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Array Transducer Design: A Vibrant Research
Theme in Medical Ultrasonics

S INCE the 1970s, when portable transducer arrays were1

first introduced for medical ultrasound imaging, they2

have undergone substantial technological developments. The3

development of advanced arrays is often motivated by the4

need to achieve high diagnostic and therapeutic efficacy and5

to serve new fields of application. In the past few decades,6

medical ultrasound array design has been an active research7

area with challenging technical requirements that continually8

seek to reduce physical size, improve sensitivity, optimize the9

number of array elements, realize wide bandwidth, and achieve10

high output power. The need to devise arrays with increased11

performance has concurrently stimulated advances in trans-12

ducer technologies, microelectronics, and array layout design.13

Nowadays, representative examples can be found for both 2-D14

and 3-D applications such as high-intensity-focused ultrasound15

arrays, very-high-frequency or dual-frequency probes, kerf-16

less arrays, 2-D sparse arrays, and probes with embedded17

application-specific integrated circuits. The emergence of these18

advanced arrays has, in turn, stimulated the development19

of novel, customized transmission and reception approaches,20

image reconstruction algorithms, and data recovery strategies21

to exploit or deal with the peculiarities of a specific array.22

To celebrate the vibrant research activities in the above-23

mentioned areas, IEEE TRANSACTIONS ON ULTRASONICS,24

FERROELECTRICS, AND FREQUENCY CONTROL has pre-25

pared a Spotlight Issue on the theme of “Recent Advances26

in Medical Ultrasound Array Design.” This Spotlight Issue27

comprises a collection of two review articles and ten original28

research papers. It serves to highlight the latest technological29

advances in medical ultrasound array design and to provide a30

resource point for colleagues who are interested in learning31

about recent progress on this research theme. Four major32

bodies of contributions have been covered in this Spotlight33

Issue, as outlined in the subsections below.34

A. Emerging Arrays for 3-D Ultrasound Imaging35

This Spotlight Issue opens with review papers on two36

emerging types of array transducers for 3-D imaging appli-37

cations: 1) row-column (RC) arrays and 2) 2-D sparse arrays.38

In [A1], Jensen et al. presented recent advancements on RC39

arrays. The authors first provide historical information on the40

development of RC arrays, and it is followed by a summary of41

challenges in RC imaging. Several image formation techniques42
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for RC arrays are also reviewed that serve as a resource point 43

to newcomers to RC array research. The article concludes by 44

providing example applications of RC array and insights into 45

the future directions of the field. 46

On the other hand, in [A2], Ramalli et al. introduced 47

the main factors influencing the design of sparse arrays and 48

illustrated the main design methods. They reviewed both 49

the experimental implementations of sparse arrays and their 50

applications. They concluded that although some drawbacks 51

must be solved (e.g., the limited signal-to-noise ratio), sparse 52

arrays could represent a feasible option for the development 53

of 3-D imaging systems at a moderate cost, and for preclinical 54

application of novel methods. 55

B. Application-Specific Array Design 56

In some applications, the design of array transducers needs 57

to be customized to fit special technical requirements. This 58

Spotlight Issue has showcased three representative examples 59

of these application-specific arrays. 60

In [A3], Benedict et al. detailed the design of a 2-D 61

array and the driving system for powering biomedical ultra- 62

sonic implants. They assembled a 52-element, 1.8-mm pitch, 63

13-mm diameter array on a 0.3-mm flexible printed circuit 64

board. Such design specifications, while meeting emission 65

limits set forth by the Food and Drug Administration (FDA), 66

sought to optimize the link efficiency, the intensity at the 67

implant, and grating lobes. Also, energy transfer efficiency 68

was maximized through time reversal and the related phase 69

reversal approach. 70

In [A4], Stocker et al. described the design and fabrication 71

of a 260-element phased array for use in histotripsy in the 72

abdominal cavity. The phased array design was physically 73

compact due to the use of arbitrary element shapes. The 74

authors demonstrated the feasibility of their design of with 75

arc-shaped elements, and it showed an excellent steering range 76

for histotripsy. A modular approach, wherein each element can 77

be tested and replaced separately, was shown to improve the 78

overall yield of the full array. 79

In [A5], Pialot et al. showed that a 64-element, arthro- 80

scopic probe can be used for imaging the vascularization of 81

the meniscus during surgery. Specifically, they demonstrated, 82

through phantom experiments, that the intrinsic low sensitivity 83

of such a miniaturized probe can be enhanced (by up to 10 dB) 84

through a chirp-coded sequence with a compression filter 85

robust to attenuation, even though there was a concomitant 86

reduction in axial resolution (13% worse). 87
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C. Fabrication and Testing of Array Transducers88

Successful development of array transducers after all89

requires mature protocols for probe fabrication and metrol-90

ogy. In this Spotlight Issue, three papers have been included91

to disseminate the latest knowledge and know-how on this92

engineering aspect of medical array design.93

In [A6], Roa et al. addressed one critical challenge in fab-94

ricating micro-ultrasound arrays: that is, spatial constraints in95

making electrical connections to array elements. By using the96

laser ablation process, the authors have successfully patterned97

high-density flexible circuit cablings (with traces of 60 µm98

pitch and 5 µm wide) for a micro-ultrasound array with a99

center frequency of 43 MHz and 30 µm pitch (sublambda100

pitch). The array assembly showed good yield and consistent101

impedance across channels. These results confirmed the fea-102

sibility of prototyping micro-ultrasound arrays for endoscopic103

applications.104

In [A7], Wei et al. described the design and prototyping105

of two sparse volumetric-imaging arrays based on the “lead106

zirconate titanate on printed circuit board” (PZT-on-PCB)107

technology. The design incorporated discrete in-probe small-108

signal amplifiers to improve the signal-to-noise ratio. With109

this design, the authors were able to achieve the required110

bandwidth for using the probes as a platform for sparse array111

imaging developments.112

In [A8], Maffett et al. performed a metrology investiga-113

tion to evaluate the feasibility of using a density-tapered114

spiral array transducer for high-volume-rate 3-D imaging.115

The spiral array was fabricated using a capacitive microma-116

chined ultrasound transducer (CMUT) design approach. The117

results showed that the spiral array could consistently deliver118

unfocused transmissions with a spatial-peak, pulse-average119

intensity of 0.3 W/cm2 (within the FDA limit), and its received120

pulse echoes could be beamformed to produce B-mode images121

with good spatial resolution.122

D. New Imaging Schemes for Ultrasound Arrays123

As array transducers are actively being developed, novel124

schemes and algorithms have emerged to make adept use125

of these arrays to achieve robust imaging performance. This126

Spotlight Issue has included four articles on different aspects127

of this research topic.128

In [A9], Sobhani et al. introduced a new coherent129

compounding scheme for ultrafast coded synthetic aperture130

imaging using a new type of RC arrays with bias-switchable131

functionalities. This new method produced high-quality132

images that were not susceptible to tissue motion. It was133

deemed to yield a good tradeoff between system complexity,134

field of view, and frame rate.135

In [A10], Lafci et al. aimed at aiding the development136

of optimized hardware and image acquisition strategies for137

reflection ultrasound computed tomography (RUCT). The138

authors experimentally showed that a reduced number of large139

elements allowed the preservation of imaging performance at140

the central part of the image. On the other hand, a sparse141

distribution of small elements was found resulting in a more142

uniform performance across the field of view with reduced 143

contrast. 144

In [A11], Xiao et al. investigated the possibility of recon- 145

structing missing channel data when only half of the array 146

elements may be used concurrently due to constraints in 147

system electronics. The solution was based on deep learning in 148

the form of a convolutional encoder–decoder neural network. 149

The authors showed with in-vivo data that, when using the 150

proposed deep learning framework, degradation of the result- 151

ing B-mode image quality was limited (below 3 dB) even if 152

only every other array channel was used for pulse-echo data 153

sampling. 154

In [A12], Soozande et al. reported an imaging sequence 155

for a dedicated 3-D intracardiac probe that can yield high 156

volumetric rates of 1000 volumetric frames per second. This 157

imaging sequence was intended for use in mapping the electro- 158

mechanical wave propagation pattern in the heart. The authors 159

showed via extensive simulations that high volumetric frame 160

rates and good image quality could be simultaneously achieved 161

when using micro-beamforming, which was needed to reduce 162

cable count in the catheter shaft. 163

E. Final Remarks 164

The Guest Editors would like to take this opportunity to 165

thank all contributing authors for their excellent work. The 166

Guest Editors hope this Spotlight Issue can serve to prompt 167

further engineering innovations and applications of medical 168

ultrasound array transducers. Realization of these advances 169

will be crucial for the continued growth of ultrasound imaging 170

in clinical diagnostics. 171
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