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Abstract—The amount of CO2 emitted per kilowatt-hour on an
electricity grid varies by time of day and substantially varies by
location due to the types of generation. Networked collections of
warehouse scale computers, sometimes called Hyperscale Comput-
ing, emit more carbon than needed if operated without regard to
these variations in carbon intensity. This paper introduces Google’s
system for global Carbon-Intelligent Compute Management, which
actively minimizes electricity-based carbon footprint and power
infrastructure costs by delaying temporally flexible workloads. The
core component of the system is a suite of analytical pipelines used
to gather the next day’s carbon intensity forecasts, train day-ahead
demand prediction models, and use risk-aware optimization to
generate the next day’s carbon-aware Virtual Capacity Curves
(VCCs) for all datacenter clusters across Google’s fleet. VCCs
impose hourly limits on resources available to temporally flexible
workloads while preserving overall daily capacity, enabling all such
workloads to complete within a day with high probability. Data
from Google’s in-production operation shows that VCCs effectively
limit hourly capacity when the grid’s energy supply mix is carbon
intensive and delay the execution of temporally flexible workloads
to “greener” times.

Index Terms—Carbon- and efficiency-aware compute manage-
ment, datacenter computing, power management.

I. INTRODUCTION

D EMAND for computing resources and datacenter
power worldwide has been continuously growing, now

accounting for approximately 1% of total electricity usage [1].
Between 2010 and 2018, global datacenter workloads and
compute instances increased more than sixfold [1]. In response,
new methodologies for increasing datacenter power and energy
efficiency are required to limit their growing environmental,
economic and performance impacts [2], [3].

Greenhouse gas emissions from electricity production
vary substantially by time and location [4]–[7]. This wide
variation in carbon intensity (average greenhouse gas emissions
per unit of energy consumption) or marginal emissions (the
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additional greenhouse gas emissions per additional unit of
electricity consumption) imply that the time and location of
electricity consumption has a large effect on its associated
global warming impact. Assessing and forecasting system
conditions to improve the scheduling of flexible demand have
been identified as high-priority areas for machine learning
efforts to combat climate change [8].

The datacenter industry has the potential to facilitate carbon
emissions reductions in electricity grids. A considerable fraction
of compute workloads have flexibility in both when and where
they run. Given that emissions from electricity production vary
substantially by time and location [4]–[7], we can exploit load
flexibility to consume power where and when the grid is less
carbon intensive. By effectively managing its load, the data-
center industry can contribute to a more robust, resilient, and
cost-efficient energy system, facilitating grid decarbonization.
Electric grid operators, in turn, can possibly benefit by as much
as EUR 1B/year [9]. Furthermore, shifting execution of flexible
workloads in time and space can decrease peak demand for
resources and power. Since datacenters are planned based on
peak power and resource usage, smaller peaks reduce the need
for more capacity. Not only does this save money, it also reduces
environmental impact.

Carbon-aware datacenter load management is not a novel
concept. In addition to a wide range of work focusing on re-
ducing energy consumption of datacenter hardware equipment,
including IT, cooling, and supply systems (see [3], and infor-
mation on the standardized actuators for energy-driven man-
agement of IT equipment in [10]), it has been recognized that
sustainable datacenters require intelligent and unifying solutions
for energy-aware management of both datacenter hardware and
software architectures [11]. Previous treatments of compute load
management have mainly focused on self-managed datacenters,
i.e. where a single company manages all the infrastructure neces-
sary to support their computing needs. However, there are also
some recent proposals of stylized, decentralized optimization
models used to incentivize colocation tenants to carbon- and
cost-effectively manage their power demand [12], [13].

Carbon- and cost-aware compute management was previously
addressed via theoretical treatments, small-scale prototypes and
simulation-based studies. These research investigations discuss
two types of workload shifting: (i) across datacenter locations,
and (ii) in time, by delaying jobs’ execution.

Investigations related to shifting computing across datacenter
locations studied the impact of real-time rebalancing of serv-
ing requests, cloud VM migration and workload placement
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that co-optimizes datacenter portfolio cost and environmental
objectives [14]–[22]. In addition, to increase power efficiency
and environmental benefits, some of the research explored pow-
ering down redundant machines. Furthermore, it has been com-
monly assumed that datacenters are colocated with renewable
assets, and the studied optimization models often incorporated
forecasts of the onsite renewable supply. The implications of
power rebalancing on energy markets, renewable portfolio,
customer latency, and avoided carbon dioxide emissions were
discussed in [21]. In addition to the real-time carbon-aware
datacenter power management, [16], [23] investigated long-term
datacenter planning that cost-effectively “follows” renewables.
Finally, to the best of our knowledge, the first-at-scale in-
production system that uses real-time marginal carbon intensity
at cloud clusters’ grid locations to decide where to place cloud
VMs was recently announced in [24].

Research investigations for temporal shifting of flexible com-
pute jobs proposed an optimization-based framework with styl-
ized models for job-level resource demand modeling [25]–[27],
and server-level power consumption. Here, the goal was to
delay jobs to “greener” hours of the day, where the delay
decisions are the result of trade-offs between environmental,
cost, and modeled performance objectives. These theoretical
investigations suggest optimization-based, job-level scheduling
decisions, which is infeasible for large-scale, real-life, hyper-
scale datacenters with large number of flexible job classes and
available machines with different hardware configurations. Also,
the previous research explorations typically assume that the
scheduled jobs’ real-time resource and power usage are con-
trollable while, in real datacenter operations, they can be highly
variable within the allocated resource constraints. Furthermore,
rather than previously proposed stylized models of demand
uncertainty and its translation to power consumption, a load
shaping framework for Google-scale datacenters is required
to capture large diversity in workloads and hardware config-
urations. No previously discussed methodology incorporates
risk associated with application and infrastructure performance
expectations. Finally, none of the proposed solutions has ever
been implemented in-production and at Google scale.

This paper describes the methodology and principles behind
Google’s global, in-production system for Carbon-Intelligent
Compute management, which reduces grid carbon emissions
from Google’s datacenter electricity use, as well as its operating
costs via increased resource and power efficiency. To accom-
plish this goal, the system harnesses the temporal flexibility
of a significant fraction of Google’s internal workloads that
tolerate delays as long as their work gets completed within 24
hours. Typical examples of such workloads are data compaction,
machine learning, simulation, and data processing (e.g., video
processing) pipelines – many of the tasks that make information
found through Google products more accessible and useful. Note
that other loads include user-facing services (Search, Maps and
YouTube) that people rely on around the clock, and our cloud
customers’ workloads running in allocated Virtual Machines
(VMs), which are not temporally flexible and therefore not
affected by the new system.

Methodology for effective carbon-aware shifting Google dat-
acenter workloads in time and across locations faces several

challenges. Workloads, comprised of compute jobs, are char-
acterized by their arrival patterns, resource usage, dependen-
cies and placement consequences, which generally have high
uncertainty and are hard to predict (i.e., we do not know in
advance what jobs will run over the course of the next day).
Also, Google’s load management is required to meet the es-
tablished reliability principles, which guarantees timely detec-
tion and mitigation of system vulnerabilities. Furthermore, at
all times, workload performance expectations need to be met,
while respecting hard infrastructure limits, such as cluster-level
machine capacity limits, circuit breaker limits, etc. Importantly,
workload management is required to keep the workload sched-
uler’s complexity as little as possible so that it can cope with
the high volume (hundreds of thousands) of job scheduling re-
quests every second [28]. The opportunity to effectively manage
Google’s flexible workloads lies in the fact that their resource
usage and daily consumption at a cluster-level and beyond are
quite predictable within a day-ahead forecasting horizon. As
a consequence, the aggregate outcome of job scheduling ulti-
mately affects global costs, carbon footprint, and future resource
utilization.

The core of Google’s in-production carbon-aware load shap-
ing mechanism is a set of cluster-level [29] Virtual Capacity
Curves (VCCs), which are hourly resource usage limits that
serve to shape each cluster resource and power usage profile
over the following day. These limits are computed using an
optimization process that takes account of aggregate flexible and
inflexible demand predictions and their uncertainty, hourly car-
bon intensity forecasts [30], explicit characterization of business
and environmental targets, infrastructure and workload perfor-
mance expectations, and usage limits set by energy providers
for different datacenters across Google’s fleet. The cluster-level
VCCs are pushed to all of Google’s datacenter clusters prior to
the start of the next day, where they set hourly limits for total
flexible compute usage. These limits directly impact real-time
admission of flexible workloads. As a consequence, at times
of day when the local grid’s carbon intensity is expected to
be high, the corresponding clusters’ VCC values tend to be
smaller, which reduces their total compute and power usage [31].
The reduction of usage is achieved via delaying scheduling
and execution of flexible computing tasks to later times of
the day.

The scope of the presented Carbon-Intelligent Computing
System (CICS) is global in that the VCC curves shift load to
lower overall carbon impact wherever Google locates its data-
centers, regardless of the generation source of local lower-carbon
energy (Fig. 1). This helps Google achieve its environmental,
efficiency, and performance targets across the world.

To the best of our knowledge, the CICS encompasses the
first methodology with the accompanying Google-scale and
in-production implementation of carbon-aware algorithms that
shift datacenter computing in time to realize global environmen-
tal and efficiency objectives [32] using automated adjustments
based on current and forecasted grid conditions. The design and
implementation of such a system requires novel theory, engineer-
ing and data. This paper discusses a new methodology behind
the CICS. Its core comprises of a suite of analytical pipelines that
result in the computed VCCs. The paper discusses the analytical
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Fig. 1. Carbon-Intelligent management of Google’s datacenter portfolio. The
green dashed curves associated with specific datacenter locations are intraday
carbon intensities of the local electricity generation. The impact of CICS on
intraday datacenter power consumption is depicted using black (original) and
dashed red (shaped) curves. With CICS, datacenter power consumption during
peak carbon intensity hours is intended to be lower than without CICS.

methods, implemented in production, and demonstrated in real
life to effectively and in a risk-aware manner shape all Google
clusters’ power consumption globally. Google’s CICS impacts
load in more than 20 datacenters on 4 continents [33], consuming
more than 15.5 terawatt hours of electricity [34]. Specifically,
the paper contributes with:
� The overall CICS design, including its integration with

the existing Google’s load management system, as well
as the system monitoring, and a feedback loop that
evaluates the recent application-level impact and adjusts
load shaping accordingly. This will be discussed in more
detail throughout the paper.

� A detailed overview of CICS’s analytical pipelines, used for
(i) cluster-level compute load characterization, (ii) power
modeling [31], and (iii) risk-aware optimization that incor-
porates the treatment of workload and infrastructure perfor-
mance expectations, as well as datacenter power-contract
information.

� Performance evaluation using data from real-life datacen-
ter operations.

� Discussion on extensibility of the proposed approach to
incorporate different business objectives and operational
constraints, including shifting compute load across
locations.

The CICS complies with the established engineering princi-
ples in mind, such as
� Reliable: The system is built with reliability principles in

mind, with an established monitoring and feedback loop
which ensures that the system operates as intended and that
it adapts to changes in resource usage trends and system
upgrades.

� Modular: Due to the nature of Google’s workload, the
day-ahead, load-shaping optimization runs independently
from real-time job-level scheduling, long-term resource
planning, and user-level interfaces with the compute in-
frastructure.

� Scheduler-agnostic: CICS operation is independent from
the real-time job scheduler. It interfaces with the scheduler
only via the aggregate capacity value, used as a constraint
beyond which no more jobs can be scheduled. To that
end, the real-time job scheduler can evolve on its own,
irrespective of the CICS.

The paper is organized as follows. Section I is followed by
a basic overview on Google’s datacenter power architecture, as
well as the key concepts behind the real-time management of
compute workload in Section II. The end of Section II provides
a high level introduction and the key design principles behind the
mechanism implemented to shape Google’s datacenter compute
load and the related power usage in a carbon- and efficiency-
aware manner. Section III contains the details of the analytic
pipelines that enable the load shaping mechanism. Section IV
demonstrates the effectiveness of the deployed load shaping
mechanism. The paper is concluded in Section V.

II. DATACENTER ARCHITECTURE AND CLOUD COMPUTING

OVERVIEW

Most of Google’s compute resources reside in Google-
designed datacenters with proprietary power distribution, cool-
ing, networking and compute hardware [35], [36]. The premise
of carbon-aware computing based on day-ahead planning is that
a known amount of computing, translated into power usage and
optimized based on expected grid carbon intensity, yields the
best placement of work. Furthermore, managing peak power
requires a good understanding of how workload resource usage
translates to power. Therefore, it is important to have a good
model of how resource usage and power inter-relate, and this
requires a from-the-basics model of the complete datacenter
power architecture.

A. Power Architecture

Every datacenter is connected to the electricity grid via several
medium voltage feeders. Each medium voltage distribution line
is transformed to supply low voltage Power Distribution Units,
also known as Power Domains (PDs). PDs are connected to
bus ducts. The bus ducts supply power to the IT and cooling
equipment. More information on a typical Google datacenter
power architecture can be found [36], [31].

The IT equipment on the datacenter floor comprises compute,
storage, and networking racks. A PD typically has a few thou-
sand machines, and a handful of PDs comprise a cluster. Each
PD is metered at a single PDU. The PDs in each cluster belong
to a single job-scheduling domain, i.e., a common real-time
scheduler that assigns computing tasks to its feasible machines.
Generator backup is available to keep the datacenter running in
the event of a grid power outage.

B. Google’s Real-Time Resource Management and Its
Reliability Principles

Machines at Google are set up to run any application, and con-
nected via high bandwidth switches within a campus, and via a
global backbone of network connecting datacenters. Datacenter
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hardware is controlled and administered by specialized software
that can handle massive scale. To the extent possible, hardware
controls, job scheduling, etc., are abstracted away from users.

Compute jobs at Google are managed by a distributed cluster-
level operating system (known as Borg [28], [29]). These jobs
can be roughly split into two categories: (i) indefinitely running
servers, and (ii) batch processes (e.g., data processing pipelines
using MapReduce or Flume [37], [38]). Jobs can consist of sev-
eral tasks (sometimes thousands), both for reasons of reliability
and because a single process can’t usually handle all traffic.
The cluster operating system is responsible for task allocation
across machines within a cluster, which includes starting a job,
finding machines for its tasks (i.e., task scheduling), allocat-
ing requested resources (CPU/RAM/disk) on machines, and
instructing the machines to start executing the tasks. Since the
scheduler needs to make hundreds of thousands of placement
decisions per second [28], it is important that the scheduling
algorithm is computationally inexpensive and, therefore, fast,
generally allowing jobs to flow into available compute resources
like fluid into containers. The cluster operating system con-
tinually monitors and, potentially, reschedules tasks in case of
problems. At Google, all available machines are typically turned
on within a datacenter unless they are broken.

In this paper, we divide jobs into 2 categories: temporally
inflexible and flexible (i.e., batch jobs that tolerate delays). We
assume that the flexible workload assigned to a cluster can be
subject to delays, as long as the amount of computation they
perform during a day is preserved. Scheduling and the associated
resource allocation is managed using the estimated upper bound
(referred to reservations) of a task’s actual usage across all
resource dimensions (CPU, memory, disk, etc.). If resources are
not available to run a job’s tasks, they are queued. The admission
controller visits this queue periodically, trying to enable jobs that
pass a series of checks, one of which is cluster-level resource
availability.

The following subsection describes how the temporal flexi-
bility of the flexible workload can be exploited to reduce carbon
footprint and peak power usage of Google’s datacenter portfolio.

C. Mechanism for Carbon- and Cost-Aware Load Shaping

This section discusses the framework we deployed for shaping
intraday resource usage using time shifting of flexible workload
in Google’s compute clusters, with the goal to decrease both its
electricity-based carbon footprint and improve overall resource
efficiency (and, therefore, its long-term build costs).

The aggregate cluster-level load shaping is achieved using
a Virtual Capacity Curve (VCC), which artificially limits the
cluster’s hourly compute usage and, in view of the power mod-
eling advancements in [31], its hourly power usage as well. Borg
uses the VCC values to compute the real-time CPU availability
for incoming flexible jobs. Reducing cluster-level CPU capacity
(i.e., total allowed CPU usage limits) at times of day when
the corresponding grid carbon intensity is high or when it is
cost-effective to do so, prevents the scheduler from starting
as many jobs then, to reap the carbon or economic benefit.
Flexible jobs get queued until resources become available. CPU

Fig. 2. Effect of using the VCC mechanism for load shaping in a cluster.

load shaping affects resource usage across other datacenter
resource dimensions as well (e.g., memory, disk, spindles, etc.).
In aggregate, resource consumption is highly correlated to CPU
consumption. Consequently, reduction of CPU consumption
leads to predictable reductions of power consumption across all
resources [31]. The entire system can be viewed as a two-step
optimization framework. In the first step, VCC assigns capacity
into different clusters based on the carbon intensity and de-
mand. In the second step, Borg schedules the jobs based on
the assigned capacity and job characteristics. Most data center
operators should already have a scheduler analogous to Borg in
place. Since VCC simply changes one of the input parameters
(available capacity in each hour), it can be adopted easily by any
data center operators for carbon footprint reduction.

An example of the effect that the VCC curve has on cluster
CPU load shape is demonstrated in Fig. 2. VCC (in red) has lower
values in the middle of the day when the intraday carbon intensity
values are the highest. Flexible usage (orange and blue shaded
areas) is pushed from midday to evenings and early mornings
when the carbon intensity is lowest. In addition to carbon-aware
load shifting in time, the proposed shaping mechanism reduces
daily peak CPU and, consequently, power consumption. Note
that the shifting should only impact flexible workloads, without
affecting inflexible jobs in any way. Also, when delaying the
execution of the flexible jobs, their users should be impacted in
an unbiased way.

III. LOAD SHAPING ANALYTICS

In this section, we describe the methodology for computing
cluster-level VCCs. The implemented system comprises several
components that: (i) predict the next day’s load, (ii) train models
that map CPU usage to power consumption, (iii) retrieve the next
day’s predictions for average carbon intensities on electrical
grids where Google’s datacenters reside, (iv) run day-ahead,
risk-aware, optimization to compute VCCs, and (v) check for
flexible workload SLO violations and trigger a feedback mech-
anism. As described earlier, the computed curves are used to
reshape the corresponding cluster’s intraday CPU usage and,
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Fig. 3. Architecture of the Carbon-Intelligent Computing system (CICS).

therefore, power consumption (see more details below) by af-
fecting only flexible (e.g., batch) workload.

In view of the above, the suite of analytics pipelines (see
Fig. 3) encompasses:
� Carbon fetching pipeline, which reads hourly average

carbon intensity forecasts from Tomorrow [30] for each
electricity grid zone where Google’s datacenters reside.

� Power models pipeline, which trains statistical models to
map CPU usage to power consumption for each power
domain (PD) across Google’s datacenter fleet. The models
are retrained and evaluated daily in a parallelized manner,
and are demonstrated to be highly accurate irrespective of
the underlying power architecture and machine platforms
installed within a PD [31]. The ability to accurately trans-
late changes in power domains and the corresponding clus-
ters CPU usage to changes in power consumption enables
carbon-aware load shaping, and is the core component of
the CICS.

� Load forecasting pipeline, which generates the next day’s
cluster-level forecasts for flexible and inflexible workload
demand. Since inflexible load cannot be shaped, we pre-
dict its next day’s hourly usage profile and the associated
uncertainty. On the other hand, flexible load is considered
shapeable as long as its total daily compute (CPU) demand
is preserved. To that end, we predict the next day’s flexible
load compute usage, which turns out to be far more pre-
dictable than its typical hourly usage profile. In addition,
the forecasting pipelines include accurate models of the
relationship between the total cluster workload usage and
reservations. Note that the forecasting errors are embedded
within the proposed risk-aware optimization framework
to make sure that Google infrastructure and applications’
SLOs are preserved (see Section III-B1 for more details).

� Optimization pipeline, which runs daily to co-optimize
the next day’s fleetwide expected carbon footprint and
appropriately-scaled power peaks, subject to infrastructure
and application SLO constraints, contractual and resource
capacity limits, as discussed in Section III-C below. The
results of the optimization are cluster-level virtual capacity

curves setting optimal capacity values for each hour of the
next day. We use V CC(c)(h) to denote the optimal virtual
capacity for cluster c at hour h of the next day.

� SLO violation detection flags when a cluster’s daily flexible
demand is not met. The violation can happen due to the
unpredicted growth in flexible or inflexible usage (which,
consequently, reduces resource available for flexible, low-
est tier, workload). When the measured cluster flexible
daily demand starts to persistently exceed the computed
violation threshold (see Section III-B2 for details), the
CICS stops shaping these clusters for a week, to allow
load forecasting models to adapt to changes in demand.

Daily analytics pipelines are scheduled at different times
of a day. Data collection and modeling pipelines generate the
next day’s predictions (in particular, all usage data at Google is
timestamped using Pacific Standard Time (PST)). These are then
used by the central optimizer once per day to compute optimal
next day VCCs for all clusters fleetwide. The generated VCCs
span 24 hours of the next day tracked in Pacific Time (PT).

In the rest of the section, we discuss the details of the imple-
mented analytical approaches within the CICS. We use capital
letters to denote stochastic processes, and lowercase letters to
denote their realizations. Also, the operator ·̂ is used to denote
the predicted value of a forecasted variable.

A. Power Modeling

There have been many studies that suggest simple models
to capture the relationship between machine/PD/cluster CPU
usage and its power consumption [31], [39]–[41]. The recent
study [31], evaluated across all of Google’s power domains,
demonstrated that a PD power consumption can be accurately
estimated using only its CPU usage as a resource usage feature.
Moreover, this general conclusion was shown to hold irrespec-
tive of the hardware heterogeneity across power domains (e.g.,
diversity in machine types, such as compute, storage, accelera-
tors, etc.)

More specifically, as discussed in [31], a piecewise linear
model accurately captures the relationship between CPU usage
and dynamic power consumption for a given PD. Using a rig-
orous evaluation methodology and usage data at 5-minute time
granularity, it was demonstrated that the daily Mean Absolute
Percent Error (MAPE) of the proposed model is less than 5%
for more than 95% of PDs. In our testing, we also find that
the impact of a change in a PD CPU usage on power can be
accurately locally approximated as

Pow(PD)(u
(PD)
CPU +Δu

(PD)
CPU )− Pow(PD)(u

(PD)
CPU )

≈ π(PD)(u
(PD)
CPU )Δu

(PD)
CPU (1)

where Pow(PD)(u
(PD)
CPU ) is used to denote PD power consump-

tion when its CPU usage equals u(PD)
CPU , π(PD)(u

(PD)
CPU ) is power

model’s slope at u(PD)
CPU for PD, and Δu

(PD)
CPU denotes a change

in CPU usage of power domain PD.
While the power models are developed per PD, the work-

load scheduler works on a per cluster basis. It assigns a large
number of computing tasks in real time to randomly selected
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TABLE I
NOTATION

feasible machines in a given cluster. As a consequence, it is
observed that the resulting CPU usage fractions across PDs
within the same cluster varies insignificantly across time, and
we denote them using λ(PD). Thus, (1) and Pow(c)(u

(c)
CPU ) =∑

PD∈c Pow(PD)(u
(PD)
CPU ), we can obtain the cluster level

power slope with the PD level power slopes with the following
approximation:

Pow(c)(u
(c)
CPU +Δu

(c)
CPU )− Pow(c)(u

(c)
CPU )

=
∑
PD∈c

(
Pow(PD)(u

(PD)
CPU +Δu

(PD)
CPU )− Pow(PD)(u

(PD)
CPU )

)

≈
∑
PD∈c

π(PD)(u
(PD)
CPU )Δu

(PD)
CPU

≈
( ∑

PD∈c
π(PD)(u

(PD)
CPU )λ(PD)

)
Δu

(c)
CPU

≡ π(c)(u
(c)
CPU )Δu

(c)
CPU ,

(2)
where π(c)(u

(c)
CPU ) ≡

∑
PD∈c π

(PD)(u
(PD)
CPU )λ(PD) represents

cluster c power usage sensitivity with respect to its CPU usage.

B. Day-Ahead Forecasting

The proposed risk-aware optimization framework for comput-
ing VCCs requires a forward looking view of the next day’s com-
pute demand and carbon intensities. It also requires a method
for detecting when flexible workload SLOs are not met, and
mechanisms to respond to these events. The effectiveness of
the proposed shaping in this paper is mainly due to the high
prediction accuracy of the aggregated flexible and inflexible
demands, as well as that of the next day’s carbon intensities,
provided by [30].

1) Load Forecasting: The day-ahead forecasting pipeline of
Google’s CICS predicts next day cluster-level: (i) hourly in-
flexible compute (CPU) usage, U (c)

IF (h), (ii) daily flexible com-

pute usage, T (c)
U,F (d) =

∑
h∈d U

(c)
F (h), (iii) daily total compute

reservations, T (c)
R (d) =

∑
h∈d(R

(c)
IF (h) +R

(c)
F (h)), and (iv) ra-

tio between total workload reservations and usage, denoted as
R(c)(h).

The next day d inflexible hourly CPU usage, U (c)
IF (h), h ∈ d,

daily flexible compute usage, T (c)
U,F (d), and daily total compute

reservations, T (c)
R (d), are forecasted using a two-step approach.

First, we compute the week-ahead hourly/daily predictions.
Then, to adapt to day-to-day deviations from weekly patterns,
we augment the week-ahead forecasts based on the deviation
of the previous day’s measurements from the corresponding
week-ahead predictions using a linear regression model.

The week-ahead hourly/daily forecasts are obtained as a prod-
uct of the next week’s predictions for weekly mean value and
hourly/daily factors. The detailed steps are described as follows:
� Forecast weekly mean value using Exponential Weighted

Moving Average (EWMA), with a half-life of 0.5 (i.e.,
decay rate equal to 0.45).

� Calculate historical intra-week hourly factors by dividing
historical hourly/daily usage (the raw data, which includes
24/1 data points each day of the 90-day history per cluster)
by the corresponding weekly mean value.

� Forecast future hourly/daily factors using EWMA with a
half-life of 4 (i.e., decay rate equal to 0.07).

� Compute the week-ahead forecasts by multiplying
the weekly mean value forecast with the intra-week
hourly/daily factors forecasts.

The EWMA parameters are selected via exploration over a
given range so that out-of-sample Mean Absolute Percent Error
(MAPE) is minimized.

Once the week-ahead forecasts are available, we train the
following linear regression model to augment them:

(augmented hourly/daily forecast) ≈
a+ b× (week-ahead forecast) +

c× (yesterday’s deviation from week-ahead forecast);

Yesterday’s deviation from week-ahead forecast is calculated as
actual measurements subtracted by the week-ahead forecasts.
a, b, c are the constants obtained from training the linear re-
gression model that minimizes out-of-sample MAPE. To this
end, simple linear regression model has proven effective in
predicting the adapted next day predictions (see Section IV for
more details), and is applied to forecasting U

(c)
IF (h), T (c)

U,F (d)

and T
(c)
R (d). Once computed these forecasts are used by the

optimizer as discussed in Section III-C below.
It is observed that the ratio between the all load CPU reser-

vations and usage, R(c)(h), is primarily driven by the compute
(CPU) usage. In particular, the larger the CPU usage of a cluster
is, the smaller the ratio. To capture the observed trend, we built a
linear regression model with log(usage) as the feature to predict
the reservation to usage ratio. The computed ratios are used by
the optimizer to translate the computed next day optimal usage
profiles into VCCs.

2) Service Level Objective Awareness: The main constraint
within the implemented load shaping framework corresponds
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to workload SLO expectations, i.e., when a temporally flexible
workload is shifted in time, its cluster-level daily compute usage
must be preserved. The daily flexible compute usage is a stochas-
tic process and, as previously discussed, is fairly predictable. In
view of that, we set the SLO for its violation, which we explicitly
embed into the proposed framework, and monitor for validation
and safety. We define the target: the cluster-level daily amount of
flexible compute (i.e., flexible load’s daily capacity requirement)
cannot be violated more often than one day per month when
averaged across a given time horizon. This translates to roughly
3 days within a 100-day time horizon, which is equivalent to
roughly 0.03 upper bound for violation probability. To meet this
SLO, each cluster’s VCC must ensure that the total amount of
compute reservation demand satisfies∑

h∈d
V CC(c)(h) = (T

(c)
R (d)).97, (3)

since flexible workload throughput gets violated when there is
not enough capacity to meet the daily demand of flexible and
inflexible demand altogether.

We compute the corresponding daily resource requirement
using the methodology discussed in Subsection III-B1. A viola-
tion of the introduced SLO happens either due to the unpredicted
growth in flexible demand, or due to the unpredicted growth
in inflexible workload. The 97%-ile of the total daily capacity
requirement (i.e., all-load daily compute reservations) is com-
puted using the previous 90-day relative errors of the day-ahead
predictions:

Θ(c)(d) = (T
(c)
R (d)).97

=
(
T̂

(c)
R (d)

)(
1 + ({ε(c)(n)}n=d−90,...,d−1).97

)
(4)

where ε(c)(n) is the next day evaluation of the relative prediction
error for day n, and T̂

(c)
R (d) is day d prediction for next day’s

all-load compute reservations for cluster c.
If the actual daily reservations demand in cluster cgets close to

Θ(c)(d) limit for two days in a row, the system considers it a sign
of usage violation, and triggers the feedback mechanism. While
there are different ways to cope with the unpredicted demand
growth, one option is to stop load shaping for some time (e.g.,
a week) to allow load forecasting models to adapt to changes in
load demand.

To ensure that the CPU capacity limit in (3) is met in the
optimal daily planning process (described in detail in Subsection
III-C below), we attribute all the “extra” capacity to the daily
amount of flexible usage by inflating its forecasted value with
factor α(c)(d) computed to satisfy

∑
h∈d

(
Û

(c)
IF (h) + α(c)(d)

T̂
(c)
U,F (d)

24

)
R̂(c)(h) = Θ(c)(d) (5)

where R̂(c)(h) is the predicted reservations-to-usage ratio cor-
responding to the nominal expected CPU usage at hour h, i.e.

Û
(c)
IF (h) +

T̂
(c)
U,F (d)

24 , on day d. In the rest of the paper, we use

τ
(c)
U (d) = α(c)(d)T̂

(c)
U,F (d) to denote the inflated, risk-aware,

daily flexible usage.

3) Carbon Intensity Forecasting: The optimization method-
ology embedded into the CICS retrieves the near-term (48-hour)
forecasts for average carbon intensities from Tomorrow (elec-
tricityMap.org), for each data center location for which we run
the optimization. Tomorrow’s approach accounts for demand,
generation, and imports, to estimate the average carbon intensity
of grid consumption in each particular region [30]. We manually
map each datacenter to one of Tomorrow’s grid regions. Since a
datacenter often contains many colocated clusters, the forecasted
and actual carbon intensities are identical for clusters located in
the same physical datacenter. To compute the optimal capacity
plan for the next day, the optimizer uses the carbon intensity
forecast for each location and hour of the next day, η(c)(h),
obtained in kgCO2e / kWh (here e means equivalent). The
optimizer runs at 6pm PT, using forecasted hourly carbon data
for each location and for each hour of the following day, from
the hour starting at 12am PT to the hour starting at 11pm PT.
Thus, the forecast horizon ranges from 6-32 hours. The evaluated
error of Tomorrow’s hourly carbon intensity forecasts depend
on weather forecasts and the forecast horizon. The carbon in-
tensity forecast MAPE, computed for different grid locations
where Google datacenters reside, ranges from 0.4% - 26% over
the range of forecast horizons (6-32 hours) for the day-ahead
forecast.

C. Optimization Framework

Our risk-, cost- and carbon-aware load shaping approach
uses day-ahead forecasts to compute the next day’s optimal
capacity values,V CC(c)(h), for each hour and cluster fleetwide.
The uncertainty of the next day’s predictions strongly impact
the effectiveness of the proposed approach, and the proposed
optimization methodology is carefully designed to harness pre-
dictable workload, environmental and infrastructure parameters.

The optimizer’s objective is to derive next day’s hourly reser-
vation capacities that minimize the weighted sum of expected
carbon footprint and daily power peak values summed over all
clusters fleetwide, i.e.,

λe

∑
c,h

η(c)(h)(Pow(c)(Û (c)
nom(h))

+ π(c)(Û (c)
nom(h))δ(c, h)

τ
(c)
U (d)

24
) + λp

∑
c

y(c)(d) (6)

where λe is the cost of 1 kg/CO2e generated carbon footprint
($/ kg CO2e) and λp is the cost associated with power in-
frastructure costs driven by clusters peak power consumption
($/ MW / day). These costs are set internally and subject to
change. Currently, we have λe = 40 and λp = 10. Û (c)

nom(h) ≡
τ
(c)
U (d)/24 + Û

(c)
IF (h) represents cluster c nominal, risk-aware,

CPU usage at hour h of next day obtained by adding hourly
prediction for inflexible CPU usage and the average hourly
risk-aware flexible compute usage as defined in (5). Matrix δ (n
x 24 matrix) is used to denote hourly deviations of flexible CPU
usage from its average hourly target, τ (c)U (d)/24; for example,
a value of δ(c, h) = −0.1 would arise when the VCC allows
for 10% less than the nominal flexible CPU usage in cell c in
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Fig. 4. An example of using δ(c, ·) to control cluster-level CPU (and power
usage) shape so that both its carbon footprint and daily usage peaks are reduced.

hour h. The variable y(c)(d) is cluster c upper bound for its daily
peak power consumption. The goal is to compute optimal values
for δ and y(c)(d). An example on how δ(c, ·) is used to control
cluster-level CPU usage shape so that its carbon footprint and
daily peak power usage are reduced, and how the optimal usage
shape is translated into the corresponding VCC, is included
in Fig. 4. Note that (6) does not seek to minimize electricity
generation costs; this is not part of our objective, but could be
relevant for other users, especially those that see high variance
in hourly electricity prices.

The optimization needs to ensure that application and infras-
tructure SLO constraints are honored, as well as contractual
constraints that define the maximum datacenter power demand.

Daily usage conservation constraint for temporally flexible
workloads translates into∑

h

δ(c, h) = 0, ∀c. (7)

Power capping constraint is a power infrastructure SLO con-
straint, which sets a threshold for cluster-level CPU usage,
Ū

(c)
pow, to prevent power domains’ circuit breakers from tripping

([31], [39]). In particular, cluster c compute usage can exceeded
the given threshold with probability less than or equal to a
given parameter 0 < γ << 1. Therefore, to meet the SLO,
P [U

(c)
IF (h) + (1 + δ(c, h))τ

(c)
U (d)/24 ≥ Ū

(c)
pow] ≤ γ. Since the

amount of flexible load in each hour can be upper-bounded by

the VCC value, (1 + δ(c, h))
τ
(c)
U (d)

24 , this is equivalent to setting
an upper bound on the maximum allowable flexible load in each
hour:

(1 + δ(c, h))
τ
(c)
U (d)

24
≤ Ū (c)

pow − (U
(c)
IF (h))1−γ , ∀c, h. (8)

We use (·)1−γ in the previous expression to denote (1− γ)th
quantile evaluated using historical day-ahead predictions and
actual, measured inflexible CPU usage, as discussed in Subsec-
tion III-B1.

Campus-level energy contracts set power usage limits for
some Google datacenters, L(dc)

cont, which the optimizer enforces

by bounding the sum of cluster level peak power usage as∑
c∈dc

y(c) ≤ L
(dc)
cont, ∀dc. (9)

Cluster-level total machine capacity: the next day’s optimal
cluster-level CPU reservations profile cannot exceed its total
machine capacity, C(c)(d). Therefore, the virtual capacity curve
values are computed as

V CC(c)(h)

=

(
Û

(c)
IF (h) + (1 + δ(c, h))

τ
(c)
U (d)

24

)
R̂(c)(h), ∀c, h, (10)

where

V CC(c)(h) ≤ C(c)(d). (11)

Other constraints: Note that there are other constraints that
could be incorporated into the optimization. For example, a
constraint could be added to bound the allowed drop in intraday
flexible usage, or to bound hour-to-hour changes in V CC(c)(·)
values. Also, the listed constraints can be incorporated inside
the objective terms (as soft constraints) using an appropriately
large penalty and function form (e.g., hinge, quadratic, etc.).

Carbon vs peak power consumption cost: Note that by using
an objective function that incorporates both carbon footprint
and cluster-level power consumption peaks as in expression (6),
Google decreases its load’s expected global carbon footprint
while also reducing demand for future infrastructure builds
required to support its workload.

In summary, our optimizer solves the following optimization
model:

min
δ,y

Equation (6)

s.t. Equation (7)− Equation (11)

IV. DEMONSTRATION AND IMPACT

The impact of the carbon-aware computing approach can
be observed across Google’s fleet, spanning different electric-
ity grids. The magnitude of these benefits, however, varies
significantly from location to location. This section evaluates
the impact of the proposed shaping mechanism by analysing
operational data, showing how it is affected by (i) the amount of
flexible usage, (ii) the high uncertainty range in the computed
demand forecast, (iii) the intraday variability and magnitude of
grid carbon intensity.

The load forecasting models are trained and evaluated daily
for all clusters across Google’s datacenter fleet. For each cluster,
we compute absolute percent error (APE) of all day-ahead
predictions across a chosen 3-month-long time horizon. Then,
we compute their median, 75%-ile, and 90%-ile, and we plot the
distribution of their values for all clusters fleetwide. The results
are shown in Fig. 5 for hourly inflexible CPU usage (U (c)

IF (h)),

daily flexible compute usage (T (c)
U,F (d)), daily total compute

reservations (T (c)
R (d)), and hourly reservations-to-usage ratio

(R(c)(h)) predictions.
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Fig. 5. Percent of clusters (axis y) with median, 75%-ile and 90%-ile Absolute
Percent Errors (rounded to the nearest 3% increment) within a given range set
by x axis. The x axis shows absolute percent error, and while outliers are in the
50-100% range, the majority have far smaller errors. Consequently, these results
suggest that the load is predictable.

We can see that the median APEs of inflexible usage, total
load reservations, and reservations-to-usage ratio predictions
are smaller than 10% for more than 90% of the clusters. Daily
flexible compute usage forecasts have larger APEs, which is
not surprising given that flexible demand is typically more
variable. The rare, high, APEs (greater than 50%) are sometimes
observed for clusters that have small flexible usage, or that are
going through a typically sudden, transient increase in flexible
demand especially in new clusters. In order to comply with
Google’s SLOs, our optimizer makes decisions based on the
97th percentile of the forecasts. Large prediction error would
mean that the 97th percentile forecast could be much larger
than the actual load. As a result, the optimizer would assign
large capacities to the clusters, and the capacity curves would
be unable to suppress demand. Thus these rare scenarios result
in either inactive or ineffective shaping of the specific clusters
on the particular days (see Subsection III-C), and are omitted
when Fig. 5 was created. We also compared the results of the
proposed forecasting model with that of a structural time-series
model, and find that their performance are comparable in metrics
including MAPE, and confidence interval coverage.

To show these impacts, we present shaping results from two
clusters within a large Google campus on a selected day in
Figs. 6, 7. The clusters and date were chosen because they help
illustrate how the predictability of compute demand impacts
the effectiveness of load shaping. In each figure, the top graph
captures real-time compute reservations (blue) constrained by a
VCC (red). The bottom graph shows the normalized power used
by the data center (orange), with the power’s carbon-intensity
(black) which influenced the VCC.

Fig. 6. Hourly VCC, compute reservations, cluster power, and carbon intensity
in cluster X on the selected day.

Fig. 7. Hourly VCC, compute reservations, cluster power, and carbon intensity
in cluster Y on the selected day.

In the first cluster, X , the average value of the VCC is about
18% higher than the average load demand. This difference is
due to the uncertainty in the load forecast, because our forecast
value for the 97th quantile for load demand is 18% higher than
the actual daily load. In this location, the VCC is able to drop
flexible load by roughly 50% during peak carbon intensity hours
driving an 8% drop in power during the hours with peak carbon
intensity (see Fig. 6).

In another location, Y , uncertainty in the forecasts for inflexi-
ble and flexible load drives the VCC higher (see Fig. 7). Here, the
average value of the VCC is about 33% higher than the average
load demand. The VCC is still able to drop by almost 50% during
peak carbon intensity hours, but the drop is not as sustained (its
duration is shorter). This drives a roughly 8% decrease in power
during the hours with peak carbon intensity, but the duration is
only 3 hours versus 6 hours in cluster X , reducing the carbon
impact of shaping. The higher predictability of load in cluster X
allows for more effective shaping and higher carbon reductions
in cluster X than in cluster Y .

Note that a VCC is set to a cluster total machine capacity when
a cluster is too full to allow for shaping, for example when the
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Fig. 8. The effect of load shaping optimization on cluster power consumption,
averaged across all clusters and test days in a single Google datacenter campus.

risk-aware total daily compute reservations is larger than cluster
machine capacity. The same happens when there is insufficient
data for forecasting or estimating power models.

The VCCs have disparate impacts across datacenter locations,
and their impacts may change over time as demand patterns and
daily carbon intensity patterns change. Therefore, it is helpful to
evaluate aggregate impacts on campuses and Google’s fleet. To
that end, we ran a controlled experiment to evaluate the impact
of day-to-day shaping on power consumption. Fig. 8 shows the
normalized power curves, averaged across all datacenter clusters
in a campus, on randomly treated (optimized) and non-treated
(not optimized) days for two months beginning February 12th,
2021. On each day, each cluster is randomly assigned to receive
the carbon-aware optimal shaping or not, with 50% probability
of being in each group on any given day. The solid lines plot
normalized power, over the course of the day, averaged over all
data center clusters within a selected campus for 1 mo, for shaped
(orange) and not shaped (blue) clusters. The (black) dashed line
displays the average (actual) carbon intensity in each hour over
the course of the day for the grid that it is powered by. In each
line, the uncertainty band reflects the 95% confidence interval in
the mean value for the hour, averaged across days and clusters.

In this example, when CICS is active, average cluster power
drops by 1-2% during the highest carbon hours, compared to
power in the same clusters on dates that the cluster is placed in
the control group and not shaped by the carbon-aware computing
mechanism. We also observe that, in load shaping regimes where
we allow for larger and longer drops in capacity (obtained by
increasing the cost associated with the carbon footprint, λe, in (6)
and by relaxing conditions for δ), total daily flexible compute
and, consequently, power usage tends to slightly decrease in
the shaped clusters. This happens because some flexible jobs
“choose” to move to different clusters in response to lower and
durable virtual capacity limits imposed by the carbon-aware
computing mechanism, as a result of which, the flexible compute
conservation condition fails to hold. The “spontaneous” load
shifting to other locations may increase or decrease carbon
emissions. To harness the spatial flexibility to carbon- and cost-
effectively redistribute flexible load across both time and loca-
tions, future models will explicitly characterize spatially flexible
demand and extend the proposed optimization framework to take
it into consideration.

V. CONCLUDING REMARKS

The growing climate impact of increased Greenhouse Gas
Emissions and CO2 levels in Earth’s atmosphere highlights the
value and importance of technologies that reduce such impact.
Electricity generation is one of the larger contributors to global
CO2 emissions [42]. The datacenter industry accounts for an
expanding electricity demand, expected to reach anywhere from
3 to 13% of global electricity demand by 2030 [43]. Yet, it has the
potential to facilitate grid decarbonization in a manner different
from isolated power loads.

This paper introduces Google’s Carbon-Intelligent Comput-
ing System, which shifts datacenter computing in time and
will soon also shift computing in space. These together will
help realize the company’s global environmental [44] and ef-
ficiency objectives. The system proactively makes automated
adjustments based on current and forecasted grid conditions
to reliably and effectively shape Google’s compute load in a
carbon- and efficiency-aware manner. The core of the carbon-
aware load shaping mechanism are cluster-level [29] Virtual
Capacity Curves, which are hourly resource usage limits that
serve to shape the cluster resource and power usage profile
over the following day. These limits are computed using an
optimization process that takes account of aggregate flexible and
inflexible demand predictions and their uncertainty, hourly car-
bon intensity forecasts [30], explicit characterization of business
and environmental targets, infrastructure and workload perfor-
mance expectations, and usage limits set by energy providers
for different datacenters across Google’s fleet.

Using actual measurements from Google datacenter clusters,
we demonstrate a power consumption drop of 1-2% at times with
the highest carbon intensity. Ongoing system enhancements,
which include shifting flexible workloads across locations, are
expected to increase the benefits of this system. A valuable
topic for future work would be to compare results between this
proposed strategy and other existing data center load shifting
methods, if they are implemented in large-scale datacenters.
The framework and principles embedded in Google’s Carbon
Intelligent Computing system align with its compute manage-
ment systems and workload properties. While other compute
providers’ approaches to carbon-aware computing will necessar-
ily vary, we hope that the initial results demonstrated in this paper
inspire academia and industry to pursue diverse approaches to
individual cluster or hyperscale computing system management.
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