that mostly cubed wind speed coef-
ficients are selected, plausibly, to resemble the polynomial
shape of wind turbine power curves.

Fig. 1 shows the time span covered by the meteorological
forecast in relation to the horizon of the electricity price fore-
cast. On one hand, time interdependencies and meteorological
forecast uncertainty suggest that the price at a particular hour
does not only correlate with the meteorological forecast for
that specific hour, but also with the forecast for hours before
and after that. On the other hand, the additional explanatory
power of hourly meteorological data that becomes available
several days before the target price is likely to be limited. This
consideration is reflected in the way meteorological data is
aggregated to form the feature vector, see (15). The question
about the benefit of adding forecasted meteorological data that
precedes or succeeds the day of the price to be forecasted can be
analyzed by exposing the distribution of meteorological coeffi-
cients as a function of the meteorological and price forecasting
horizon. Fig. 11 shows positive and negative coefficients for
each horizon of the price forecast dh, grouped by the horizon of
the individual meteorological attribute dwh . We see that for the
most important meteorological attribute, wind speed, there is a
strong correspondence between dh and dwh . This means that the
price on the day dt + dh is represented by the model, mostly,
using the meteorological forecast for that particular daydt + dwh .

13It is worth noting that gas prices appear positively correlated predominantly
in the daytime, whereas EUA prices predominantly in the nighttime. In the
context of the German market, this makes sense as lignite-fired plants (that are
particularly sensitive to EUA price) are more likely to be price setting during
the night when demand is lower, whereas gas-fired plants are more frequently
prices setting during the day.

14The possibility that the effect is caused by confounding variables cannot
be ruled out. Reverse causation is unlikely because only a fraction of PV units
react to price signals when prices are close to zero or lower.
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This observation holds also true for the irradiation, whereas the
remaining meteorological attributes seem to be characterized by
more noise.

Besides the time dimension explored so far, the used meteoro-
logical features have also a geographical dimension represented
by the locations. Fig. 12 represents this geographical distribution
by summing the absolute coefficients of the Linear variant of
each location and meteorological attribute across all hours of the
forecasting horizon:
� Wind speed coefficients are concentrated in northern

Germany, which is in line with the actual distribution of
onshore wind farms. The proximity to the coast is also
consistent with the location of offshore wind farms. Within
Germany, other coefficients play a minor role. Outside
Germany, wind speed is less pronounced.

� Wind direction coefficients appear predominantly outside
Germany and might correlate with the probability distribu-
tion of future weather conditions.

� Temperature coefficients within Germany are close to
the population-dense and industry-rich regions around the
Rhine and Neckar rivers. On the other hand, the most
pronounced temperature coefficients are in southern France
and at the Italian-Swiss border, potentially pointing at the
relationship between power prices in Germany and electric
heating in these neighboring regions [32].

� Cloud cover and Irradiation are not concentrated in one
particular region. Especially in the latter case, this might
be caused by collinearity across different locations.

In general, it is important to highlight that the regression
model per se only points at correlations. Considering the fun-
damentals governing the day-ahead power market, some coef-
ficients seem to plausibly represent a causal relationship, other
correlations are more ambiguous or clearly the result of model
noise (such as wind speed coefficients close to the Faroe Islands).

VI. CONCLUSION

In this article, we showed the potential of meteorological
forecasts to improve the accuracy of power price forecasting
models. While forecasts for the next day can take advantage
of autoregressive effects, this is less true for longer forecasting
horizons. Especially between the 2nd and 4th horizon day, fore-
casts featuring meteorological data showed to be more accurate,
as evidenced in the improvement of the RMSE by 10–20%.

We compared the accuracy of a purely linear model with a
model containing also squared and cubed meteorological data.
Although we found that this additional data is used by the model
to capture underlying nonlinearities (such is the case for wind
power curves), the forecasting accuracy of the extended model
improved in one case only (dh = 3). No general conclusion can
thus be drawn on whether adding squared and cubed meteoro-
logical data in this particular setup is advantageous.

The importance of choosing an adequate regularization pa-
rameter has been examined on the basis of the RMSE’s sensitiv-
ity to the regularization parameter. The examination highlighted
how suboptimal configurations can quickly lead to underfitting
or severe overfitting. We observed that the choice of the best
performing regularization is a function of the forecasting horizon

and that, in general, a longer forecasting horizon benefits from
a more stringent regularization.

Finally, we observed that coefficients were mostly plausible
when taking into consideration the fundamentals of the German
day-ahead power market. Examples are the negative correlation
between forecasted wind speed and power prices, as well as the
concentration of wind speed coefficients in northern Germany.

The presented model variants performed well under particular
circumstances, such as the forecasting horizon and the calibra-
tion of the regularization. Hence, using a forecast combination
model, as advocated by Bunn [33], appears to be a promising
continuation of this work. This includes the combination of
models that are estimated using different calibration windows,
as proposed by previous studies [24], [25]. In terms of data
acquisition, two challenges allowed forecasts to be produced
only from the 1st of March to the 16th of April: the limited access
to historic weather forecasts and the discontinued provision of
commodity futures by the selected source. Nevertheless, eval-
uating the behavior of coefficients over a longer period could
generate insights about the explanatory power of features in
different periods of the year.

Finally, the presented model was fitted only on power prices.
Nevertheless, further domain knowledge could be encoded in a
forecasting model by fitting also on other data, such as renewable
generation, net cross-border flows and electricity load. This
could be achieved by complementing the loss function of a
single-stage model, or by adopting a two-stage approach, as
proposed by Jonsson et al. [34]. Accounting for nonlinearities
by applying informed feature transformations (e.g. map wind
speed using a representative power curve, map the residual load
forecast to an estimated merit-order curve) might lead to further
improvements.

APPENDIX A
NOTATION

Sets and paramenters

t ∈ Z Integer number (Z) representing the hourly
timestamp, positioned such that 1 denotes
the hour of the first forecasted price by the
first forecast (1st of March, midnight-1am).

h ∈ {1, . . . , H} Hourly offset representing the horizon of the
electricity price forecasts where H = 240.

si ∈ {0, . . . , 23} The hour of the day of a timestamp or of a
time offset i ∈ {t, h}.

di ∈ Z The day of a timestamp or of a time offset
i ∈ {t, h}.

dwh ∈ {0, . . . , 10} Special case of di where the horizon of
the meteorological forecast is partitioned in
segments that overlap with dh, exception
made for dwh = 0.

a ∈ A Meteorological attributes: wind speed and
direction, solar irradiation, cloud cover, and
temperature.

l ∈ L Selected weather locations across Europe,
where L = 1, . . . , L and L = 100.

λ ∈ Λ Regularization penalty where Λ contains
100 test values for λ ranging from 0.05 to
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2.00, spaced evenly on a logarithmic scale
in base 10.

smin
dw
h

∈ {0, 11} Helper set used to align the price forecast
horizon with the horizon of the meteorolog-
ical forecast.

smax
dw
h

∈ {10, 23} Helper set used to align the price forecast
horizon with the horizon of the meteorolog-
ical forecast.

Scalars

λ̂dt,dh
Best performing λ calculated on an expand-
ing window.

λ̂dh
Best performing λ reached at the end of the
experiment.

ydt,st Electricity price on day dt and hour st.
ŷdt,dh,sh(λ) Electricity price (day dt + dh and hour sh)

forecasted on day dt, as a function of λ.
ŷ
dt,dh,sh

(λ) Standardized electricity price (day dt + dh
and hour sh) forecasted on day dt, as a
function of λ.

wa,l
dt,dw

h ,sdw
h

Meteorological forecast published on day dt

for location l, attributea, and horizondwh and
sdw

h
.

w̄a,l
dt,dw

h
Average of the meteorological attribute a

and location l on the horizon day dwh .
Coaldt

Coal future price.
Gasdt

Gas future price.
EUAdt

EUA future price.
Weekdayndt+dh

Weekday dummy variable.
WeekdayCn

dt+dh
Cumulated weekday dummy variable.

Holidaydt+dh
Holyday dummy variable.

RMSEdh,sh Root-mean-square error for each horizon
hour.

RMSEdh
Root-mean-square error calculated for the
entire horizon day.

Vectors and Matrices

xdt,dh
Feature vector.

xdt,dh
Standardized feature vector.

xW
dt,dh

Weather data vector.
xD
dt,dh

Dummy data vector.
xP
dt

Lagged electricity prices vector.
xC
dt

Commodity futures prices vector.
ydt,sh Training prices.
y
dt,sh

Standardized training prices.
ydt

Vector of all 24 prices on day dt.
yf
dt

Vector containing daily price aggregates
for the 4 weeks preceeding dt, where f
is the function used for the aggregation
(min, max, avg).

β̂dt,dh,sh(λ) Regression coefficients as a function of λ.
Xdt,dh

Training data i.e. feature matrix.
Xdt,dh

Standardized feature matrix.

wa,l
dt,dw

h
Meteorological forecast published on dt
for the horizon day dwh .

va,l
dt,dh

Compound vector containing hourly me-
teorological forecasts as well as daily ag-
gregates.

W dt,dh
Matrix of the compound vector
va,l
dt,dh

∀a, l.
Weekdaydt+dh

Weekday dummy vector.
WeekdayCdt+dh

Cumulated weekday dummy vector.

APPENDIX B
DIEBOLD-MARIANO TEST

LLinear
dt,dh,sh

and LBaseline
dt,dh,sh

denote the squared error produces
by the variants Linear and Baseline. The Diebold-Mariano test
focuses on the estimation of the scaled expected difference be-
tween the errors produced by the variantsLinear andBaseline.
Hence, the p-value (p) corresponding to the hypothesis that the
Linear model is not more accurate than Baseline is a function
of the cumulative normal distribution Φ. The estimation is
analogous when other model pairs are tested.

ΔLinear
dt,dh,sh

= LLinear
dt,dh,sh

− LBaseline
dt,dh,sh

(25)

Δ
Linear
dh

=
1

(E + 1) · S
∑
dt,sh

ΔLinear
dt,dh,sh

(26)

σ(Δ
Linear
dh,sh

) =
1√

(E + 1) · S · 1

(E + 1) · S − 1
· (27)

·
∑
dt

∣∣∣ΔLinear
dt,dh,sh

−Δ
Linear
dh,sh

∣∣∣

testLineardh
=

Δ
Linear
dh

σ(Δ
Linear
dh

)
(28)

pLineardh
= Φ(1− testLineardh

) (29)

APPENDIX C
HISTORIC PRICES

Fig. 13. Mean and standard deviation of historic German day-ahead power
prices by hour of the day. Statistic spans from the 2nd of April 2021 (dt = 1 and
dh = 1) to the 26th of April (dt = 47 and dh = 10).
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