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Electrostrictive and Piezoelectric Effects in
Relaxor Ferroelectrics: Historical Background
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Abstract— Electrostrictive effects in complex-perovskite
“relaxor” ferroelectrics (FEs) exhibit superior performance
in comparison with the simple-perovskite normal FEs,
such as giant electrostriction in its paraelectric phase and
high electromechanical coupling in its FE phase. As one
of the discoverers, the author will deliver the historical
background of these epoch-making phenomena and the
development strategy of how we considered performance
improvement. Though both discoveries were actually origi-
nated from a sort of “serendipity” (lucky & accidental occur-
rence!), some of the key factors have been embedded in the
research base: 1) interrelation between complex perovskite
structure and ferroelectricity; 2) anharmonicity in relaxor
FEs; and 3) microdomain contribution in relaxor FEs. In the
last part of this article, the author introduces a bit different
“mesoscopic” approach, “fractal analysis of microdomain
configuration” in conjunction with the “domain engineer-
ing” concept, to distinguish the electromechanicalcoupling
among the normal and relaxor FEs for remaining the future
research seeds.

Index Terms— Critical exponent, dielectric relaxation,
diffuse phase transition, disordered perovskite, domain
engineering, fractal dimension, giant electrostriction,
lead–magnesium–niobate (PMN), lead–zinc–niobate (PZN),
relaxor ferroelectrics (FEs).

I. INTRODUCTION: BACKGROUND OF

ELECTROSTRICTIIVE EFFECT

CROSS et al. [1] reported giant electrostriction higher
than 0.1% of the strain observed in lead–magnesium–

niobate-based ceramics (PMN-PT) in the late 1970s, which
has immediately accelerated the ceramic actuator applications
[1]–[3]. In parallel, Kuwata et al. [4], [5] also discovered a
superior electromechanical coupling effect with k33

∗ higher
than 95% in lead–zinc–niobate-based single crystals (PZN-
PT). These epoch-making discoveries in the last 20th century,
both of which were originated from a sort of “serendipity,” lead
to further intensive investigations in the present 21st century
from both viewpoints of theoretical modeling and practical
transducer applications.
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This article delivers the historical background of these
discoveries, aiming at providing key factors for understanding
why the relaxor/complex perovskites exhibit superior elec-
trostrictive/electromechanical coupling and for developing new
materials for actuators and transducers from the author’s
personal strategies. These factors may include: 1) interre-
lation between complex perovskite structure and ferroelec-
tricity; 2) anharmonicity in relaxor ferroelectrics (FEs); and
3) microdomain contribution in relaxor FEs. After this intro-
duction (see Section I), the following sections are composed
of electrostriction phenomenology, including both FEs and
antiferroelectrics (AFEs) (see Section II), complex perovskites
for discussing the FE properties in terms of ionic ordering
and the empirical “QC constant rule” (see Section III), the
microscopic origin of electrostriction (see Section IV), char-
acterization methods of electrostriction, and obtained results
for both normal and relaxor FEs, and then, the key sections
(see Section V), anharmonicity of lattice vibration in relaxor
FEs for discussing the smaller electrostrictive coefficient and
larger Curie–Weiss constant in relaxors, in comparison with
normal types (see Section VI), critical exponent in relaxor
FEs, which indicates microdomain–microdomain interaction
in a crystal (see Section VII), leading to fractal analysis of
microdomain configuration (see Section VIII). This section
may be a bit different mesoscopic approach to distinguish
the electromechanical coupling among the normal and relaxor
FEs in terms of nanodomain, microdomain, and macrodomain
configurations, which provides direct insight into the domain
configurations for the piezoelectric performance improvement
in the domain engineering (see Section IX). This is not a
comprehensive review paper for covering extensive up-to-
date research. Regarding various actuator/transducer applica-
tions of these materials, refer to other references, such as a
textbook [92].

A. Discovery of Giant Electrostriction

The “Space Shuttle” project planned to install a deformable
mirror in the middle of the 1970s in order to control the
optical pathlengths over several wavelengths (∼1 μm) for
obtaining much better resolution in astronomical pictures
(i.e., “Hubble Telescope”). Precise “displacement transducers”
(initially used terminology) were required for this application.
Because the conventional piezoelectric PZT (Pb(Zr,Ti)O3)
ceramics were plagued by hysteresis and zero-point drift
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Fig. 1. Transverse strain curves in ceramic specimens of
0.9PMN-0.1PT and typical hard PZT 8 piezoceramic under varying
electric fields [1].

of strain under large electric fields (a serious problem for
an optical positioner), gigantic electrostriction invented by
Cross et al. [1] with the strain level higher than 0.1% with
negligible hysteresis during rising and falling electric field
in a composition 0.9Pb(Mg1/3N2/3)O3-0.1PbTiO3 [0.9PMN-
0.1PT] was eagerly desired (see Fig. 1). The reader knows that
every phenomenon has primary and secondary effects, which
are recognized usually as linear and quadratic phenomena,
respectively. In actuator materials, these correspond to the
“piezoelectric” and “electrostrictive” effects. Though many
people believed that the secondary effect would be minor
and could not provide a contribution larger than the primary
effect, the enormous electrostriction was actually discovered
in relaxor FE PMN-PT solid solutions in their paraelectric
phase, larger than the PZT piezostriction, as demonstrated in
Fig. 1. The “serendipity” here means that we just started to
measure them merely because we had plenty of these complex
perovskite ceramic specimens in our lab. Though we spent
more than three years on other kinds of specimens, including
PZT-based ceramics, we found that this first composition
exhibited accidentally the highest electrostriction value under
an electric field of 1 kV/mm, which was a safety limit in the
“Industrial Standard” then.

This discovery, in conjunction with the multilayer (ML)
actuator invention by Uchino et al. [3], accelerated the devel-
opment of “piezoelectric/electrostrictive actuators” after the
1980s [6]. The “Hubble” telescope proposed by the Jet Propul-
sion Laboratory, NASA, by using six ML PMN electrostrictive
actuators to control the phase of the incident light wave was
successfully launched on the Space Shuttle in 1993 [7].

B. High Electromechanical Coupling Relaxor
Single Crystals

Uchino’s group at the Tokyo Institute of Technology was
interested in making single crystals of PZT in the 1970s
in order to clarify the crystal orientation dependence of
piezoelectricity. However, it was difficult for them to prepare
large single crystals with the “morphotropic phase bound-
ary (MPB)” composition (52/48). Thus, the Pb(Zn1/3Nb2/3)
O3-PbTiO3(PZN-PT) solid solution system was focused
instead because it could easily be prepared in large
single-crystal forms with a phase diagram similar to the
PZT system. See the MPB between the rhombohedral

Fig. 2. (a) Phase diagram for the Pb(Zn1/3Nb2/3)O3–PbTiO3 solid
solution system. (b) Changes of electromechanical coupling factors with
PT in the Pb(Zn1/3Nb2/3)O3–PbTiO3 system.

and tetragonal phases in Fig. 2(a) [4]. Fig. 2(b) shows the
dependence of electromechanical coupling parameters on
the PT amount in the (1–x)PZN-xPT system, reported by
Kuwata et al. [5] in 1982. Note that the MPB composition,
0.91PZN-0.09PT, exhibited the maxima for all parameters,
in particular, the highest values in electromechanical coupling
factor k33

∗ and the piezoelectric constant d33
∗ reached 95% and

1600 pC/N, respectively, when the poling direction was along
the perovskite �100� direction, 57◦ canted from the sponta-
neous polarization (PS) direction (perovskite �111� direction),
not along the PS direction. Superscript ∗ was used because
the poling direction was not along the spontaneous direction
(i.e., different from the definition of d33). When a Ph.D.
student, J. Kuwata, reported to the author first, even I could
not believe these large numbers. Thus, we worked together
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to reexamine the experiments. When I saw the antiresonance
frequency almost twice the resonance frequency, I needed
to believe this incredibly high k value in 1980. The author
still remembers that the first submission of our manuscript
was rejected because the referee could not “believe this large
value.” The maximum k33 in the 1970s was about 72%
in the PZT-based ceramics. This article was published after
a year-long communication by sharing the raw admittance
curves and so on via “sea mail” then. However, our original
discovery was not believed or not required for applications
until the middle of the 1990s. A sort of “best-citation note”
arrived at us 17 years after the discovery. The “serendipity” in
this case came from the favorably immature crystallographic
knowledge of this student. Knowledgeable researchers might
have poled automatically according to the conventional way
that the poling is conducted merely along the PS direction,
thus missing this exciting k enhancement. Another luck was
good followers of our discovery; Yamashita’s Group at Toshiba
Corporation, Japan, promoted medical transducer develop-
ments [8], and Park and Shrout at Penn State demonstrated a
large displacement generation, such as a “miracle stone” [9].
Without these followers’ active developments on these single
crystals, our discovery might not have been commercialized
timely.

II. ELECTROSTRICTION PHENOMENOLOGY

After reviewing first the Devonshire phenomenology in FEs,
we describe the electrostrictive couplings in the AFE case with
intrasublattice and intersublattice couplings, which is directly
correlated with the ionic ordering status in complex perovskite
polar crystals in Section III.

A. Case of Ferroelectrics

In a perovskite FE, the paraelectric phase of which is cen-
trosymmetric and nonpiezoelectric, the piezoelectric coupling
term PX is omitted, and the “electrostrictive coupling” term
P2 X is introduced as the “electromechnacal coupling.” The
theories for electrostriction in FEs were formulated in the
1950s by Devonshire [10] and Kay [11]. The elastic Gibbs
energy can be expanded in a 1-D form

G1(P, X, T ) = (1/2)αP2 + (1/4)β P4 + (1/6)γ P6

−(1/2)s X2 − Q P2 X. (1)

For simplicity, only α is temperature-dependent, given by
α = (T − T0)/ε0C , where P, X, and T are the polarization,
stress, and temperature, respectively, and C, s, and Q are called
the Curie–Weiss constant, elastic compliance, and the “elec-
trostrictive coefficient,” respectively. This leads to (2) and (3)

E = (∂G1/∂ P) = αP + β P3 + γ P5 − 2Q P X (2)

x = −(∂G1/∂ X) = sX + QP2. (3)

When the external stress is zero, the following set of
equations are derived:

E = αP + β P3 + γ P5 (4)

x = QP2 (5)

1/ε0ε = α + 3β P2 + 5γ P4. (6)

When the external electric field is equal to zero (E = 0),
two different states are derived from (4): P = 0 and P2 =
(−β + (β2 − 4αγ )1/2)/2γ .

1) Paraelectric Phase: PS = 0 or P = ε0εE (under
small E)

Permittivity: ε = C/(T − T0)(Curie–Weiss law) (7)

Electrostriction: x = Qε2
0ε

2 E2. (8)

A practical electrostrictive coefficient M , defined as
x= ME2, is related linearly to the electrostrictive Q
coefficient through

M = Qε2
0ε

2. (9)

2) Ferroelectric Phase: P2
S = (−β + (β2 − 4αγ )1/2)/2γ

or P = PS + ε0εE (under small E)

x = Q(PS + ε0εE)2 = QP2
S + 2ε0εQPS E + Qε2

0ε
2 E2

(10)

where we define the spontaneous strain xS and the
piezoelectric constant d as

Spontaneous strain: xS = QP2
S (11)

Piezoelectric constant: d = 2ε0εQPS . (12)

For example, three independent Q reduced-matrix compo-
nents, Q11, Q12, and Q44, are considered in 3-D to discuss the
paraelectric (cubic m3m)-to-FE (tetragonal) phase transition
in barium titanate. In practice, Q11 is positive with 6.7 ×
10−2 m4C−2, and Q12 is negative with −2.2 × 10−2 m4C−2.
Thus, the spontaneous PS and the induced polarization ε0εE3

will generate the extension along the three axes and contrac-
tion along the perpendicular 1 and 2 axes in both phases.
The Poison’s ratio (estimated by −Q12/Q11) is close to
0.33 (∼1/3), leading to the spontaneous volumetric expansion
(Qh = Q11 + 2Q12 > 0) in the FE phase.

When a hydrostatic pressure p (X = −p) is applied

(Ferroelectric state)1/ε0ε = α + 3β P2
S + 5γ P4

S + 2Qp

(13a)

(Paraelectric state)1/ε0ε = α + 2Qp

= (T − T0 + 2Qε0Cp)/(ε0C).

(13b)

The inverse permittivity is changed in proportion to p.
Therefore, the pressure dependence of the Curie–Weiss tem-
perature T0 or the transition temperature TC is derived as
follows:

(∂T0/∂p) = (∂TC/∂p) = −2Qε0C. (14)

In general, the FE Curie temperature is decreased with
increasing hydrostatic pressure (i.e., Qh > 0). More precisely,
almost the same 50 ◦C temperature decrease per 1 GPa
hydrostatic pressure increase in most of perovskite FEs [12],
leading to an important empirical rule, the “QC” constant rule,
as described again in Section III.C.4.

We have discussed so far the electric-field-induced strains,
i.e., piezoelectric strain (converse piezoelectric effect, x = d E)



3016 IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL, VOL. 69, NO. 11, NOVEMBER 2022

Fig. 3. Polarization versus electric field hysteresis curves in
(a) paraelectric, (b) FE, and (c) AFE materials.

and electrostriction (electrostrictive effect, x = M E2). Let
us consider here the converse effect, that is, the material’s
response to an external stress, which is applicable to force
sensors. The direct piezoelectric effect is the increase in the
polarization by an external stress. Equation (2) provides

E = 2Q PS p, or�P = dp. (15)

Recall (12), d = 2ε0εQPS.
On the contrary, since an electrostrictive material does not

have a spontaneous polarization, it does not generate any
charge under stress, but does exhibit a change in permittivity
[derivative of (2)]

�(1/ε0ε) = 2Qp (16)

This “converse electrostrictive effect,” the stress depen-
dence of the permittivity, is used also in stress sensors [13].
A bimorph structure which subtracts the static capacitances
of two dielectric ceramic plates can provide superior stress
sensitivity and temperature stability. The response speed is
limited by the capacitance measuring frequency to about
1 kHz. Unlike piezoelectric sensors, electrostrictive sensors
are effective in the low-frequency range, especially pseudo-dc
stress change.

B. Case of Antiferroelectrics

The previous sections dealt with the case in which the
directions of the spontaneous dipoles are parallel to each other
in a crystal (polar crystal). When the antiparallel orientation
lowers the dipole-dipole interaction energy, antipolar crystals
are realized. When the application of an external electric
field or mechanical stress causes a transition of the dipole
orientation from antiparallel to parallel state, such crystals are
called “AFEs.”

Fig. 3 shows the relationship between E (applied electric
field) and P (induced polarization) in paraelectric, FE and
AFE phases. In a paraelectric phase the P-E relation is linear
[see Fig. 3(a)] under small field; in an FE phase there appears
a hysteresis caused by the transition of the spontaneous
polarization between the positive and negative directions [see
Fig. 3(b)]; in an AFE phase, at low electric field, the induced
polarization is proportional to E , and when E exceeds a certain
value Ecrit , the crystal becomes FE (electric-field-induced
phase transition), and the polarization shows hysteresis with
respect to E . After removal of the electric field, the crystal
returns to its antipolar state, and hence, no spontaneous
polarization can be observed as a whole. This is called a
“double hysteresis curve” [see Fig. 3(c)].

1) Phenomenology of Antiferroelectrics: The reader probably
learned the famous Kittel’s phenomenology of AFEs with
sublattice polarizations [14]. Though Fujimoto and Yasuda
reported the “stress dependence of AFEs,” their handling with
the stress could not explain even the Neel temperature change
trend [15]. Uchino et al. introduced “electrostrictive coupling”
in Kittel’s free energy expression for AFEs with the “two-
sublattice model” [16], [17]. A superlattice (twice the unit
lattice) was assumed to form two neighboring sublattices, each
having a sublattice polarization Pa and Pb in 1-D expression
case. The state Pa = Pb represents the FE phase, while Pa =
−Pb, the AFE phase, realized according to the η sign of the
sublattice coupling energy (1/2) ηPa Pb. For the electrostrictive
effect, in addition to the intrasublattice coupling between the
two sublattices, where the strains are described as QP2

a and
QP2

b, respectively (assuming equal electrostrictive constants
Q for both sublattices), the “intersublattice coupling” term
qPa Pb was introduced [17] This is the key to explain the
volumetric shrinkage at the transition from paraelectic to
antiferroelectic phase and the Neel temperature increase with
hydraulic pressure. The elastic Gibbs energy is represented by
the following form:

G1 = (1/4)α
(

P2
a + P2

b

) + (1/8)β
(
P4

a + P4
b

)
+(1/12)γ

(
P6

a + P6
b

) + (1/2)ηPa Pb − (1/2)χT p2

+(1/2)Qh
(
P2

a + P2
b

) + qh Pa Pb p (17)

where hydrostatic pressure p is employed, and χT is the
isothermal compressibility, Qh (= Q11 + 2Q12) and qh

(= q11 + 2q12) are the hydrostatic electrostrictive constants
(1-D expression). Introducing the transformations PF = (Pa +
Pb)/2 and PA = (Pa−Pb)/2 leads to the following expression:

G1 = (1/2)α
(
P2

F + P2
A

) + (1/4)β
(
P4

F + P4
A + 6P2

F P2
A

)
+(1/6)γ

(
P6

F + P6
A + 15P4

F P2
A + 15P2

F P4
A

)
+(1/2)η

(
P2

F − P2
A

) − (1/2)χT p2 + Qh
(
P2

F + P2
A

)
+qh

(
P2

F − P2
A

)
p. (18)

The dielectric and elastic equations of state follow as

∂G1/∂ PF = E = PF
[
α + η + 2(Qh + qh)p + β P2

F + 3β P2
A

+γ P4
F + 10γ P2

F P2
A + 5γ P4

A

]
(19)

∂G1/∂ PA = 0 = PA
[
α − η + 2(Qh − qh)p + β P2

A + 3β P2
F

+γ P4
A + 10γ P2

F P2
A + 5γ P4

F

]
(20)

∂G1/∂p = �V/V = −χT p + (Qh + qh)P2
F

+(Qh − qh)P2
A. (21)

Hence, the induced volume change in the paraelectric phase
can be related to the induced FE polarization by the following
formula:

(�V/V )ind = (Qh + qh)P2
F,ind. (22)

Below the phase transition temperature (this temperature for
AFE is called “Neel temperature”) the spontaneous volumetric
strain and the spontaneous AFE polarization are related as

(�V/V )S = (Qh − qh)P2
A,S . (23)
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Fig. 4. (a) Spontaneous strain changes in 3-D associated with sublattice
interactions in the electrostrictive effect. The illustration is drawn in the
case of q33 and q31 > 0. (b) Longitudinal and transverse induced strains
in the sample Pb0.99Nb0.02[(Zr0.6Sn0.4) 0.925Ti0.075]0.98O3 [18].

Even if the perovskite crystal shows Qh > 0, the sponta-
neous volumetric strain can be positive or negative depending
on the value of qh(qh < Qh or qh > Qh), that is, if the
intersublattice coupling is stronger than the intrasublattice
coupling (i.e., qh > Qh), a volume contraction is observed at
the Neel point (more popular in AFE). This is quite different
from FEs, which always show a volume expansion at the Curie
point, because Qh > 0. When Pa and Pb are in the parallel
configuration (FE phase), the qh acts to increase the strain xS,
when they are in the antiparallel configuration (AFE phase),
the qh acts to decrease the strain. The large change in the strain
associated with the field-induced transition from the AFE to
FE phase can be estimated to be

(�V/V ) = (�V/V )ind − (�V/V )S

= (Qh + qh)P2
F,S − (Qh − qh)P2

A,S

= 2 qh P2
F,S . (24)

Here, we assume that the magnitudes of Pa and Pb do
not change drastically through the phase transition; that is,
PF,S ≈ PA,S .

This phenomenological theory explains well the experimen-
tal results for the AFE perovskite PbZrO3-based ceramics by
extending it to 3-D [18], [19]. Suppose Pa and Pb along the
three axes, the 3-D strain changes associated with the E3 field-
induced transition from AFE to FE are probably given by

�x3 = (Q33 + q33)P2
F3 − (Q33 − q33)P2

A3 = 2q33 P2
F3 (25a)

�x1 = �x2 = (Q31 + q31)P2
F3 − (Q31 − q31)P2

A3 = 2q31 P2
F3.

(25b)

Here, PF3 = PA3 was also assumed because only the flip-
ping of polarizations Pa and Pb would occur at the tran-
sition. Fig. 4(a) illustrates the spontaneous strain changes
in 3-D associated with sublattice interactions in the elec-
trostrictive effect. Illustration is drawn in the case of
q33 and q31 > 0, while Fig. 4(b) plots the longitudi-
nal (L)- and transverse (T)-induced strains in the sample
Pb0.99Nb0.02[(Zr0.6Sn0.4)0.925Ti0.075]0.98O3 [PNZST]. Note that
the strain curves for L and T are plotted mirror-symmetrically
with respect to the field E to show the strain jump curves

Fig. 5. Ordered arrangements of B-site ions in complex perovskites:
(a) simple type (ABO3), (b) 1:1 order type (AB1/2B’1/2O3), and (c) 1:2
order type (AB1/3B’2/3O3).

clearly. With increasing the electric field, both L and T strains
are almost zero in the AFE state. Around E = 1 kV/mm
(−1 kV/mm in the T curve), both strains jump suddenly by
8 × 10−4 (i.e., large “isotropic expansion”!), relating to the
AFE-to-FE transition, denoted as A and A’ in Fig. 4(b). Then,
additional extension by 10 × 10−4 longitudinally (A→B) and
transverse contraction by −3 × 10−4 follow (A’→B’) with
slight time lag due to the FE domain reorientation. Once the
electrically poled state is induced in the specimen ceramic,
typical butterfly-shape L and T strain curves are observed
during the electric field cycle.

2) Piezoelectric Anisotropy: The intersublattice coupling q33

and q31 values were evaluated using experimental strains and
polarization data for PNZST reported in [18] and [19] and
δTN/δp of the PbZrO3-based sample [12]

PF3 = PA3 = 0.4
(
C · m−2); �x3 = �x1 = 8 × 10−4

Qh = Q33 + 2Q31 = 0.5 × 10−2
(
m4 · C−2

)
qh = q33 + 2q31 = 0.9 × 10−2

(
m4 · C−2

)
.

Then, we derive the following results:
Q33 = 1.5×10−2(m4 · C−2), Q31 = −0.5×10−2(m4 · C−2)
q33 = 0.3 × 10−2(m4 · C−2), q31 = 0.3 × 10−2(m4 · C−2).
It is noteworthy that q33 and q31 have the same positive

sign (accidentally almost the same value), while Q33 and
Q31 have the opposite sign showing a normal “piezoelectric
Poisson’s” ratio of 1/3. The theoretical explanation on the
“negative Poisson’s ratio” (i.e., isotropic volumetric expansion)
among the intersublattice coupling q33 and q31 is a future
problem to be solved since phenomenological advancement
has not been seen after the Uchino group’s studies above. This
intersublattice electrostrictive coupling factors can explain
successfully a very small d31 and an enormous piezoelectric
anisotropy |d33/d31| ≈ 9 in some PT-rich PZT compositions
[20], [21], which is preferable to ultrasonic medical probe
applications [22], [23].

III. COMPLEX PEROVSKITES

A. Tolerance Factor

“Perovskite” type oxides [ABO3 in Fig. 5(a)] are our pri-
mary targets to develop superior FE/piezoelectric materials
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because this structure can exhibit enormous Lorentz factor γ ,
such as ∼10 for barium titante [24], so that large “local
field” and “dipole coupling energy” (i.e., feedback force to
realize the ionic shift or dipole moment in a crystal lattice) are
expected. Not all ABO3 compounds can exhibit the perovskite
structure with an oxygen-octahedron-corner-sharing type but,
sometimes, different structures, such as LiNbO3 in an ilmenite-
like octahedron-face-sharing puckered type with a small Li
ion. In order to create the perovskite structure, A and B ion
sizes are primarily important. For closed-shell A and B ions,
the “tolerance factor”

t ≡ rA + rO√
2(rB + rO)

(26)

(rA, rB, and rO denote the ionic radius of A, B, and O
ions) is frequency used to discuss the Perovskite structure
stability [25]. The case t = 1 means that three ions are
closely packed each other, while t > 1 and t < 1 cases stand
for the existence of rattling space around the B and A ions,
respectively. Empirically, t > 0.855 seems to be a threshold
to maintain the perovskite structure, below which too small A
ion (such as Li) introduces a puckered structure. However, the
ferroelectricity is not predicted directly by the tolerance factor
but by the ionic size of B ion dominantly. Its size 0.6–0.7 Å
seems to be preferable to introduce polar or antipolar status.
The discussion of Pb2+ ion (PbTiO3) with nonclosed-shell ion
configuration is not so simple as Ba2+ (BaTiO3) with a similar
closed-shell ionic configuration to [Xe54], in which we need
to consider nonspherical 5d electron orbital interaction with
the adjacent oxygen ions.

B. Ionic Ordering and Ferroelectricity

This article focuses on relaxor perovskite FEs with complex
perovskites of a combination of different valence B ions with
keeping the average valence as +4, such as A2+(B2+

1/2B6+
1/2)O3,

A2+(B3+
1/2B5+

1/2)O3, and A2+(B2+
1/3B5+

2/3)O3.
Let us take some examples of complex per-

ovskites: Pb(Mg1/3Nb2/3)O3, Pb(Mg1/2W1/2)O3, and
Ba(Mg1/3Ta2/3)O3. First, Pb(Mg1/3Nb2/3)O3 exhibits “random
arrangement” of Mg2+ and Nb5+ ions on the B-sites and is
called a “disordered” perovskite, which is equivalent to a
simple perovskite [see Fig. 5(a)] from the macroscopic crystal
structure’s viewpoint. We should point out the “short-range
ionic ordering” in this material, which exhibits microscopic
mixed regions of random and ordered arrangement (“Kanzig
regions”) [70], [71], as discussed in Section VII-B. Second,
Pb(Mg1/2W1/2)O3 shows an “ordered” arrangement of
Mg2+ and W6+ in an NaCl-type, as shown in Fig. 5(b)
(1:1 order). Third, the cation ordering is also found in
Ba(Mg1/3Ta2/3)O3, where Mg2+ and Ta5+ are arranged in the
sequence of Mg–Ta–Ta in the �111� direction [1:2 order; see
Fig. 5(c)] [26]. The degree of the ionic ordering in complex
perovskites depends basically on the difference in the valence
charge and/or in the ionic radius, which provides the sum
of Madelung energy, polarization, and displacement (elastic)
energy [27].

The ordering of the ionic arrangement gives a significant
effect on ferroelectricity. Simple perovskites exhibit either

Fig. 6. Crystal structure models of the A(BI,1/2BII,1/2)O3 type perovskite:
(a) ordered structure with a small rattling space and (b) disordered
structure with a large rattling space [O = BI and • = BII].

ferroelectricity (BaTiO3 and PbTiO3) or antiferroelectricity
(PbZrO3 and PbHfO3). On the other hand, the 1:1 ordered
complex perovskites tend to be antiFE (Pb(Mg1/2W1/2)O3 and
Pb(Co1/2W1/2)O3), which may be due to the intersublattice
coupling enhancement, while disordered perovskites tend to
be FE (Pb(Mg1/3Nb2/3)O3 and Pb(Fe1/2Ta1/2)O3). In addition,
the phase transition of the “disordered perovskite” is rather
diffused, and the crystal structure in the low temperature phase
is rhombohedral, rather than tetragonal in BaTiO3 and PbTiO3.

The close relationship between dielectric and crystallo-
graphic properties is suggestively exemplified in the previous
work on Pb(Sc1/2Ta1/2)O3 (PST) by Setter and Cross [28]. The
degree of the cation ordering (Sc3+, Ta5+) was manipulated
by simple thermal annealing without any composition change.
They reported the differences in the dielectric constant and
the spontaneous polarization in different ion-order levels. The
disordered sample (ordering parameter S = 0.35) exhibits a
“diffuse transition” from an FE to a paraelectric phase. With
increasing the ordering level (S = 0.80), the phase transition
becomes “sharp” and occurs at a higher temperature (i.e.,
the polar state is more stable). This partially ordered PSN
exhibited paraelectic-to-FE phase transition, without showing
the AFE phase. Though various papers can be found on the
ion-ordering principle, clear explanation on the relationship
with ferroelectricity has not been made yet.

It is interesting to mention that the materials with the 1:2
cation order are usually nonpolar (NP), and often applicable
to microwave dielectrics (i.e., now electromagnetic interaction
up to the GHz range) [29].

C. QC Constant Rule

1) Rattling Ion Model: An intuitive crystallographic model
(i.e., “rattling ion model”) was proposed first by Uchino et al.
[3], [30] to explain enormous permittivity, small electrostric-
tive coefficient Q (�x = Q P2), and large electrostrictive
constant M (�x = M E2) in the disordered perovskites.
Fig. 6(a) and (b) shows the ordered and disordered structures
for an A(BI,1/2BII,1/2)O3 perovskite crystal (BI is a larger ion
than BII). Assuming a rigid ion model, a large “rattling” space
is expected for the smaller BII ions in the disordered structure
[see Fig. 6(b)] because the large BI ions prop-open the lattice
framework. On the contrary, much less “rattling” space is
expected in the ordered arrangement [see Fig. 6(a)] where
neighboring atoms collapse systematically around the small
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TABLE I
ELECTROSTRICTIVE COEFFICIENTS Qh, CURIE–WEISS CONSTANTS C, AND THEIR PRODUCT VALUES

BII ions. The densely packed structure in Fig. 6(a) has actually
been observed by Amin et al. [31] for Pb(Mg1/2W1/2)O3-based
ceramics.

2) Dielectric Permittivity: When an electric field is applied
to a disordered perovskite, the small BII ions (usually higher
valence ions) with a large rattling space can shift easily without
distorting the oxygen framework. Larger polarization can be
expected for unit magnitude of electric field; in other words,
since permittivity is defined by ε0ε = ∂ P/∂ E , larger dielectric
constants (or larger Curie–Weiss constants in the case of FEs)
are expected in this case. On the other hand, in ordered
perovskites with a very small rattling space, neither BI nor
BII ions can move easily without distorting the octahedron.
A smaller permittivity and a smaller Curie–Weiss constant are
expected.

3) Electrostrictive Coefficient: When an electric field is
applied to a disordered perovskite, the small BII ions with
a large rattling space can shift easily without distorting the
oxygen framework. Since the induced polarization is large for
a certain lattice frame distortion (i.e., strain), we can expect
a small electrostriction coefficient Q defined by x = Q P2.
On the other hand, in ordered perovskites with a very small
rattling space, neither BI nor BII ions can move easily without
distorting the octahedron. Q should be large because small
polarization generates a certain lattice frame distortion.

4) QC Constant Rule: Hydrostatic electrostriction coeffi-
cients Qh (= Q11 + 2Q12) and Curie–Weiss constants C
(determined from the average slope of the 1/ε–T curve in the
(T − TC) < 100◦ range) for several kinds of perovskite-type
oxide crystals are summarized in Table I according to a paper
by Uchino et al. [3]. Coefficients are listed for disordered,

partially ordered, ordered, and simple perovskite FE, AFE, and
NP dielectric substances. Refer to [2] and [30] for data sources.
Multiple empirical rules from this table were proposed.

Rule 1: The magnitude of the electrostrictive coefficient is not
affected strongly by FE, AFE, or NP characteristics
but is dependent primarily on the degree of ionic
order. The electrostrictive coefficient Q increases
with cation order from disordered through partially
ordered, simple, and then ordered perovskites.

Rule 2: The Curie–Weiss constant decreases in accordance
with disordered, though partially ordered, simple, and
then, finally, ordered.

Rule 3: The product of electrostriction coefficient Q and
the Curie–Weiss constant C is nearly constant for
all FE and AFE perovskites QhC = 3.1(±0.4) ×
103 m4C−2K].

An intuitive explanation of these rules by the “rattling ion
model” is discussed in more detail in Section VI-B. Note
that small Q does not mean small electrostriction induced
in relaxor FEs. Knowing P = ε0εE , since x = Q(ε0ε)

2 E2,
we obtain M = Q(ε0ε)

2. Using the above rule Qε ≈ constant,
giant electrostriction is anticipated for disordered perovskite
FEs because of large permittivity ε.

Though the “QC constant rule” seems to be an elegant and
universal rule, there remain several critical arguments in the
disordered relaxor FEs.

1) Overestimated Curie–Weiss Constant in This Table: The
real linearity of the 1/ε–T curve is observed at very high
temperature T > 600 K. C = 1.2 × 105 K was reported
by Poplavko et al. [32] and Viehland et al. [33] for single
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and ceramics PMN, respectively. Toulouse reported
C = 2.2 × 105 K for PZN crystals [34].

2) Incorrect Argument in Rule 2: Stenger and Burggraaf
[35] reported C = 1.5 × 105 K for both disordered
and ordered PST single-crystal specimens introduced
previously. Furthermore, Lei et al. [36] reported a sig-
nificant decrease in C with increasing disorder levels.
The reader can refer to a comprehensive review paper
by Li et al. [37].

However, it seems too early to abandon the above empirical
“Q · C constant rule.” The “intrinsic” Curie–Weiss constant
determined from very high temperature T > 600 K may not be
relevant to use in this table. Since the giant electrostriction is
observed just above the Curie temperature, the values of Q and
C should be determined in the same discussing temperature
range, where the 1/ε–T curve does not follow the normal
Curie–Weiss law but the modified critical exponent formula,
as discussed in Section VII. Therefore, the average slope of
1/ε was used as the “effective Curie–Weiss constant,” instead
of the “true” Curie–Weiss constant, in Table I. We first need
to wait for the electrostrictive Q coefficient determination in
the same temperature range (T > 600 K). Second, taking
the “polar nanoregion” (PNR) existence into account, a new
theoretical approach may be required to correlate the Curie–
Weiss-like constant C � with critical exponent γ with the giant
electrostriction with the small Q. As discussed in Section VII,
isotropic statistical models, such as Gaussian distribution by
Rolov [54] and the well-accepted Vogel–Fulcher model, are
not quite satisfactory for deriving the exponent parameter γ .

IV. MICROSCOPIC ORIGIN OF ELECTROSTRICTION

A. Born Ionic Model

Piezoelectricity is derived from the difference between two
harmonic (linear) springs in an asymmetric crystal, while the
electrostriction is originated from the anharmonic (nonlin-
ear) springs in a centrosymmetric crystal [38]. Uchino and
Cross [40] derived the electrostriction coefficient numerically
from the Born model [39], which proposed the theory of
cohesive forces in ionic crystals in the simplest two-ion
rock-salt structure. The potential function involves an inverse
power type of repulsive quantum-mechanical energy and the
Coulombic energy in a 1-D spherical model, as illustrated in
Fig. 7

U = − Mq2

r
+ Nb

rn
(27)

where M is the “Madelung constant” for Coulombic energy,
instead of merely the nearest neighbor’s interaction, in order
to take into account all crystal lattice periodic atoms. On the
other hand, N in the second term is the coordination number,
and b is a potential constant for quantum mechanical energy.
We assume a relatively large number 9–11 for n in quantum
mechanical repulsive potential 1/rn. Expanding the potential
function (including the first anharmonic term) around the
equilibrium position (rn−1

0 = nNb/Mq2 from the condition
(∂U/∂r) = 0), we obtain the form as a function of �r
(= r − r0)

�U = U(r) − U(r0) = f (�r)2 − g(�r)3 (28)

Fig. 7. 1-D ionic crystal model by Born for a two-ion rock-salt structure.

where f = (n − 1)Mq2/2r3
0 and g = (n + 4)(n − 1)Mq2/6r4

0 .
It is essential to realize the curvature difference in the positive
and negative regions of �r , that is, the lattice spring is softer
for extension than for contraction. The negative sign in front
of g is for keeping positive g in (28).

B. Thermal Expansion and Electrostriction

The ionic displacement �r is supposed to be generated
under a small electric field (E) applied and under a finite
temperature (T ). Using the Boltzmann distribution for Gibbs
energy �V± = �U ±q E�r under the applied electric field E ,
the average equilibrium separation at an elevated temperature
is approximated as follows:

��r±� ∼
∫ ∞

−∞
�r exp

(
−�V±

kBT

)
d�r/

∫ ∞

−∞
exp

(
−�V±

kBT

)
d�r

∼ 3gkB

4 f 2
T ± q

2 f
E + 3gq2

4 f 3
E2 (29)

where subscripts ± denote the position shifts for ion pairs
(Na+1 and Cl−1) in terms of the electric field, respectively (i.e.,
opposite direction due to the charge difference +q and −q).
Refer to [41] and [42] for the derivation process.

First, the polarization P is obtained from the harmonic term
and given by

P = q��r�
2r3

0

= q2

4 f r3
0

E . (30a)

Thus, the permittivity is evaluated as

ε0ε = q2

4 f r3
0

. (30b)

Next, the strain is given by the summation of the shifts

��r+� + ��r−�
2r0

= 3gkB

4 f 2r0
T + 3gq2

4 f 3r0
E2 (31)

where the first term represents the thermal expansion and the
second term represents the electrostriction (no piezoelectricity
is expected in this cubic symmetry). Note that the second term
in (29), ±(q/2 f )E , corresponding to the absolute position
shifts of Na+1 and Cl−1, which is in the same magnitude
in the opposite direction, does not contribute to the crystal
lattice strain! Fig. 7 visualizes the −q ion average position
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Fig. 8. Temperature dependence of the electrostrictive constants Q33 (Q11) and Q13 (Q12) measured in single crystals (a) Pb(Mg1/3Nb2/3)O3 and
(b) K(Ta0.55Nb0.45)O3.

drift (with respect to +q position) with elevating temperature.
Because of the softer lattice spring performance for extension,
thermal expansion (i.e., positive strain) is generally observed.
The reader can understand that both thermal expansion and
electrostrictive coefficients are originated from “g,” which
is an anharmonic term g(�r)3 in (29), and neither thermal
expansion nor electrostriction occurs when the crystal is
purely harmonic [that is, only f (�r)2 term in (29)]. Knowing
the polarization P , given by (30a), the thermal expansion
coefficient αL and electrostrictive Q coefficient (defined by
(�r/r) = Q P2) can be described with atomic parameters in
the Born model as

αL = 3gkB

4 f 2r0
= (n + 4)kB

2n(n − 1)Nb
rn

0 (32)

Q =
(

3gq2

4 f 3r0

)
/

(
q2

4 f r3
0

)2

= 4(n + 4)M

nNb
rn+3

0 (33)

where kB and M are Boltzmann and Madelung constants,
respectively. If we suppose that M and the potential constant
b are relatively insensitive to materials, and r0 is the primary
variable, we obtain

αL ∝ Qn/(n+3). (34)

Uchino and Cross [40] reported a good correlation between
αL and Q among various ionic crystals as αL = 4.2 ×
10−5 Q0.5

h (correlation coefficient r = 0.94). Equation (34)
seems to be reasonable if n ∼34. However, this result
is inconsistent with the usually accepted value n ∼811.
More advanced models will clearly be desired to explain the
observed relationship.

Note that the above derivation of electrostriction conducted
from the lattice anharmonicity is not directly related to the
giant electrostriction in relaxor FEs composed of polar nan-
odomains.

V. EXPERIMENTATION OF ELECTROSTRICTION

A. Electrostriction Characterization Methods

We treat the electrostrictive coefficient as a temperature-
independent constant in most of the phenomenological theo-
ries. What is the actual situation? Several expressions for the

electrostrictive coefficient Q have been given so far, which
indicates the following experimental methods, knowing the
spontaneous PS and/or permittivity ε beforehand.

1) Electric-field-induced strain (i.e., electrostriction) in the
paraelectric phase (x = Q P2

ind or x = Q(ε0ε)
2 E2).

2) Spontaneous polarization PS and spontaneous strain xS

(determined via X-ray diffraction) in the FE phase
(xS = Q P2

S ).
3) d constants from the field-induced strain (piezostric-

tion) in the FE phase or measured by the piezoelectric
resonance technique; d constants from the polariza-
tion induced by the external stress in the FE phase
(d = 2Qε0εPS).

4) Hydrostatic pressure dependence of inverse permittivity
in the paraelectric phase (∂((1/ε0ε))/∂p = 2Qh =
Q11 + 2Q12). We use Poisson’s ratio σ = −Q12/Q11 =
1/3 for evaluating individual Q values.

B. Experimental Results of Electrostrictive Coefficients

1) Pb(Mg1/3Nb2/3)O3: Fig. 8(a) shows the temperature
dependence of the electrostrictive coefficients Q33 and Q13

observed for a complex perovskite Pb(Mg1/3Nb2/3)O3 (PMN)
ceramic sample, whose Curie temperature is near 0 ◦C [43].
The result in a single-crystal value shows very close data
(slightly higher than the polycrystalline specimen) [2]. Experi-
mental methods 1), 3), and 4) provided almost the same values,
which are plotted together in this figure. It is seen that there
is no significant anomaly in the electrostrictive coefficient Q
through the temperature range in which the paraelectric-to-FE
phase transition occurs and piezoelectricity appears. Q seems
to be almost temperature-independent in relaxor FEs in this
temperature range (−100 ◦C∼100 ◦C).

2) K(Ta0.55Nb0.45)O3: The electrostrictive coefficients Q11

and Q12 observed in a single crystal K(Ta0.55Nb0.45)O3(KTN)
specimen are shown in Fig. 8(b) as a function of temperature
[via the experimental method (1)] [44]. The dashed line was
estimated from x2 = Q12ε

2
0ε

2
1 E

2
1 with the weak-field permit-

tivity. Note that we use Q33 and Q13 for ceramic specimens
and Q11 and Q12 for single-crystal specimens conventionally
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even in the same cubic crystals. Different from PMN, the KTN
exhibits significant temperature dependence in the paraelectric
phase. The almost saturated values at 90 ◦C, Q11 = 9.5 ×
10−2 m4C−2, and Q12 = −3.6 × 10−2 m4C−2 are close to the
electrostrictive coefficients of the end members, KTaO3 [45]
and KNbO3 [46]. However, the Q coefficients reveal a remark-
able increase with decreasing temperature down to the Curie
point of 57 ◦C. In parallel, we found some anomalies in the
temperature dependence of dielectric permittivity (discussed
again in Section VII-C1). In the paraelectric phase, the inverse
permittivity started to deviate from the linear Curie–Weiss
plot with decreasing temperature in the temperature range
T − TC < 30 ◦C; this corresponds exactly to the temperature
range where the electrostrictive coefficients show a significant
anomaly.

C. Polarization Fluctuation Consideration

The above anomalies in the electrostrictive coefficient and
permittivity in KTN suggest a kind of critical phenomenon
associated with the phase transition. Uchino et al. [44]
proposed a simple polarization critical-fluctuation model for
explaining the anomaly just above the Curie temperature.
A polarization fluctuation by lattice vibration at a temperature
T can be described as

Pi = �Pi � + �Pi (Subscript i refers to 3-D components)

(35)

where �Pi � means the averaged polarization under experimen-
tal measurement frequency (pseudo-dc), while �Pi a deviation
from the average (at infrared frequency, 1012 Hz). Thus,
��Pi � = 0 is expected in the measurement.

When an electric field is applied on a cubic crystal along one
axis, and two and three directions are equivalent, the averaged
electrostriction �x1� and �x2� can be calculated as

�x1� = Q11�P2
1 � + 2Q12�P2

2 �
= Q11

[�P1�2 + �(�P1)
2�] + 2Q12�(P2)

2�
�x2� = Q12�P2

1 � + (Q11 + Q12)�P2
2 �

= Q12
[�P1�2 + �(P1)

2�] + (Q11 + Q12)�(P2)
2�.

The polarization fluctuation terms �(�Pi )
2� are essential to

the secondary effect (the electrostriction effect); which is very
different from the situation in the primary effect (the piezoelec-
tric effect), where the polarization fluctuations are canceled
out (i.e., ��Pi � = 0!). Since the observed electrostrictive
coefficients Qobs’s are usually calculated on the basis of the
average strain �xi � and polarization �Pi � at pseudo-dc, the
following experimental equations are obtained:

Qobs
11 = �xi �

�P1�2
= Q11

[
1 + �(�P1)

2�/�P1�2]
+2Q12�(�P2)

2�/�P1�2 (36a)

Qobs
12 = �x2�

�P1�2
= Q12

[
1 + �(�P1)

2�/�P1�2]
+(Q11 + Q12)�(�P2)

2�/�P1�2. (36b)

Supposing that �(�P1)
2� > �(�P2)

2�, Qobs is characterized
by the term [1 + �(�P1)

2�/�P1�2]. If the polarization fluctu-
ation �(�P1)

2� diverges due to the “mode softening” when
approaching the phase transition from a higher temperature,
the anomaly of Qobs’s in the vicinity of the transition can
be clearly explained. Naturally, at sufficiently higher tempera-
tures, Qobs will approach Q11 or Q12 because �(�P1)

2� → 0.
It is worth noting that the intrinsic electrostrictive coefficients
Q11 and Q12 maybe insensitive to temperature in this model.
Only the pseudostatic experimental technique can detect the
significant temperature dependence of Qobs’s due to the “polar-
ization fluctuation.”

Though this type of Qobs anomaly might be observed gener-
ally in any FE material near its phase transition temperature,
the observed magnitude may depend on the nature of each
material. In the case of Pb(Mg1/3Nb2/3)O3, for instance, a very
diffused phase transition characteristic seems to broaden the
electrostrictive anomaly, making it difficult to be detected, that
is, �(�P1)

2� will not diminish up to a very high temperature.

VI. ANHARMONICITY IN RELAXOR FERROELECTRICS

A. Lyddane–Sachs–Teller Relation

The lattice vibration analysis is used occasionally for
discussing the electrostrictive and FE phase transition from
the soft-phonon viewpoint. Refer to [41] and [42] for the
fundamental derivation of the lattice vibration formulae on
the 1-D two-ion model. Taking into account the external
ac electric field (at ω) effect on the lattice vibration, the
permittivity formula in terms of the eigenfrequencies was
derived in BaTiO3 by Cochran [47] and Kurosawa [48], which
may be applied basically for other isomorphic perovskite FEs.

Knowing a general definition of permittivity: D = ε0 E +
P = ε0εE (D: electric displacement), we express the polariza-
tion P composed of electronic and ionic contributions: P =
Pele + Pion. Taking a high-frequency permittivity originated
from the average electronic polarizability as εele (we also
denote ε∞), the total polarization is expressed by adding the
ionic polarization as

P = ε0(εele − 1)E + N
5∑

i=1

e∗
i ui

[
charge neutralization condition,

5∑
i=1

e∗
i = 0

]
(37)

where i stands for the ion number for BaTiO3 [Ba = 1, Ti = 2,
OI = 3, OII = 4, and OIII = 5 (top and bottom of Ti)], N is the
number of the unit cells per unit volume, e∗

i is the effective
ionic charge (slightly deviated from Ba2+, Ti4+, and O2−),
and ui is the displacement of the i ion, which is coupled with
the lattice vibration.

Using the elastic stiffness ci j (equivalent to the spring
constant K ), the displacement ui should satisfy

5∑
j=1

ci j u j = e∗
i E . (38)
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Note that the subscripts of ci j here do not stand for the
coordinate (1, 2, or 3) but, for the ion number (1, 2, . . . , 5).
That is, five springs ate connected with one ion. Suppose that
the ion displacement is given by u0

i (ω)·e jωt and polarization
Pe jωt (no delay or loss) under ac electric field Ee jωt applied
(without time lag or loss); the dynamic equation for the i th
ion (mass Mi ) is given by

5∑
j=1

ci j u
0
j (ω)−Mi ω

2u0
i (ω) = e∗

i E . (39)

Once we integrate u0
i (ω) from (39), we obtain the permittivity

in terms of lattice model parameters

ε = εele + N

ε0 E

5∑
i=1

e∗
i u0

i (ω). (40)

Expanding the atomic chain lattice model into 3-D, we con-
sider “transverse waves,” in addition to “longitudinal waves.”
The reader is reminded of the fact that for a wavelength much
longer than the lattice unit but smaller than the specimen
size (∼10 mm), which corresponds wave vector k ≈ 0, the
following boundary conditions occur for the transverse and
longitudinal waves:

Longitudinal (L) wave: D = 0, E = −P/ε0 (41a)

Transverse (T) wave: E = 0, D = P. (41b)

Accordingly, (39) is solved in two ways.

1) Longitudinal Wave–Eigenfrequency 
L:

5∑
j=1

ci j u j−Mi 

2
Lui = −e∗

i P/ε0. (42)

Taking P = (N/ε0)
∑5

i=1 e∗
i ui into account, the solving

equation becomes

5∑
j=1

ci j u j + N

ε2
0

e∗
i

5∑
j=1

e∗
j u j−Mi 


2
Lui = 0. (43)

2) Transverse wave–Eigenfrequency 
T :

5∑
j=1

ci j u j−Mi 

2
T ui = 0. (44)

Introducing (43) and (44) into (40), we can obtain the permit-
tivity in terms of 
L and 
T

ε(ω) = ε∞
4∏

ν=1

(

2

Lν − ω2


2
T ν − ω2

)
. (45)

High-frequency permittivity ε∞ is almost the same as εele.
Refer to the original papers [47] and [48] for the detailed
derivation process. Since BaTiO3 includes five ions, there are
15 degrees of freedom, three among which are “acoustic,”
and 12 are “optical” modes. 1/3 of 12 are longitudinal,
and the remaining 2/3, 8 are the transverse optical (TO)
modes. Since the transverse modes are double-degenerated,
we consider only four different “TO mode” eigenfrequencies

in (45). In particular, taking into account low frequency or
dc, ω = 0 (i.e., low-frequency permittivity measurement!), we
obtain

εS

ε∞
=

4∏
ν=1

(

2

LO,ν


2
TO,ν

)
. (46)

This equation is known as the “Lyddane–Sachs–Teller (LST)
relation” [49].

B. Soft Phonon Modes in Relaxor Ferroelectrics

We now discuss “softening” (i.e., eigenvibration frequency
decrease as the effective spring constant decrease!) of phonon
modes relating to the paraelectric–FE phase transition. Regard-
ing the longitudinal modes, even if 
LO decreases to zero
with approaching the Curie temperature TC , the permittivity
increase cannot be expected. This is obvious because the
longitudinal wave maintains D = 0 even under electric field
applied, leading to εS = 0 theoretically. Thus, to explain
the divergence of permittivity (i.e., the Curie–Weiss law),
we should consider the “TO” eigenfrequency 
TO,ν decrease.
The optical mode frequencies are generally higher than the
acoustic modes around k ≈ 0 if no interaction exists between
each eigenmode. As well-known [50], [51], in a perfectly
harmonic crystal, the phonon states are stationary, widespread
in the crystal uniformly with a monotone frequency as a
wave (that is, NOT an isolated wave packet or particle-
like phonon). However, when the atomic energy potential
includes a nonlinear term, “cubic” anharmonic term introduced
in (28), or “quartic” term, the resonance frequency should
include at least 2ω0 or 3ω0, higher order harmonic modes.
According to the uncertainty of the resonance frequency from
the definite ω = ω0 to �ω = |ω − ω0|, the phonon
distribution changes from an infinitely widespread state in a
crystal to a sort of wave-packet status (i.e., localized exis-
tence). This “anharmonicity” in the atomic potential is the
key factor to create the phonon–phonon interaction in the
crystal lattice and the “softening of the TO phonon mode.”
Kurosawa [48] indicated that this TO mode corresponds to
the cations shift with respect to the oxygen octahedron with-
out twisting, which corresponds to the tetragonal symmetry
BT structure.

If we assume the descendent frequency of one of the “TO”
modes linearly with temperature as(


soft
TO

)2 = A(T − TC) (47)

we can derive the Curie–Weiss law from (47) [i.e., “critical
slowing down”]. If we assume that the remaining mode
frequencies (except for the above TO mode) are relatively
insensitive to the composition and temperature, we can rewrite
the LST relation as

1/εS = K �(
soft
TO

)2
. (48)

Thus, the Curie–Weiss constant C can be expressed as

C = 1/K � A. (49)
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On the other hand, adopting (14) and (16), the electrostric-
tive coefficient Q can be expressed in terms of soft phonon
mode parameters, A and K �

∂(1/εS)

∂p
= 2ε0 Qh[Qh = Q11 + 2Q12] (50)

Qh =
[
−1

2

∂(TC)

∂p

]
K � A. (51)

If we accept the empirical rule that the ((∂(TC)/∂p))
value is roughly constant for all perovskite FEs reported
by Samara [12], we can understand “QhC = constant”
rule based on the soft phonon model. The empirical rule
“((∂(TC)/∂p)) = constant” in perovskite FEs is again the
key to be theoretically solved in the future. The soft phonon
mode is typically observed by the “Raman spectroscopy” with
a typical sweeping wavenumber range of 200–2000 cm−1 in
normal FEs.

Disordered perovskites, such as Pb(Mg1/3Nb2/3)O3 and
Pb(Fe1/2Ta1/2)O3, tend to be FE. In addition, the phase tran-
sition of the disordered perovskite is rather diffused, and the
crystal structure in the low-temperature phase is rhomboidal,
rather than tetragonal in BaTiO3 and PbTiO3. When giant elec-
trostriction and enormous electromechanical coupling factor
were discovered in these relaxor FEs in the early 1980s, no soft
modes were observed in the Raman spectra of disordered
complex perovskite FEs by Burns and Scott [52].

Thus, the possible wavenumber for the soft phonon modes
in relaxor FEs was speculated in the frequency range below
20 cm−2 by Uchino et al. [53]. Assuming a Gaussian distrib-
ution of the local Curie temperature around the average �TC �,
as proposed by Rolov [54]

[

soft

TO (T )
]2 =

∫ T
0 A(T − TC) exp

[
− (TC−Tav)2

2δ2

]
dTC∫ ∞

0 exp
[
− (TC−Tav)2

2δ2

]
dTC

(52)

the soft phonon frequency was simulated [refer to
Section VII-B]. Here, TC is a local Curie temperature,
Tav = �TC � taken as the 1 kHz (low frequency) permittivity
peak temperature, where it is suggested that some 50%
of the specimen has passed into the FE form, and δ is a
parameter describing the diffuseness of the phase transition.

soft

TO for Pb(Mg1/3Nb2/3)O3 single crystals was predicted
with A = 3.4 cm−2K−1 and δ = 41 K as a small but finite
value of 
soft

TO ∼ 7 cm−1 at T = Tav [53]. Note almost an
order-of-magnitude lower A constant compared with that in
SrTiO3, KTaO3 [55], and PbTiO3 [56].

Since then, the Raman spectroscopy has been improved con-
tinuously by various researchers, such as Al-Zein et al. [57],
Taniguchi et al. [58], and Hehlen et al. [59] for observing
the soft modes below 20 cm−1 in relaxor FEs. The above
prediction was confirmed during this period with precise light
scattering studies. Kojima’s group developed a “broadband
micro-Brillouin scattering spectroscopy” by combining an
optical microscope and the Fabry–Perot interferometer, with
the capabilities of a spatial resolution of a few mm in the low-
frequency (GHz) window between 0.03 and 33 cm−1 [60].
This equipment could observe a specific softening of both

optical and acoustic modes in PMN-PT and PZN-PT crys-
tals down to 1 cm−1. Peculiar acoustic anomalies in PMN-
35%PT were reported [61]: longitudinal acoustic (LA) mode
frequency showed a substantial softening around 1.5 cm−1

upon cooling toward the TC under assumptions that dynamical
behaviors of PNRs should be observed as quasi-elastic scat-
tering (or “central peak”) in inelastic scattering experiments
in a 0.03–33-cm−1 range, and the polarization fluctuations
of PNRs are coupled to acoustic phonons [60]. The 1-cm−1

region dynamics in PMN-PT and PZN-PT clarified the precur-
sor dynamics of PNRs, associated with the TO mode softening.
The formation and growth of PNRs provide substantial effects
on the acoustic modes due to the “electrostrictive coupling”
between them even in the paraelectric region. Softening of
both LA and TA modes, as well as their increasing attenu-
ations, has commonly been observed in both PMN-PT and
PZN-PT relaxors. Furthermore, these acoustic anomalies were
accompanied by the appearance of quasi-elastic central peaks
that reflect polarization reorientation processes of dynamic
PNRs. This “polar nanoregion model” seems to be directly
related to the discussions in Sections VII and VIII. The “soft
vibration mode” has not clearly been discussed yet, which
stabilizes a rhombohedral (rather than tetragonal) crystal sym-
metry of the perovskite structure.

It would also be intriguing to study the lattice vibration
mode softening in ordered and disordered crystals with the
same composition, in which the degree of order is controlled
by annealing, such as Pb(Sc1/2Ta1/2)O3 [28]. Higher soft mode
frequency, in addition to higher Curie temperatures TC and
electrostrictive coefficients Q, is expected with increasing the
degree of order. The theoretical analysis with a precise physi-
cal model is expected in this anharmonic vibration treatment.

VII. CRITICAL EXPONENT IN RELAXOR

FERROELECTRICS

A. Dielectric Relaxation

One of the significant characteristics of these “relaxor FEs”
is “dielectric relaxation” (i.e., the frequency dependence of
the permittivity), from which their name is derived. The tem-
perature dependence of the permittivity and dielectric loss for
Pb(Mg1/3Nb2/3)O3 is shown in Fig. 9(A) at various measuring
frequencies by Smolensky et al. [62]. With increasing the
measuring frequency, the permittivity in the low-temperature
(FE) phase decreases, and the peak temperature near 0 ◦C
shifts toward higher temperature; this is contrasted with the
behavior of normal FEs, such as BaTiO3, where the peak
temperature changes little with the frequency. It should also
be pointed out that the permittivity ε in the paraelectric phase
does not follow the famous Curie–Weiss law though dielectric
dispersion is not significant, while dielectric loss shows large
dispersion in the paraelectric phase.

The dielectric relaxation apparently similar to the above-
mentioned Pb(Mg1/3Nb2/3)O3 can be observed also in NP
disordered perovskites. Fig. 9(B)(a) shows the permittivity
(real and imaginary parts) versus temperature curves of the
(K3/4Bi1/4)(Zn1/6Nb5/6)O3 single crystal [63]. The permittivity
peak is not associated with the phase transition, and the
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Fig. 9. (A) Temperature dependence of the permittivity and loss tanδ in Pb(Mg1/3Nb2/3)O3 for various measuring frequencies (kHz): (1) 0.4; (2) 1;
(3) 45; (4) 450; (5) 1500; and (6) 4500 [62]. (B) (a) Permittivity versus temperature curves of the (K3/4Bi1/4)(Zn1/6Nb5/6)O3 single crystal. (b) Cole–Cole
plot [63].

cubic crystal structure is maintained through the measuring
temperature range. When a Cole–Cole plot of the real and
imaginary parts of the permittivity is drawn [see Fig. 9(B)(b)],
multidispersive characteristics can be observed especially in
a low-temperature range. As well known, when we consider
a double-potential-well “Debye” model, we obtain a Debye
dispersion relation [38]

ε∗(ω) − ε0 = (ε∞ − ε0)/(1 + jωτ) (53)

which traces a half-circle. To the contrary, the shallow arc
shape dispersion in Fig. 10(B)(b) can be expressed by

ε∗(ω) − ε0 = (ε∞ − ε0)/
[
1 + ( jωτ)β

]
(54)

where β < 1. This is caused by shallow multipotential wells in
a locally distorted perovskite cell due to the disordered ionic
arrangement (“Skanavi-type dielectric relaxation”) [64]. The
Skanavi-type provides local dipoles and exhibits an “electret”-
like property. Of course, when no electric field is applied
initially, no charge or polarization is expected because of
no cooperative coupling in the crystal. One of the possi-
ble conventional explanations for the “dielectric relaxation”
of the “relaxor FEs” is to couple this Skanavi-type relax-
ation with the long-range “dipole coupling” for revealing the
net spontaneous polarization and ferroelectricity. However,
Viehland et al. [65] and Krause et al. [71] proposed another
possibility in terms of the interaction among microdomains in
Section VIII-C.

B. Classic Diffuse Phase Transition Model

Another significant characteristic of relaxor FEs is its “dif-
fuse (“smeared” was used previously) phase transition,” the
reason for which has not yet been clarified. We introduce
here a classic “microscopic composition fluctuation” model
widely accepted model for the relaxor FEs [66]–[70]. A single

“Känzig region,” the minimum polar region size in which
cooperative polarization (ferroelectricity) can occur, has typ-
ically on the order of 10–100 nm [70], which is recently
called “PNR.” Krause et al. [71] have reported the short-range
ionic ordering of Pb(Mg1/3Nb2/3)O3 observed by electron
microscopy. The high-resolution electron-microscope image
revealed somewhat ordered islands in the range of 2–5 nm in
the disordered sea, each of which may have a slightly different
transition temperature.

Because of a rather broad permittivity peak, sometimes,
the “Curie temperature range” is specified rather than the
“Curie point.” Rolov [54] assumed that physical properties
in a local Känzig region may not change drastically due
to the composition (x) fluctuation, but that only the local
Curie temperature TC should be changed in proportion to the
composition fluctuation �x (= x − xav), namely,

r = (TC − Tav)/(x − xav) (55)

where Tav is an average Curie temperature and r is a constant.
Then, the distribution of the local Curie temperature was
introduced by

f (TC) =
(

1/
√

2πσ 2
)

exp
[−(TC − Tav)

2/2σ 2
]

(56)

where σ is the standard deviation of this Gaussian type.
Note that the Gaussian distribution is based on no interac-
tion among each Känzig cluster (“nanopolar region”). Based
on this statistical distribution of the Curie temperature and
the FE phenomenology, physical properties can be estimated
theoretically. If the fluctuation of the local composition (not
a mesoscopic compositional inhomogeneity!) is large enough
to provide σ � 10 ◦C, the normal Curie–Weiss law for each
microregion

1/ε = (T − T0)/C(T0 : Curie–Weiss temperature) (57)
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Fig. 10. (a) Logarithmic plots of the reciprocal permittivity (1/ε − 1/εm) at 1 kHz versus temperature (T − Tm) relation for BaTiO3 (BT),
K(Ta0.55Nb0.45)O3 (KTN), 0.88Pb(Zn1/3Nb2/3)O3-0.12PbTiO3 (0.88PZN-0.12PT), Pb(Mg1/3Nb2/3)O3 (PMN), and Pb(Zn1/3Nb2/3)O3 (PZN). The γ
values were determined in the temperature range of 5 ◦C < T − Tm < 200 ◦C. (b) Frequency dependence of the critical exponent γ for PMN [72].
(c) Permittivity ε and inverse permittivity 1/ε at 10 kHz versus hydrostatic pressure p relation for K(Ta0.55Nb0.45)O3 (KTN) [72].

is transformed into

1/ε = (1/εm) exp
[−(T − Tav)

2/2σ 2
]

= (1/εm)
[
1 + (T − Tav)

2/2σ 2 + (T − Tav)
4/8σ 2 + · · · ]

(58)

where εm is the maximum permittivity at T = Tav. Taking the
first approximation, (58) provides a following “square” rule in
the diffused phase transition by neglecting higher order terms
of the Taylor expansion series:

(1/ε − 1/εm) ∝ (T − Tm)2. (59)

However, Uchino and Nomura [72] pointed out discrepancies
in the inverse permittivity curve fitting to either linear (T −Tm)
or quadratic (T − Tm)2 and convex or concave curves, respec-
tively, just above the permittivity peak temperature (T − Tm

< 30 ◦C), which may be related to the Gaussian distri-
bution assumption without considering the “microdomain–
microdomain interaction.” This motivated the critical exponent
with a fractal model later.

C. Introduction to Critical Exponent

Uchino and Nomura [72] proposed the “critical exponent” γ
in the relation between the dielectric constant and temperature
(or hydrostatic pressure). A high correlation of the γ value
with the phase transition diffuseness was found empirically.
Though this formula has initially been introduced just as
an “empirical curve fitting,” it leads to the fractal analysis
approach 20 years after, by taking into account the mesoscopic
domain–domain interaction around the phase transition range.
Refer to Section VIII. The critical exponent γ was introduced
in a form

(1/ε − 1/εm) = C �−1(T − Tm)γ (60a)

not only for relaxor FEs but also for normal sharp-transition
FEs so that (60a) may provide the best fit to the experimental

results in a wide temperature range. Moreover, another critical
exponent γ ∗ of the permittivity with respect to hydrostatic
pressure p, which is given by

(1/ε − 1/εm) = C∗−1(p − pm)γ∗ (60b)

has also been determined for the same specimens.
1) Temperature Dependence of Permittivity: Temperature

dependence of permittivity was measured in single crystals
of Pb(Mg1/3Nb2/3)O3 (PMN) and Pb(Zn1/3Nb2/3)O3 (PZN)
with a very diffused phase transition, BaTiO3 (BT) and
K(Ta0.55Nb0.45)O3 (KTN) with a sharp phase transition, and
a solid solution crystal 0.88Pb(Zn1/3Nb2/3)O3-0.12PbTiO3

(0.88PZN-0.12PT). Fig. 10(a) shows logarithmic plots of the
reciprocal permittivity (1/ε − 1/εm) measured at 1 kHz as a
function of temperature (T −Tm). The linearity of the curves is
remarkably good except in a very narrow temperature range
above the peak Tm (T − Tm < l ◦C) for all the specimens.
The critical exponent γ of the reciprocal permittivity with
respect to temperature has been determined from the slope
of the straight line in the range of 5 ◦C < T − Tm < 200 ◦C:
γ = 1.08 for BT, 1.17 for KTN, 1.58 for 0.88PZN-0.12PT,
1.64 for PMN, and 1.76 for PZN. Note that this γ is different
from the conventional “critical exponent” defined for sharp-
transition FEs, such as BT in very close vicinity of the Curie
temperature (T − TC < 1 ◦C). Table II summarizes the critical
exponent γ and the Curie-like constant C � for all the specimens
in the first and second columns. It is important to mention
here that the relaxor FEs reveal a large relaxation of the
permittivity and also that the exponent γ might be changed
with measuring frequency. PMN, for example, shows a gradual
decrease in the permittivity ε and a monotonous increase in the
peak temperature Tm with changing the measuring frequency
from 1 kHz to 1 MHz, as inserted in Fig. 10(b). The critical
exponent γ (i.e., line slope) seems to be insensitive to the
frequency change at least in the range below 10 MHz, while
the constant C � (i.e., the bias of the line) varies with the
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TABLE II
CRITICAL EXPONENTS OF THE PERMITTIVITIES γ AND γ∗ , AND THE CURIE-LIKE CONSTANT C’ FOR RELAXOR AND NORMAL-TRANSITION FES

frequency. Though the application of the Vogel–Fulcher law
derives the nonlinear relation between the peak temperature
Tm and log( f ) [73], the inserted result in Fig. 10(b) seems to
be rather straight.

2) Pressure Dependence of Permittivity: The effect of hydro-
static pressure on the dielectric constant was also investigated
for PMN, KTN, and BT single crystals [72], [74]. A new
critical exponent γ ∗ of the permittivity with respect to pres-
sure was introduced by the definition of (60b). Fig. 10(c)
shows the data for KTN: 10-kHz permittivity ε and inverse
permittivity (1/ε) as a function of hydrostatic pressure p for
two different temperatures, where the maximum permittivity
pressure is denoted as pm , which corresponds to the phase
transition pressure (equivalent to TC in the temperature plot)
[72]. Logarithmic plots of the reciprocal permittivity (1/ε −
1/εm) at 10 kHz versus pressure (p − pm) relation provide
the slope (exponent γ ∗): γ ∗ = 1.00 for KTN and 1.66 for
PMN. The critical γ ∗ exponents are also summarized in
Table II, including the value for BT reported by Samara [74].
It is important to note that the critical exponent γ ∗ of the
permittivity with respect to hydrostatic pressure is rather close
to the γ value in both the relaxor and normal FEs.

This correspondence was consistently explained by assum-
ing that the reciprocal dielectric constant is represented by the
following general formula:

(1/ε − 1/εm) = C �−1(T − Tm − [∂Tm(p)/∂p] · p)γ . (61)

The transformation of (61)

1/ε − 1/εm

= C �−1|∂Tm(p)/∂p|γ (p − (T − Tm)/[∂Tm(p)/∂p])γ (62)

gives the relations of

γ ∗ = γ (63a)

C∗ = C �|∂Tm(p)/∂p|−γ . (63b)

3) Critical Exponent Discussion: It is worth noting the corre-
lation between the critical exponent γ and the phase transition
diffuseness. Refer to Table II. BT revealing a typical sharp
phase transition has a γ value nearly equal to 1: this corre-
sponds to the Curie–Weiss law. The solid solution KTN with
an “apparent” sharp transition reveals a slight deviation from
the Curie–Weiss law. However, as demonstrated in Fig. 8(b),
this solid solution exhibits a bit wider polarization fluctuation
range, which gives γ = 1.17. This may be the reason why we
could observe the enhanced electrostrictive coefficient Qobs

in a relatively wide (∼20 ◦) temperature range. On the other
hand, the γ value is as large as 1.7 for PMN and PZN with
a very diffused transition; however, this is relatively smaller
than the expected “2” for the “quadratic law” proposed by
Smolenskii [75]. The solid solution PZN-PT between a relaxor
and a normal-transition FEs reveals an intermediate γ value of
1.58. The critical exponent γ of the permittivity, determined
in the temperature range from several to several hundreds of
◦C above the transition point, may at least represent the degree
of the phase transition diffuseness.

VIII. FRACTAL ANALYSIS OF DOMAIN CONFIGURATIONS

IN FERROELECTRICS

As demonstrated in “ice” crystal structure (i.e., “hexagonal”
snowflake), physical performance in a large crystal may be
governed by semimicroscopic configuration with increasing
the crystal size. “Fractal analysis” is used to discuss the
intermediate between macroscopic phenomenology in infi-
nitely large uniform material in Section II and the microscopic
atomic/lattice viewpoint discussed in Section IV. Let us con-
sider the origin of “self-similarity” of hexagonal snowflake
configurations, for example. When a new cluster (i.e., water
particle) approaches an existing snowflake, it can be deposited
easily at the tip of the branch, while it may be difficult to
reach into the joint part. This intuitive model can explain
that the snow crystal grows with keeping the original six-
fold symmetry shape. The key is to consider the cluster
(new-comer)–cluster (ready-existing) interaction. Because FEs
(relaxor FEs, in particular) generate a macroscopic domain
pattern with decreasing temperature (i.e., growth of PNRs)
through its phase transition temperature range originated from
micro–micro-domain interaction from an elevated temperature,
similar fractal behavior can be anticipated.

A. Domain Configuration and Dielectric Relaxation

Viehland et al. [33] investigated the polarization behavior
of La-modified lead–zirconate–titanate (PLZT) relaxors for
various electrical and thermal histories. The field-cooled and
zero-field-cooled behaviors were both studied. The magnitude
of both polarizations was found to be equal above a critical
temperature. A macroscopic polarization is developed when
the zero-field-cooled state was warmed with a bias applied.
The origin of the “dielectric relaxation” from the microdomain
state was demonstrated in Pb(Zn1/3Nb2/3)O3 single crystals by
Mulvihill et al. [76]. Fig. 11(a) and (c) shows the dielectric
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Fig. 11. Dielectric constant and loss versus temperature measured for Pb(Zn1/3Nb2/3)O3 single crystals on the [111] plates: (a) unpoled state and
(c) poled state. The domain configurations are also pictured in (b) and (d) [77].

constant and loss versus temperature for 1–1000 kHz on an
unpoled and a poled PZN single crystal [111] plate specimen,
respectively (electric field along the spontaneous polarization
direction �111�), where the poled specimen shows smaller per-
mittivity and loss tan δ� due to lower permittivity along PS . The
domain configurations are also pictured in Fig. 11(b) and (d).
The macroscopic domains were not observed in an unpoled
sample even at room temperature, only in that state large
dielectric relaxation and loss were observed below the Curie
temperature range. Once the macrodomains were induced by
an external electric field [notice spindle-like domains (2–3 μm
width) in Fig. 11(d)], the dielectric dispersion disappeared,
and the loss became very small (that is, the dielectric behavior
became rather normal!) below 105 ◦C. As the temperature
is increased, the macroscopic spindle-like domains disappear
suddenly in the poled specimen at 105 ◦C [i.e., a sort
of the macro–micro-domain configuration transition tempera-
ture], and then, immediately above this temperature, both large
dielectric dispersion and loss appear [see Fig. 11(c)]. Thus,
we can conclude the following.

1) The dielectric relaxation phenomenon and associated
high dielectric loss tan δ� in the unpoled PZN seem
to be originated from the microdomain dynamics. Due
to a slow micro-domain–domain interaction, dielectric
response delay may happen. This argument is consistent
with the lattice mode softening originated from the
“PNR dynamics” indicated by Kojima and Ko [61].

2) There seems to exist a sort of transition, macro-to-
micro-domain sudden change, around 105 ◦C in PZN.

It is intriguing that the macrodomain will not gradually
diminish.

When the PMN single crystal was poled, the macroscopic
domain pattern was observed at very low temperature of
−196 ◦C [Private communication with Mulvihill (1996)].

How we can reconcile the previous Skanavi multipotential
model and this microdomain interaction model for the dielec-
tric relaxation is still not clear. The author also anticipates the
construction of the macro-to-micro-domain transition theory
(not a gradual continuous domain size change).

B. Fractal Analysis of Ferroelectrics

The critical exponent 1 < γ < 2 of the extended hyperbolic
relation 1/ε ∝ (T − Tm)γ suggests a fractal behavior of these
FE materials in terms of temperature (and pressure), which
may be originated from the microdomain–microdomain inter-
action, as demonstrated in Fig. 11. The Cole–Cole dispersion
of the relaxor expressed as ε∗(ω) = ε∞/[1 + ( jωτ)β] with
β < 1 comes basically from the same origin, where the fractal
behavior is observed in terms of time/frequency (i.e., with
a parameter τ , damping constant/life time). Micro-to-macro
FE domain growth changes the domain dynamics, leading to
changes in various physical properties, such as dielectric per-
mittivity, loss, polarization hysteresis, and acoustic emission
(AE). The following discussion is based on [77] and [78].

1) Fractal Analysis of the Electric-Field-Induced AE:
a) Definition of fractal dimension: When the “self-

similarity” of the cluster shape can be maintained by reducing
the geometrical scale, the “fractal dimension” is defined as
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follows. There are N particles with each radius ri , which
makes a cluster. The average cluster radius R can be estimated
in the 2-D case by

R =
(

N∑
i

r2
i

N

)1/2

. (64)

If the number of particles N is related to R as

N ∼ RD . (65)

D is called the “fractal dimension.” Like a snowflake in
the 2-D, if the clusters do not have interaction with each
other, the circle (πr2) is filled by clusters fully, leading to
D = 2. Because of the cluster–cluster interaction between
water particles (i.e., rejecting some clusters to fill in around
the branch joint), the snowflake pattern results in 0 < D < 2
(i.e., smaller N). The fractal dimension provides a “shape
pattern” information. It is also not difficult for the reader to
extensively imagine that D = 1 for a string and D = 3 for a
sphere configuration.

Supposing that a “contour shape” is a function f (r ) and
“scaling parameter” is λ, in order to maintain the contour
shape, the function f (r ) should keep

f (λr) = g(λ)∗ f (r). (66)

This is known as “scaling law.” We obtain a relationship for
the “scaling function” g(λ)

g(λμ) = g(λ)∗g(μ) (67)

leading to the power law for the scaling function g(λ)

g(λ) = λp (68)

where p can be “noninteger.”
Uchino [78] translated (68) in relaxor FEs as follows. The

“Känzig” or “polar nanoregion” corresponds to a “cluster,”
which has the Curie temperature TC distribution (TC − Tav)
due to the composition (or position) fluctuation (x −xav). If we
assume that (TC − Tav)/(x − xav) = constant, we can take (T −
Tav) as a scaling parameter λ. Based on the local Curie–Weiss
law (1/ε − 1/εm) ∝ (T − Tm) in each cluster, the scaling
function corresponds to the inverse permittivity, and then, the
following critical exponent equation is expected:

(1/ε − 1/εmax) ∝ (T − Tav)
p (69)

where p is noninteger, which corresponds to the “critical
exponent” discussed in Section VII.

It is noteworthy here that the Gaussian distribution model
by Rolov [54] and the well-accepted Vogel–Fulcher model
consider the probability of polar nonoregions in terms of
energy/temperature without considering the micro-cluster–
cluster interaction explicitly (that is, the fractal dimension
seems to be 3), which is contradictory to the fractal dimension
reported in relaxor FEs [72] described in Section VIII-B2.

b) Fractal dimension in acoustic emission: The AE method
is a nondestructive technique used to detect pulses of released
elastic strain energy caused by deformation, crack growth
and phase change, and domain motions in ferromagnetic and
FE materials. A fractal analysis of the AE signal amplitude
distribution, which is used in the AE method to determine the
damage configurations of materials originally by Nakase [79],
was also adopted by Aburatani et al. [77] for the FEs though
no damage. When the AE event rate f (x) is the minus Dth
power of x , where x is the AE signal amplitude

f (x) = cx−D(c: constant) (70)

the number of D is supposed to be defined as the fractal
dimension. The integrated AE event F(x)

F(x) =
∫ ∞

x
f (x) · dx = 1

D − 1
cx−D+1(D > 1) (71a)

is observed through changing the AE signal threshold level in
the measurements. If D = 1,

F(x) =
∫ ∞

x
f (x) · dx = c ln x + A. (71b)

c) Electric-field-induced AE: Fig. 12(a) shows the AE event
count rate and the induced displacement of the FE PZT
ceramic disk as a function of the applied field at 0.0015 Hz
with field levels of ±35 kV/cm [77]. During an electric
field cycle showing a butterfly-shaped displacement curve,
no AE was observed from zero to the coercive field at
which the induced displacement took a minimum. The critical
electric field, where the AE started to be generated, was
slightly higher than the coercive field. This critical electric
field corresponded to the point of inflection at which the
second derivative of the displacement with respect to the
field, that is ∂2(displacement)/∂ E2, changes the sign. Since
the displacement induction rate started to decrease in spite
of the field simply increasing and the AE was present above
this field, these results might indicate that a damping process
for the sample deformation existed above this field, and the
AE was generated through that process. It is worth noting
that the maximum event rate occurred at around 27.5 kV/cm.
Considering that the internal stress increases with the applied
field in FEs, if this observed AE was caused only by the
internal stress, the AE event count rate should have increased
with the applied field. Thus, this decrease in the AE event rate
might suggest that the internal stress could be the origin of the
AE but not only one source. Since the induced displacement in
the FE ceramics consists of the “domain reorientation” related
to deformation and “piezoelectric deformation” without the
domain reorientation, it was assumed that the field-induced
AE in the PZT ceramics was generated first through domain
reorientation related deformation, and after domain reorienta-
tion was completed, the piezoelectric deformation (unrelated to
domain reorientation), which was accompanied with induced
stress, was expected to be the origin of the AE. The decrease
in the AE event might indicate the completion of the domain
reorientation-related deformation. Note that the AE is observed
only when the displacement is increased, and no AE appears
during the displacement decrease process [i.e., known as the
“Kaiser effect”].
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Fig. 12. AE event count and the induced displacement as a function of the applied electric field in (a) FE PZT and (b) electrostrictive 0.9 PMN-
0.1 PT [78].

Fig. 13. AE event count per cycle as a function of the AE signal threshold level: (a) FE PZT and (b) electrostrictive 0.9 PMN-0.1 PT.

To the contrary, Fig. 12(b) shows the induced displacement
and AE event count rate in the electrostrictive 0.9PMN-0.1PT
ceramics. A quadratic induced displacement, which showed
much less hysteresis than that of FE PZT ceramics, was
observed. The AE count rate increased with the applied field.
Because of the absence of the large domain in PMN-PT, the
induced displacement might not be caused by the macroscopic
domain reorientation but “electrostrictive deformation” (maybe
“microdomain growth process”). It was assumed that the origin
of the AE was the internal stress caused by the electrostrictive
deformation, resulting in the increased AE event rate in
proportion to the electrostriction with the applied electric field.

The AE event count rate and the induced displacement
in the “soft piezoelectric” PLZT(9/65/35) ceramics (see data
in [77]) are very suggestive. A sharp peak of the AE event
rate was first observed around 10 kV/cm, and the AE event
rate again increased with the applied field in proportion
to the induced displacement when a field was higher than
10 kV/cm. The first peak of the AE event rate was due to
the domain reorientation-related deformation, and after the
domain reorientation was completed, the AE was caused by the
piezoelectric deformation (unrelated to domain reorientation).

2) Discussion on the Fractal Dimension:
a) PZT: Fig. 13(a) shows the AE event count per cycle

as a function of the AE signal threshold level (log–log plot)
in the FE PZT ceramics. The observed AE event count loga-
rithmically decreases with the AE signal threshold level when
a field of ±25 kV/cm is applied. Thus, a fractal dimension

of D = 1 can be obtained for the logarithmic decrease in
the FE PZT. Since repeatable and stable field-induced AE is
observed, it is supposed that the lowered fractal dimension
is due to the existence of FE domain and the effect of the
domain reorientation-related deformation. When a field of
±35 kV/cm is applied, the higher AE signal threshold level
parts do not follow the logarithmic curve. The lower signal
threshold level region still could be fitted to a logarithmic
curve, and the extended line also ends around the AE signal
threshold level obtained for ±25 kV/cm. The fractal dimension
of the higher signal threshold level part can be found to be
D = 2.8. Since the domain reorientation is supposed to be
completed at a higher electric field, the origin of the AE with
the fractal dimension of 2.8 is assumed to be piezoelectric
deformation without domain reorientation. It is noted that
the fractal dimension of the field-induced AE for the domain
reorientation-related deformation (D = 1) is lower than that
for the piezoelectric deformation without domain reorientation
(D = 2.8).

b) PMN-PT: Fig. 13(b) shows the AE event count for the
electrostrictive PMN-PT versus the AE signal threshold level.
The same slopes for the AE event count are observed at
various applied fields, and the critical fractal dimension of
D = 2 can be obtained. It seems that the origin of AE in the
electrostrictive PMN-PT ceramics does not change with the
applied field level; thus, it is assumed to be originated from
the internal stress caused by the electrostrictive deformation
or microdomain/nanodomain growth/ dynamics. It is obvious
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Fig. 14. Intuitive domain dynamics models: (a) macrodomain reorien-
tation, (b) microdomain/nanodomain motion, and (c) piezostriction in a
monodomain state.

that, since the fractal dimension D = 2 cannot be explained by
the statistical isotropic models (D = 3), such as the Gaussian
model or the Vogel–Fulcher model, we need to integrate the
microdomain–microdomain (or PNRs) interaction explicitly.

c) Comparison and consideration of the fractal dimension: In
conclusion from the AE measurements, the fractal dimension
of the normal FE PZT ceramics consists of the domain
reorientation related D = 1 and the piezostriction related
D = 2.8 when a high electric field cycle is applied. The fractal
dimension of D = 2 was obtained for the electrostrictive
PMN-PT (i.e., relaxor FEs). The fluctuation of the fractal
dimension of 1.4–1.9 was observed depending on the applied
electric field in PLZT (9/65/35) ceramics, which shows an
intermediate state between PZT and PMN-PT in terms of the
induced displacement [77].

The fractal dimensions in PLZT and PMN determined by
light scattering experiments were reported as 1.7 and 2.4,
respectively, by Shur et al. [80] and Koreeda [81]. Note
that Koreeda’s result on PMN was obtained from an unpoled
sample with microdomains, while Aburatani et al.’s data [77]
from AE were from the PMN-PT under a large electric field
applied condition (i.e., PNR growth process). However, the
fractal dimension of the relaxor type seems to be around 2.
When we recall that the large domain wall moves in 1-D
like a sideward spreading mode in PZT, and the spindle-like
narrow domain behaves with a breathing mode (2-D expansion
by keeping the length almost constant) in PZN [refer to
Fig. 11(b)], we can understand the above fractal dimensions
observed, while the saturated domain status (equivalent to
a single domain) deformation (extension along three axes
and shrinkage along one and two axes) under such a large
field, leading to a large fractal dimension close to 3. Thus,
an intuitive domain dynamics model was proposed by Uchino
[78] in Fig. 14 for explaining the fractal dimension. Fig. 14(a)
depicts macrodomain reorientation in PZT under a low electric
field. Clear plate-like 90◦-domain walls move primarily per-
pendicular to the plate (1-D motion). If the AE comes from
this motion, that is, domain embryos accumulate only 1 dimen-
sionally, the fractal dimension D = 1 can be explained.
However, when the electric field is larger than the coercive
field in PZT, the monodomain-like state will be realized. The
deformation beyond this field level is caused by intrinsic
piezoelectricity (elastic deformation), that is, 3-D deformation
[1-D extension associated with 2-D shrinkage in Fig. 14(c)].
This suggests the fractal dimension D = 2.8, close to the
lattice dimension 3. On the contrary, in PMN-PT, supposing

Fig. 15. Domain contribution transition: (a) monodomain state, (b) equal
volumetric distribution of four domain states, (c) domain wall contribution
model, and (d) macrodomain growth.

that the spindle-like microdomains breathe (i.e., fatter and
slimmer like a rubber tube) under the electric field by keeping
the length (i.e., PNR growth), as shown in Fig. 14(b), we can
imagine D = 2 from this microdomain dynamics. Note again
that we described the PMN-PT giant field-induced deformation
as “electrostriction.” However, it is not purely secondary-effect
electrostriction (i.e., lattice anharmonicity) but a microdomain
breathing/fatting phenomenon by combining multiple PNRs
without significant visible hysteresis. Note that the “fractal
dimension” determined by the AE seems to indicate the
“PNR growth” configuration and the micro–micro-domain
interaction. Further investigation of the domain dynamics is
required for establishing a fractal model for the relaxor FE.
As was derived the relationship between the critical exponent
γ defined by the permeability χ ∝ (T − TC)−γ and the
fractal dimension in the Ising model in the ferromagnetic
materials [82], the relationship between the critical exponent
γ of permittivity and the fractal D is to be derived in FEs
more explicitly in the near future.

IX. DOMAIN ENGINEERING

Because many of the recent fundamental researches are
primarily focused on the improvement of electromechanical
coupling performance in PZN-PT, PMN-PT single crystals, the
author briefly summarizes them in this section. The key tech-
nology, “domain engineering,” is composed of: 1) crystal ori-
entation dependence of the physical performance; 2) domain
size effect on the performance; and 3) poling techniques to
generate the micro-to-macro-domain configuration.

A. Crystal Orientation Dependence

In the original paper by Kuwata et al. [5], which reported
the superiority of 0.91PZN-0.09PT (electromechanical cou-
pling factor k33

∗ = 95% and the piezoelectric constant
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d33
∗ = 1600 pC/N), when the poling direction was 57◦

canted from the spontaneous polarization (PS) direction [see
Fig. 15(a)], they indicated the importance of the shear defor-
mation mode. The piezoelectric constants d[001]// and d[111]//
in the rhombohedral phase can be represented by using the
fundamental piezoelectric components d31, d33, d22, and d15

in 3m symmetry

d[001]// =
(

2
√

2 d22 + 2d31 + d33 + 2d15

)
/3

√
3 (72a)

d[111]// = d33. (72b)

The shear-mode component d15 is larger than d33 and d22

in many perovskite FEs, which plays an important role in
the formulas. The ratio d[001]///d[111]// of 0.91PZN-0.09PT is
2.5 in the rhombohedral phase; significant enhancement in the
effective d∗

33 (= d [001]//) is anticipated by canting the electric
field direction 57◦.

This original idea has been expanded later to “rotator
and extender FEs” by Davis et al. [83]. Depending on the
value of d15 higher or lower in comparison with d33, they
are denoted “rotator” or “extender FEs,” which are basi-
cally categorized as rhombohedral and tetragonal symmetry
by collecting numerous data. In particular, PZN-0.07PT and
PMN-0.33PT with rhombohedral (3m) symmetry exhibit sig-
nificantly large d[001]///d[111]// values, 65 and 22, respectively,
which are compared with 3.4 of rhombohedral PZ-0.40PT.
On the contrary, some extreme tetragonal (4 mm) compositions
PMN-0.42PT and PZ-0.90PT give the ratios of 0.5 and 0.6,
respectively, which means that no enhancement of piezoelec-
tricity is expected by canting the electric field direction. The
“rhombohedral” symmetry seems to be essential for obtaining
the significant d33

∗ enhancement in practice.
The existence of the monoclinic phase in the “MPB” in

PZN-PT and PMN-PT systems is argued in contrast to a model
of the rhombohedral and tetragonal coexistence. Though
the macroscopic phenomena may be similar experimentally,
microscopic clarification and its theoretical explanation are
required. These classic approaches are not related to the
domain generation, but viable under a monodomain uniform
state.

A relating topic with the crystal orientation in single crystals
includes the electric-field-induced phase transition. Fig. 16
shows the longitudinal strain in PZN-4.5%PT and PZN-8%PT
induced by the electric field along the �001� axis, reported
by Park and Shrout [9]. The extra steep strain changes
(shown by arrows) by 0.2%–0.3% seem to be associated
with the rhombohedral-to-tetragonal phase transition under
a high field. The slope of the strain curve around E = 0
corresponds approximately to the piezoelectric d constant.
The domain configuration change in a [111] plate PZN-9%PT
(i.e., MPB composition) with the phase transition is also
inserted on the right-hand side [84]. This MPB composi-
tion crystal at zero electric fields seems to be composed of
a tetragonal/rhombohedral lamellar structure (i.e., two-phase
coexistence). The rhombohedral phase is characterized by the
spindle-like domain pattern. Under a high electric field, the
spindle-like domains disappear to become tetragonal domains

Fig. 16. Longitudinal strains induced in PZN-PT single crystals associ-
ated with the Rhomb.-to-Tet. phase transition. The domain configuration
change with the phase transition is also inserted.

[see Fig. 16 (top)]. The substructure in the thick domain walls
has not yet been clarified.

B. Domain Size Effect on the Piezoelectric Performance

With increasing the single-crystal PMN-PT applications for
medical ultrasonic probe applications, we recognized that the
canted 3m monodomain crystal exhibits unnecessary shear
vibration modes under a plate excitation along the perovskite
�100� axis. In order to handle this crystal plate as the pure
k33-like mode, the macroscopic crystal symmetry should be
modified to 4mm. From this motivation, the single-crystal
manufacturers tried to make a crystal with as close a vol-
umetric ratio as possible to the four equivalent polarization
domains, as illustrated in Fig. 15(b), which may be the initial
phase of the domain engineering. That is, uniform volumetric
distribution of the four polarization domains is required in a
finite ultrasonic probe element (typically sub-mm size)

In order to achieve giant “electrostriction” in relaxor FEs,
such as 0.9PMN-0.1PT, or piezostriction in 0.72PMN–0.28PT,
a uniform microdomain is preferred to reduce the strain
hysteresis under an electric field applied by sacrificing the
strain magnitude. Thus, the grain size was carefully controlled
in practical actuator materials [85]. Knowing the fact that
the domain size is proportional to the grain size, and the
electric-field-induced strain is increased with the grain size,
we can anticipate the piezoelectric performance (real part such
as piezoelectric d constant) to increase with the domain size
increase, in general.

On the other hand, some researchers are reporting
the opposite results and computer simulations. Cao’s
group reported piezoelectric properties for [001]c poled
0.94Pb(Zn1/3Nb2/3)O3-0.06PbTiO3 single crystals by chang-
ing the domain size from 20 down to 8 μm [see
Fig. 17(a)] [86]. They clearly demonstrated the piezoelectric
d33

∗ monotonous increase from 2200 to 3400 pC/N according
to the domain size reduction. Morozovska et al. [87] proposed
computer simulation models on the effective piezoelectric
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Fig. 17. (a) Measured piezoelectric properties in different domain sizes [001]-poled PZN-6%PT single crystals [86]. (b) Comparisons of effective
piezoelectric coefficients for the dc- and ac-poled samples with different thicknesses [91].

response from the twin walls in FEs using BaTiO3 for exam-
ple. Their twin-domain boundary model suggested a significant
enhancement in polarization and associated shear mode d
piezoelectric coupling around ±10 nm of the twin boundary,
as illustrated in Fig. 15(c). Thus, they proposed that a smaller
domain configuration is preferable to the d enhancement.

C. Domain Engineering

The most recent trend seems to return to “the larger
the domain is, the better the performance is.” Many
researchers use the ac poling (ACP) process (invented by
Yamamoto et al. [88]) to enhance piezoelectric properties for
PMN-PT in comparison with conventional dc poling (DCP)
[89]–[91]. For perovskite [001]-oriented rhombohedral PMN–
0.28PT single crystals, Qiu et al. [91] claimed that increasing
the thickness of the perovskite (001) plate specimen led to a
higher d33 value from 100, 200, and 500 μm [see Fig. 17(b)],
in which we may expect an increase in the domain size; thus,
it seems to be contradictory to the papers introduced in the
previous subsection (i.e., (normal to the general sense). The
degradation of the d33

∗ value for 1 and 2 mm is not clear
but may be related to a sort of “clamping.” They reported
more than 20% higher d33

∗ improvement under the ACP over
the DCP specimens. Though the ACP process has various
advantages, the ACP process also reveals a large standard
deviation of εX

33/ε0 value compared with that of DCP accord-
ing to the poling conditions. The large standard deviation
of permittivity makes it difficult to design a high-quality
medical array probe for mass production. Yamashita’s group
demonstrated a high piezoelectric coefficient d33 > 1950 pC/N
in PMN–0.28PT single crystals obtained by low-voltage ACP
of 1.5–3.5 kVRMS/cm at a high temperature of 80 ◦C in an
air atmosphere (different from the conventional silicone oil
immersion) [89]. The minimum standard deviation of 170 was
similar to conventional DCP and a high average εX

33/ε0 of
8800 was confirmed with a 2.0 kVRMS/cm of ACP for five
specimens.

The ac electric field has an ability to efficiently merge the
FE domains on both sides of 71◦ domain walls, leading to a
considerable increase in the domain size and, thus, a significant
enhancement of electromechanical properties, as illustrated
in Fig. 15(d). Qiu et al. [91] also demonstrated a computer
simulation for the domain size increase to create lamellar
configurations during the ACP process. Fig. 15(d) indicates

that, for the ac-poled [001]C-oriented rhombohedral PMN-PT
crystal, the most stable state should be the lamellar domain
structure (almost uniform periodic distance) with only 109◦
domain walls and the same volume fractions of the two
types of FE domains on both sides of domain walls, just by
eliminating the vertical domain walls. This domain configu-
ration is expected to benefit the design of high-performance
FE via domain or domain wall engineering. A problem in
this simulation is the 2-D plate lamellar structure, the frac-
tal dimension of which should be 1. Because 1-D spindle-
like domain patterns are typically observed in relaxor FEs,
an advanced simulation is desired in order to satisfy the fractal
dimension D = 2. This ACP process also reflects the coercive
field reduction and piezoelectric d∗

33 enhancement. Though the
dielectric loss does not increase through the ACP process,
the author is anticipating the mechanical quality factor (i.e.,
elastic loss) degradation with the vibration velocity for this
“softening” process, which blocks high-power piezoelectric
applications. Immediate clarification on this possible problem
is desired.

X. CONCLUSION: KEY POINTS AND FUTURE

PERSPECTIVES

As mentioned in Section IX, recent studies on PMN-PT sin-
gle crystals seem to be focusing more on domain engineering
in order to improve the electromechanical coupling perfor-
mances for practical applications. We do rarely find papers that
try to answer directly why PMN or PZN reveals an enormous
piezoelectric effect beyond Kuwata et al.’s original idea on the
crystal orientation dependence (that is, the shear k15 contribu-
tion). The induced “monoclinic phase” model is still a similar
modification to the above “shear” model. After the historical
discovery background, this article described key factors for
understanding why the relaxor/complex perovskites exhibit
superior electromechanical/electrostrictive coupling and for
developing new materials for actuators and transducers from
the author’s personal strategies. These factors include: 1) inter-
relation between complex perovskite structure and ferroelec-
tricity; 2) anharmonicity in relaxor FEs; and 3) microdomain
contribution in relaxor FEs.

In this section, the author will describe the research direc-
tions for future successors in this field.

1) Electrostriction Phenomenology of Antiferroelectrics: It
is noteworthy that intersublattice couplings q33 and
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q31 have the same positive sign, while intrasublattice
couplings Q33 and Q31 have the opposite sign show-
ing a normal “piezoelectric Poisson’s ratio” of ∼1/3.
The theoretical explanation on the “negative Poisson’s
ratio” (i.e., isotropic volumetric expansion) among the
intersublattice couplings q33 and q31 is a future problem
to be explained. This is important to develop high
piezoelectric anisotropy (i.e., |d33/d31|) materials for
medical diagnostic acoustic probes.

2) Complex Perovskite Ion Ordering Versus Ferroelectric
Properties: Disorder and 1:1 ordered complex per-
ovskites tend to reveal FE and AFE properties, respec-
tively. The electrostrictive coefficient Q increases with
cation order from disordered, through partially ordered,
simple, and then ordered perovskites, while the effective
Curie–Weiss constant C (determined from the average
slope of 1/ε just above the TC ) decreases in this
sequence, leading to the product of Q and Ceff nearly
constant for all FE and AFE perovskites [QhC =
3.1(±0.4) × 103m4C−2K]. Though the “rattling ion
model” explains intuitively these rules, a more detailed
theoretical discussion should be made in the future.

3) Disorder with some short-range order tendency in
PMN-PT seems to be the primary key in practice to
create giant electrostriction and an enormous electro-
mechanical coupling factor. The ion ordering principle
was discussed by Patrat et al. [27] on Sr(Fe3+

1/2Ta5+
1/2)O3.

The ordered structure is preferable from the Madelung
energy viewpoint, while the polarization energy stabi-
lizes the disordered structure. “Displacement energy”
originated from the ionic radius difference among Fe3+
and Ta5+ stabilizes the disorder structure because its
contribution is small due to similar ionic radii among
these ions. If the ionic radii of two B ions differ
significantly, the order structure will become stable.
It would be interesting to study ordered and disor-
dered crystals with the same composition, in which
the degree of order is controlled by annealing, such as
Pb(Sc1/2Ta1/2)O3 [28]. The advanced thermodynamical
theory is expected to predict antiferroelectricity with the
degree of ionic ordering.

4) Anharmonicity of Lattice Vibration in Relaxor Ferro-
electrics: The soft phonon (TO) mode is expressed as
(
soft

TO )
2 = A(T − TC ). In order to explain the smaller

electrostrictive Q constant and larger Curie–Weiss con-
stant C in relaxor FEs, in comparison with normal types,
an order of magnitude lower A constant was verified by
the recent advanced equipment [59], [61]. It would also
be interesting to study the soft phonon frequency change
with the degree of ionic order in crystals, in which
the order is controllable by annealing. One remaining
problem is Samara’s empirical rule: the (∂(TC)/∂p)
value is roughly constant for all perovskite FEs, which
waits for detailed theoretical approaches.

5) Critical Exponent of Permittivity in Relaxor Ferro-
electrics: The critical exponent γ in the temperature
dependence of permittivity in a generalized form: (1/ε −
1/εm) = C �−1(T −Tm)γ , not only for relaxor FEs but also

for normal sharp-transition FEs. This exponent fitting
agrees very well in a wide temperature range. Sharp
phase transition BT has a γ value nearly equal to 1: this
corresponds to the Curie–Weiss law. The solid solution
KTN with an “apparent” sharp transition with a slight
deviation from the Curie–Weiss law gives γ = 1.17.
On the other hand, the γ value is as large as 1.7 for PMN
and PZN with a very diffused transition, however, rela-
tively smaller than expected “2” for the “quadratic law.”
The “critical exponent” in relaxor FEs indicated the
microdomain–microdomain interaction explicitly, differ-
ent from the statistical isotropic models, such as the
Gaussian model or the Vogel–Fulcher model.

6) Fractal Analysis of Microdomain Configuration: The
“scaling function” g(λ) has a general formula: g(λ) =
λp, where p can be noninteger. We can translate this
function in relaxor FEs as follows: the PNR corresponds
to “cluster,” which has the Curie temperature TC distri-
bution (TC − Tav) due to the composition (or position)
fluctuation (x − xav). Taking (T − Tav) as a scaling
parameter λ, based on the local Curie–Weiss law (1/ε −
1/εm) ∝ (T −Tm) in each microcluster, the “scaling func-
tion” corresponds to the inverse permittivity; then, the
following critical exponent equation is expected (1/ε –
1/εmax) ∝ (T − Tav)

p. Aburatani et al. proposed the AE
measurement for determining the “fractal dimension” D.
D of the normal FE PZT ceramics in the electric-field-
induced strain consisted of the domain reorientation
related D = 1 and the domain reorientation-unrelated
D = 2.8 when a high electric field cycle is applied.
D = 2 is obtained in the electrostrictive PMN-PT
(i.e., relaxor). An intuitive domain dynamic model
was proposed: clear plate-like 90◦ domain walls move
primarily perpendicular to the plate (1-D motion) in
normal FEs (e.g., PZT). However, when the electric
field is much larger than the coercive field in PZT,
a monodomain-like state will be realized. The defor-
mation beyond this field level is caused by intrinsic
piezoelectricity (elastic deformation), that is, 3-D defor-
mation, which suggests the fractal dimension D = 2.8.
On the contrary, in PMN-PT, spindle-like microdomains
breathe by keeping the length, which indicates that
D = 2 from this microdomain dynamics. The fractal
dimension determination may suggest the microdomain
growth mechanisms, which will enhance the “domain
engineering” insight. This point is the key difference
from the conventional statistical isotropic models, such
as the Gaussian model or the Vogel–Fulcher model.
Expanding the fractal analysis, clarification of the rela-
tionship between the critical exponent γ and the fractal
dimension D is a remaining research topic.

7) Domain Engineering: Is “the larger the domain size
is, the better the piezoelectric performance is” true?
How can we explain the contradictory empirical results
reported by Cao’s group in Fig. 17(a)? Solving this
“dilemma” is an immediate research topic. Because
the relaxor single crystals reveal microdomain sponta-
neously, enhanced “electrostriction” performance seems
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to be anticipated in “finer” microdomain specimen
in the “apparently” paraelectric phase. The domain
twin-boundary in the FE state seems to enhance the
piezoelectric performance, which suggests the prefer-
ence for the fine domain configuration. Recent “ac
electric-poling” can generate uniform lamellar semi-
macrodomains, which enhances the piezoelectric d33

∗ by
20%. We need to investigate deeper to see which model
will be more suitable among “twin-domain-boundary”
and “ACP domain growth” or to see how we should
compromise these ideas in order to solve the above
“dilemma.” Through the ACP process can enhance the
d33

∗ and k33, the author is anticipating the mechanical
quality factor (i.e., elastic loss) degradation with the
vibration velocity for this “softening” process, which
may block this material from high-power piezoelectric
applications. The high-power characterization should
immediately be conducted.

8) Expanding the conventional statistical isotropic models,
such as the Gaussian model or the Vogel–Fulcher model,
the author desires to recruit the successors on the “fractal
analysis” on the microdomain interaction, a bit different
mesoscopic approach to distinguish the electromechani-
cal coupling among the normal and relaxor FEs.
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