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Toward Speed-of-Sound Anisotropy
Quantification in Muscle With

Pulse-Echo Ultrasound
Naiara Korta Martiartu , Saulė Simutė, Michael Jaeger, Thomas Frauenfelder, and Marga B. Rominger

Abstract— The velocity of ultrasound longitudinal waves
(speed of sound) is emerging as a valuable biomarker for
a wide range of diseases, including musculoskeletal disor-
ders. Muscles are fiber-rich tissues that exhibit anisotropic
behavior, meaning that velocities vary with the wave-
propagation direction. Therefore, quantifying anisotropy is
essential to improve velocity estimates while providing a
new metric related to muscle composition and architecture.
For the first time, this work presents a method to esti-
mate speed-of-sound anisotropy in transversely isotropic
tissues using pulse-echo ultrasound. We assume elliptical
anisotropy and consider an experimental setup with a flat
reflector parallel to the linear probe, with the muscle in
between. This setup allows us to measure first-arrival reflec-
tion traveltimes using multistatic operation. Unknown mus-
cle parameters are the orientation angle of the anisotropy
symmetry axis and the velocities along and across this
axis. We derive analytical expressions for the nonlinear
relationship between traveltimes and anisotropy parame-
ters, including reflector inclinations. These equations are
exact for homogeneous media and are useful to estimate
the effective average anisotropy in muscles. To analyze the
structure of this forward problem, we formulate the inversion
statistically using the Bayesian framework. We demonstrate
that anisotropy parameters can be uniquely constrained
by combining traveltimes from different reflector inclina-
tions. Numerical results from wide-ranging acquisition and
anisotropy properties show that uncertainties in velocity
estimates are substantially lower than expected velocity
differences in the muscle. Thus, our approach could provide
meaningful muscle anisotropy estimates in future clinical
applications.
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I. INTRODUCTION

SPEED-OF-SOUND estimation in tissue using ultra-
sound has attracted considerable attention in recent

years [1]–[7]. Speed of sound refers to the propagation veloc-
ity of longitudinal waves, which are typically used for image
formation in ultrasound systems. This property contains clini-
cally relevant information about tissue composition and shows
great promise as a biomarker for a wide range of diseases.
Clinical applications involving longitudinal-wave velocities
include, for instance, breast cancer screening [1], [8], [9],
hepatic steatosis assessment [10], [11], and diagnosis of mus-
culoskeletal disorders [12], [13].

Unlike breast and liver tissue, muscles exhibit anisotropic
mechanical properties due to their fibrous structure. Velocities
vary with the ultrasound wave-propagation direction, showing
higher values along fiber direction than across fibers. Empirical
studies in ex vivo human and animal tissues have reported
velocity differences of up to 24 m/s [14]–[18]. Hence, failure
to properly account for anisotropy can result in unreliable
velocity estimates. Quantifying anisotropy is clinically inter-
esting mainly for two reasons. On the one hand, it can provide
improved velocity estimates, which are informative about
muscle composition [13]. On the other hand, this property is
directly related to the muscle fiber distribution, encoding also
information about muscle architecture.

Anisotropy estimation can be particularly relevant for
monitoring sarcopenia cost-efficiently. This is an age-related
musculoskeletal disorder characterized by the progressive loss
of both muscle mass and function. Speed of sound is strongly
correlated with reference standards for quantifying muscle
mass loss [13] and have proven promising for differentiating
young and older populations [12]. However, the loss in muscle
mass is not correlated with the loss in muscle function [19],
and both are required to assess this pathology accurately [20].
Current standards to measure muscle function, which is
related to the muscle fiber arrangement [21], are based on
questionnaires or tests [20]; thus, they do not include any
quantitative imaging tool. In this context, estimating speed-
of-sound anisotropy with ultrasound could bring significant
benefits for assessing sarcopenia.

Methods to characterize the anisotropy of (quasi-)
longitudinal waves are relatively unexplored in the literature.
Studies addressing this topic have only focused on in vitro
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measurements, where experimental setups are not appropri-
ate for clinical examinations [14]–[18]. Characterization of
anisotropy in shear waves, on the contrary, is an active research
field. Lee et al. [22] developed an approach termed elastic
tensor imaging (ETI) to map myocardial fiber directions based
on shear-wave anisotropy. ETI uses either linear-probe rota-
tions or 2-D matrix-array probes [23] to measure shear-wave
velocities at different propagation directions. From here, fiber
orientation angles can be extracted by assuming the medium
as transversely isotropic. Measurements in animal myocardial
samples have demonstrated strong correlations of ETI with
histological data [22] and diffusion tensor magnetic resonance
imaging [24]. A similar approach using 2-D matrix probes
was also suggested by Wang et al. [25], who generalized the
method to cases in which the shear-wave excitation push is not
perpendicular to fibers. Shear-wave velocity measurements,
however, are prone to artifacts caused by tissue inhomo-
geneities. To circumvent this, Hossain et al. [26] proposed
measuring tissue peak displacements at locations of the shear-
wave excitation source. Variations of this quantity as a function
of the probe orientation were seen to correlate with anisotropy
in shear moduli [26]. This approach showed promising results,
for example, for monitoring the status of renal transplant in
humans [27].

Shear and longitudinal waves interrogate fundamentally
different but complementary mechanical tissue properties [28].
Due to the acquisition setup of ultrasound systems, they
typically propagate in approximately perpendicular directions;
thus, we cannot directly extrapolate to longitudinal waves the
techniques developed for quantifying shear-wave anisotropy.
This work aims to present a method capable of quantifying
speed-of-sound anisotropy in muscle using pulse-echo ultra-
sound. We consider a setup with a flat reflector located oppo-
site the ultrasound probe, allowing us to measure first-arrival
reflection traveltimes [4]. In Section II, we derive the analytical
expression of the relationship between these traveltimes and
muscle anisotropy. Their sensitivity to different anisotropy
parameters is discussed in Section III. Section IV briefly
introduces the Bayesian inversion approach used in this study.
We then analyze the nature of the proposed problem with
various numerical examples in Section V. Finally, Section VI
summarizes key aspects of the method and carefully discusses
its clinical relevance and potential improvements.

II. TRAVELTIME MODELING IN ANISOTROPIC MEDIA

The alignment of fibers in muscles causes anisotropy in
mechanical muscle properties. Commonly, muscle tissue is
described as a transversely isotropic medium with the sym-
metry axis along the fiber direction [25], [26], [29], [30].
Such a medium is characterized by five independent elastic
parameters, describing, for instance, the longitudinal- and
shear-wave velocities along and across the symmetry axis.
In soft tissue, however, shear-wave velocities are negligible
in comparison to longitudinal-wave velocities [31]. Therefore,
it is possible to describe muscle properties using only three
independent parameters. In this study, we assume elliptical
anisotropy, which is a special case of transverse isotropy. The
validity of this assumption is discussed in Appendix A. The

Fig. 1. Schematic representation of the anisotropic medium and
experimental setup considered in this study. (a) Wavefronts in elliptically
anisotropic media are ellipsoidal. Parameters v1 and v2 represent veloc-
ities along and across muscle fibers, and ϕ describes the orientation of
fibers with respect to the coordinate system. In an arbitrary propagation
direction θ connecting xA and xB, waves propagate with velocity vθ =
v (θ). (b) Our experimental setup includes a flat reflector located opposite
the probe, with tissue in between. The probe-reflector distance L is
assumed to be controlled by a positioning frame and a digital sensor.
We measure first-arrival reflection traveltimes of ultrasound signals
emitted from xS and received at xR, with xP ∈ D indicating the reflection
point.

three independent parameters are then the orientation angle
ϕ of the anisotropy symmetry axis and the velocities along
(v1) and across (v2) this axis. In such a medium, the group
(ray) velocity v(θ) in an arbitrary propagation direction θ
satisfies [32], [33]

v2(θ)

v2
1

sin2 (θ − ϕ) + v2(θ)

v2
2

cos2 (θ − ϕ) = 1 (1)

where the angles θ and ϕ are illustrated in Fig. 1(a).
Traveltimes of different arrivals are affected by the

direction-dependent velocity v(θ), and we can use them to
retrieve anisotropy parameters m = (v1, v2, ϕ). For simplicity,
we consider the muscle as a 2-D homogeneous medium.
Using (1) and trigonometric identities, the traveltime tAB

between positions xA and xB is given by

t2
AB = 1

v2
1

[(
x1,B − x1,A

)
cos ϕ − (

x2,B − x2,A
)

sin ϕ
]2

+ 1

v2
2

[(
x1,B − x1,A

)
sin ϕ + (

x2,B − x2,A
)

cos ϕ
]2

. (2)

The reader is referred to the Supplementary Material
for the detailed derivation of equations in this section.
From (2), we observe that tAB is nonlinearly related to
anisotropic parameters m. When the orientation of the
symmetry axis is known, we obtain a linear relationship
between squared traveltimes t2 and squared slownesses 1/v2

1
and 1/v2

2 .
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A. Reflector-Based Experimental Setup

This study considers an experimental setup that includes
a reflector located opposite the linear ultrasound probe [see
Fig. 1(b)], with the probe-reflector distance L controlled by
a positioning frame and a distance sensor [4]. This setup
has already been applied in various clinical studies for the
assessment of breast [34], [35] and muscle tissue [12], [13],
[31], [36]. The reflector allows us to measure first-arrival
reflection traveltimes tSR of waves propagating from a source
at xS to a receiver at xR. They can be expressed using Fermat’s
principle as

min
xP∈D

tSR(xP), where tSR(xP) = tSP(xP) + tPR(xP) (3)

where D refers to the set of points xP at the reflector–tissue
interface [see Fig. 1(b)], and traveltimes of each path are
computed using (2).

Unlike in isotropic media, the reflection point xmin
P for the

minimum traveltime does not necessarily lie on the midpoint
between xS and xR in anisotropic media. It is possible to
show that the location of the reflection point generally satisfies
xmin

P = ((x1,S + x1,R)/2 + δ, L), where δ is a constant value.
That is, xmin

P is shifted from the source-receiver midpoint
position by the same constant δ for every source-receiver
combination. To find the value of δ, we consider, for simplicity,
the zero-offset case in which xS = xR, and we solve (3) using

dtSR

dx1,P

∣∣∣∣
xP=xmin

P

= 2
dtSP

dδ

∣∣∣∣
xP=xmin

P

= 0. (4)

The reflection point is then

xmin
P =

(
x1,S + x1,R

2
+ L sin 2ϕ

(
v2

2 − v2
1

)
2
(
v2

1 sin2 ϕ + v2
2 cos2 ϕ

) , L

)
. (5)

This point is located at the source–receiver midpoint only
when the medium is isotropic (v1 = v2) or the anisotropy sym-
metry axis is aligned with our coordinate system (ϕ = 0◦). For
muscle tissue, we expect v1 > v2 for ϕ ∈ [−π/4, π/4), i.e.,
waves propagating faster along than across fiber direction [14].
Therefore, δ can be either positive or negative depending on
the sign of ϕ.

Upon inserting (5) in (2) and (3), we can observe that
the path with the minimum traveltime satisfies tSP(xmin

P ) =
tPR(xmin

P ). Therefore, the fastest ray path is the path with
equal traveltime along each segment. This also means that
the mirror image of the receiver, namely a virtual equivalent
receiver R̃ below the reflector satisfying tSR̃ = tSR, is located
at xR̃ = 2(xmin

P − xS) + xS = 2xmin
P − xS. The first-arrival

reflection traveltime between xS and xR is then

t2
SR

(
xmin

P

) = d2

v2(θ = π/2)
+ 4L2v2(θ = π/2)

v2
1v

2
2

(6)

with v2(θ = π/2) given by (1) and d = x1,R − x1,S being the
source-receiver offset. This equation establishes the relation-
ship between observations tSR and unknown muscle properties
m = (v1, v2, ϕ). Thus, the forward problem considered in
this study is nonlinear. When the anisotropy symmetry axis

Fig. 2. Muscle models satisfying the conditions (8) and, thus, providing
equal traveltimes. For this example, we take the reference model �m =
(1560 m/s,1540 m/s, 0◦) and represent equivalent models m for ϕ ∈
[−45◦,45◦). Because muscle models are defined by three parameters,
we represent the anisotropy angle ϕ versus the velocity ratio v1/v2
for visualization. We only show models with velocities in the range of
[1300,1800] m/s.

is aligned with the coordinate system (ϕ = 0◦), (6) reduces to

t2
SR

(
xmin

P

) = d2

v2
1

+ 4L2

v2
2

(7)

and, as previously observed, t2
SR becomes linearly related to

squared slownesses 1/v2
1 and 1/v2

2 . It is important to note
that (5) and (6) are exact for any homogeneous media with
elliptical anisotropy.

B. Nonuniqueness

In this section, we demonstrate that traveltimes satisfy-
ing (6) are not sufficient to constrain muscle properties
uniquely. For notational brevity, we omit the dependence on
xmin

P from traveltimes.
Let us assume that we measure traveltimes t2

SR(m̂) in the
medium m̂. If t2

SR(m̂) is uniquely defined by m̂, then any
other m giving the same traveltimes t2

SR(m̂) = t2
SR(m) must

satisfy m̂ = m. For simplicity, we take m̂ = (v̂1, v̂2, ϕ̂ = 0◦)
and m = (v1, v2, ϕ) and consider a single source–receiver pair.
Equating (6) and (7), we see that both muscle parameters give
the same traveltimes when

v̂1v̂2 = v1v2 (8a)

v2
1 sin2 ϕ + v2

2 cos2 ϕ = v̂2
2 . (8b)

These conditions can be satisfied for m̂ �= m even when
we exclude the intrinsic periodicity of ϕ [i.e., m(ϕ) =
m(ϕ + π)] and the obvious symmetry of the elliptical
anisotropy (v1 → v2 when ϕ → ϕ + π/2). Thus, traveltimes
defined in (6) cannot uniquely constrain muscle anisotropy.
It is noted that multiple sources cannot resolve this nonunique-
ness because the conditions (8) do not depend on source and
receiver locations. As an example, Fig. 2 shows all equivalent
muscle models (in terms of traveltimes) to the reference model
m̂ = (1560 m/s, 1540 m/s, 0◦). We observe that specially the
parameter ϕ is unconstrained by the forward problem in (6).
Hence, we require additional types of observations.
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C. Reflector Inclination: Sources of Uncertainties as New
Constraints

The simplest way to constrain the anisotropy angle is by
combining data acquired from multiple muscle sides. This is
equivalent to rotating the tissue with respect to the probe.
For in vivo studies, however, we can only access the muscle
from a single side of the anisotropy plane. To circumvent
this limitation, we suggest taking advantage of the reflector
inclination, which is unavoidable in practice and regarded as
a source of uncertainties [37]. A tilted reflector will gener-
ate ray paths with orientations that are different from our
previous setup. Therefore, we suggest combining data from
multiple inclination angles to constrain muscle anisotropy.
In the following, we assume that the inclination angle is
controlled using, for instance, B-mode images, and we derive
the corresponding forward problem.

Let us denote α the reflector inclination angle with respect
to the x1-axis, shown in Fig. 3(a). We can use our previous
equations by rotating the whole setup to align the reflector with
the x1-axis. In this situation, the anisotropy angle becomes
ϕ → ϕ + α, the probe is inclined by α with respect to
the x1-axis, and the vertical probe-reflector distance becomes
L → L cos α [see Fig. 3(b)]. Using geometrical identities
and the previous result in (5), the reflection point xmin

P =
(xmin

1,P , L cos α) in the rotated system becomes

xmin
1,P = dS cos α + L ′(d cos α + 2δ′)

2L ′ + d sin α
(9)

with

δ′ =
(
L ′ + d sin α

)
sin(2(ϕ + α))

(
v2

2 − v2
1

)
2
(
v2

1 sin2(ϕ + α) + v2
2 cos2(ϕ + α)

) (10)

and

L ′ = L cos α + dS sin α (11)

where dS denotes the distance between the origin of the
coordinate system (first element of the probe) and xS, and
d is, as previously defined, the distance between xS and xR.

We replace xmin
P in (2) and (3) to find the total traveltime

t2
SR = d2

v2(π/2)
+ 4L ′(L ′ + d sin α

)
v2

1 sin2(ϕ + α) + v2
2 cos2(ϕ + α)

. (12)

This equation is the generalization of (6), which we obtain
when α = 0.

D. Constraining Anisotropy Parameters

In the following, we demonstrate that we can constrain
the muscle anisotropy by combining traveltimes from dif-
ferent reflector inclinations. Since (12) is the generalization
of (6), we expect that traveltimes measured from a single
reflector inclination show the same nonunique behavior as
in Section II-B. Thus, we will first derive the equivalent
models, in terms of traveltimes, to a reference model m̂ for an
experiment with α �= 0◦. We then compare these models with
those obtained for α = 0◦ [see (8)]. If combining traveltimes
from these two experiments constrains muscle anisotropy, then

Fig. 3. Schematic illustration showing two equivalent experimental
setups. (a) Our original setup considers the reflector inclined by α
with respect to the x1-axis. The vertical distance, i.e., the distance in
x2-direction, between the first transducer element (origin of the coordi-
nate system) and the reflector is L. The orientation of the anisotropy
symmetry axis is ϕ. (b) We rotate the whole system by α, with the
rotation center indicated in (a), to find an equivalent setup with no reflector
inclination. Now, the probe is inclined with respect to the x1-axis, the
anisotropy angle is ϕ + α, and the vertical probe-reflector distance
becomes L ���α.

the equivalent models for α �= 0◦ and α = 0◦ should overlap
in a single point equal to m̂.

Assume we measure the traveltimes t2
SR(m̂; α) from muscle

properties m̂ using the reflector inclination α. Following
the analysis in Section II-B, we can observe that different
muscle properties m �= m̂ can provide identical traveltimes
t2
SR(m; α) = t2

SR(m̂; α) using the same experimental setup.
Again, we take m̂ = (v̂1, v̂2, ϕ̂ = 0◦) and m = (v1, v2, ϕ)
and consider a single source–receiver pair for simplicity.
Using (12), we find that equivalent muscle parameters satisfy
the conditions

v̂2
1 = v2

1v
2
2

v2
1 sin2 ϕ + v2

2 cos2 ϕ
(13a)

v̂2
1 sin2 α + v̂2

2 cos2 α = v2
1 sin2 ϕα + v2

2 cos2 ϕα (13b)

where ϕα = ϕ +α. These conditions reduce to (8) for α = 0◦.
To understand the meaning of (13), we take the reference

model m̂ = (1560 m/s, 1540 m/s, 0◦), same as in Section II-B,
and represent models satisfying (13) for different values of
α, shown in Fig. 4. We observe that our reference model m̂
is the only model in common for different reflector incli-
nations. This demonstrates that combining traveltimes from
different α can uniquely constrain muscle anisotropy. We also
observe that the sets of equivalent models differ more for
larger differences in α. Consequently, in the presence of
measurement noise, we expect to constrain the anisotropy
more accurately by combining traveltimes from setups with
larger inclination differences. In the extreme case where we
combine α = 0◦ and α = 90◦, observed traveltimes will
correspond to perpendicular ray paths that can measure muscle
anisotropy directly. However, a large reflector inclination will
deform muscle tissue considerably, changing its anisotropic
properties. We should therefore avoid large inclinations in
practice to minimize the realignment of fibers and obtain
consistent measurements.
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Fig. 4. Muscle models satisfying the conditions (13a) and providing same
traveltimes for reflector inclination angles α = 0◦, 10◦, and 20◦. For all α,
the reference model is �m = (1560 m/s,1540 m/s,0◦), and we represent
its equivalent models for ϕ ∈ [−45◦,45◦) and v�, v2 ∈ [1300, 1800] m/s.
The Supplementary Material includes the same figure with respect to v1
and v2 for clarity.

E. Validation With Numerical Simulations

The derivations presented previously are sufficient to
demonstrate that (12) is exact for homogeneous media with
elliptical anisotropy. In this section, we confirm this with
simulations that solve the wave equation numerically. We use
the spectral-element solver Salvus [38] to model the wave
propagation in muscle using the 2-D time-domain elastic wave
equation with shear modulus equal to zero, i.e.,

ρ∂2
t u(x, t) − ∇ · (D∇u(x, t)) = f (xS, t). (14)

Here, f is the external source generated from xS, u is the
scalar displacement potential, ρ is the muscle density, and
D is a second-order symmetric positive tensor describing the
direction-dependent velocities v. If the anisotropy is aligned
with the coordinate system, D is a diagonal matrix with
elements D11 = ρv2

1 and D22 = ρv2
2 . For tilted anisotropy,

we apply the rotation matrix to derive the elements of D.
To simulate the reflector-based experimental setup, we use a

medium with two homogeneous layers representing the muscle
and reflector. The muscle layer is elliptically anisotropic with
density 1000 kg/m2. The reflector is isotropic with speed
of sound 2670 m/s and density 1180 kg/m2, simulating a
polymethylmethacrylate material [4]. The probe consists of
128 transducer elements with 0.3-mm pitch. We use the first
element to transmit a pulse of 2.5-MHz center frequency while
all elements act as receivers. It is noted that our frequencies
are lower than those typically used in linear probes to keep
simulations computationally affordable.

We illustrate the accuracy of our forward model in (12)
using the muscle model m = (1560 m/s, 1540 m/s, 5◦),
a probe-reflector distance of L = 8 cm, and reflector incli-
nation angles α = 0◦ and α = 5◦. First-arrival reflection
traveltimes are computed by cross-correlating recorded signals
with a simulated calibration dataset in water (1515 m/s)
using the same experimental setup. Fig. 5 compares travel-
times measured from wave propagation simulations with those
analytically modeled using (12). As expected, both examples

Fig. 5. Comparison of simulated traveltimes from numerical wave
propagation simulations with those analytically modeled using (12). The
source is located at the first transducer element, and traveltimes are
represented with respect to the source–receiver offset. We used the
muscle model m = (1560 m/s,1540 m/s, 5◦), the probe-reflector distance
L = 8 cm, and reflector inclination anglesα = 0◦ andα = 5◦. Root mean
square errors are 8.10 ·10−10 s and 8.34 ·10−10 s for α = 0◦ and α = 5◦,
respectively.

show negligible differences between simulated and analytical
traveltimes demonstrating that (12) is exact.

III. TRAVELTIME SENSITIVITIES TO TISSUE ANISOTROPY

Partial derivatives of traveltimes with respect to different
anisotropy parameters contain valuable information on the
expected reconstruction accuracy. They reveal how sensitive
traveltimes are to changes in anisotropic parameters; thus,
we can analyze them to understand how well model parameters
can be constrained from specific traveltime observations.

So far, we have assumed that we can control the reflector
inclination angle, for instance, from B-mode images. However,
due to unknown tissue properties, this estimation will contain
uncertainties, and reconstruction algorithms should consider
α as another parameter to retrieve within m. Hence, we also
analyze the traveltime sensitivity with respect to α.

Since our forward problem is nonlinear, the sensitivities
depend on model parameters. Still, we can make interesting
observations by analyzing their values for the same model and
acquisition parameters used in Fig. 5 [see Fig. 6]. In this case,
traveltime sensitivities to v1 are approximately one order of
magnitude lower than the sensitivities to v2. This is caused by
the limited aperture of the ultrasound probe, as suggested by
the magnitude increase with the source-receiver offset. Increas-
ing the reflector inclination angle increases the components
of ray paths along x1-direction, and traveltimes become more
sensitive to v1. Similarly, the sensitivities to v2 weaken with
increasing the source-receiver offset and reflector inclination
angle. Accordingly, we expect higher uncertainties in the
estimation of v1 than v2 for ϕ < π/4.

Traveltime sensitivities to ϕ change substantially with α
compared to the changes with respect to the source-receiver
offset, suggesting a strong nonlinear relationship between
traveltimes and ϕ. This is not surprising, as traveltimes depend
on ϕ through trigonometric functions. The magnitude of these
sensitivities in Fig. 6 is therefore difficult to interpret. Finally,
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Fig. 6. Sensitivities of traveltimes to velocities along (v1) and across (v2) the anisotropy symmetry axis, the orientation of this axis (ϕ), and the
reflector inclination angle (α), respectively. The sensitivities are shown as a function of the source-receiver offset to illustrate its variability. We consider
the same anisotropy and acquisition parameters as in Fig. 5.

we observe that traveltimes are highly sensitive to α, with
values approximately four orders of magnitude larger than
those for v1. It means that traveltimes are very informative
about the reflector inclination angle, which we expect to
retrieve with high accuracy.

IV. STATISTICAL INVERSE PROBLEM

Estimating muscle anisotropy from traveltime observations
involves solving a nonlinear inverse problem. In principle,
we can formulate this as a gradient-based optimization prob-
lem to search for the model m that minimizes the misfit
between observed traveltimes dobs and predicted traveltimes
d [39]. Such deterministic approaches, however, cannot guar-
antee that the solution corresponds to the global minimum
of the nonlinear function we try to minimize. They are also
incapable of accurately estimating uncertainties in the solution
caused by measurement noise, limited data coverage, and
inaccurate forward modeling [40]. In this study, our goal is
to analyze the feasibility of estimating the speed-of-sound
anisotropy from traveltime observations. For this analysis,
quantifying uncertainties is crucial; thus, we address the inver-
sion statistically using the Bayesian framework. The solution
is a posterior probability density function (pdf) πpost(m|dobs)
that contains the complete statistical description of model
parameters [39], [40].

According to Bayes’ theorem [41], [42], the posterior pdf
satisfies

πpost(m|dobs) = k πprior(m)πlike(dobs|m) (15)

where k is an appropriate normalization constant, πprior(m)
encodes our prior information on m, and the data likelihood
πlike(dobs|m) is the conditional probability of having obser-
vations dobs given the model m. We can express the data
likelihood explicitly as

πlike(dobs|m) ∝ exp

[
−1

2
(d − dobs)

T�−1
n (d − dobs)

]
(16)

where d = F(m) is the forward problem in (12), and �n

is the noise covariance matrix describing normally distributed
uncertainties in observations. Here, we assume that traveltimes
are measured using reflector delineation techniques suggested
in the literature [4], [43]. These techniques were developed
to measure the traveltimes of waves propagating from single-
element emitters, the same observables as in our case. Since

traveltimes vary smoothly between adjacent receivers, delin-
eation approaches incorporate this prior knowledge to remove
outliers, minimizing large measurement errors.

In principle, the prior πprior(m) can take any form. We can
generally express it in terms of individual model parameters
mi as

πprior(m) =
N∏

i=1

πprior(mi ) (17)

where N is the number of parameters in m. In this study,
we use either a uniform distribution between a fixed range of
values, i.e.,

πprior(mi) =
{

1
mmax

i −mmin
i

, if mi ∈ [
mmin

i , mmax
i

]
0, otherwise

(18)

or a Gaussian distribution

πprior(mi) = 1√
2πσi

exp

[
−

(
mi − m0

i

)2

2σ 2
i

]
(19)

with mean m0
i and standard deviation σi . We consider broad

uniform priors for velocities and anisotropy angle. Such priors
are relatively uninformative, simulating a scenario with little
previous knowledge about the medium. While we could use
more sophisticated forms of prior, for instance, including
correlations between anisotropic parameters, the uniform prior
allows us to understand better the constraints imposed by the
traveltime data. When reflector inclination angles are consid-
ered part of m, we use Gaussian priors for these parameters.
Here, we assume that approximate values of inclination angles
are available from B-mode images.

The posterior allows us to extract useful statistical infor-
mation about muscle anisotropic parameters. For instance,
we can compute the probability of m satisfying certain
conditions M1 of clinical interest as P(m ∈ M1) =∫
M1

πpost(m|dobs)dm. This probability can be relevant in clin-
ical decision-making when disease-related thresholds exist for
anisotropic parameters. Other statistical quantities such as the
expectation or marginal pdfs are also computed via similar
integrals.

Unless the forward problem is linear, and the prior and
noise are Gaussian, analytical expressions of the posterior are
not available [39], [44]. Still, it is possible to approximate
the statistical information contained in the posterior using
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Fig. 7. Posterior pdf related to the unconstrained forward problem in (6).
We consider 32 sources equidistantly located and the source-reflector
distance L = 8 cm. Models with highest pdf correspond to theoretically
predicted ones in Fig. 2 (dashed line). They explain equally well the
traveltimes computed from the true model (red star).

efficient sampling techniques. In this study, we employ the
Metropolis-Hastings Markov chain Monte Carlo (MCMC)
algorithm [45]–[47]. The algorithm generates an ensemble
of random samples of the posterior with sampling density
proportional to πpost(m|dobs). We can use this ensemble to
approximate integrals related to our statistical quantities of
interest.

V. NUMERICAL EXAMPLES

In this section, we show numerical examples illustrating the
nature of the anisotropy estimation problem. Our objectives are
threefold: 1) show the role of the reflector inclination in con-
straining anisotropy parameters; 2) investigate the robustness
of the problem under uncertain inclination angles and a mist-
mach in probe-reflector distance between measurements; and
3) understand the impact of the experimental setup, anisotropy
properties, and measurement noise on solution uncertainties.

All examples shown here consider a uniform prior
for velocities and anisotropy angle within the range of
[1300 m/s, 1800 m/s] and [−45◦, 45◦), respectively. As in
Section II-E, we use an ultrasound probe with 128 transducer
elements and 0.3-mm pitch. We consider every fourth element
acting as a source sequentially (a total of 32 sources) while
all elements are in receiving mode. Following reported values
in [43], where the authors compare annotated first-arrival
reflection traveltimes with those estimated from reflector delin-
eation approaches, we assume Gaussian observational errors
with a standard deviation of 0.1% of maximum traveltimes.
To ensure convergence and correctly interpret the statistical
results, we explore the posterior with a relatively large number
of random samples, O(107), although fewer samples could
suffice for practical purposes.

A. Unconstrained Problem

In this example, we solve the Bayesian anisotropy inference
using the forward problem in (6). Our goal is to illustrate
how the nonuniqueness of the forward problem is mapped
into the posterior. We consider the same example as in Fig. 2,
where the true model is mtrue = (1560 m/s, 1540 m/s, 0◦),

and the probe-reflector distance is L = 8 cm. Our artificial
observations of traveltimes are numerically computed from (6)
and collected in the vector dobs, which contains a total of
32 × 128 traveltimes. Fig. 7 shows the solution of the inverse
problem, namely the posterior pdf. Models with maximum
posterior probability densities are same as those theoretically
predicted in Fig. 2 and explain the observations equally likely.
This example demonstrates moreover that including multiple
sources does not improve the nonuniqueness of (6), as previ-
ously noted. Unless our prior is stronger than a uniform distri-
bution, the posterior will show the exact same nonuniqueness
of the forward problem. In this example, however, a stronger
prior would dominate the solution. For instance, a Gaussian
prior would produce a maximum a posteriori point at the same
location of the prior’s maximum, which may not represent
the true model. Hence, one should carefully interpret the
posterior when the data are not informative enough on model
parameters.

B. Constrained Problem

We illustrate here how the problem can be constrained by
combining data from multiple reflector inclinations. We con-
sider the same true model and acquisition setup as in the
previous example. Now, our artificial observables are 2×32×
128 traveltimes obtained with reflector inclination angles α =
0◦ and α = 5◦ using (12). Fig. 8(a) shows the posterior pdf for
this case, which has a unique maximum that matches the true
model location. Unlike the previous example, now traveltimes
are able to constrain a unique set of model parameters. We can
quantify uncertainties in the solution using marginal pdfs
for each model parameter, shown in Fig. 8(b). Although the
problem is nonlinear, the posterior pdf approximates a mul-
tivariate Gaussian distribution. We thus express the solution
using the mean and standard deviation of the Gaussian fit of
the marginals, which is useful to quantify uncertainties. Mean
values accurately predict true model parameters with standard
deviations less than 1.62 m/s for velocities and 0.61◦ for the
anisotropy angle. As predicted in Section III, we observe that
v1 is less constrained than v2 due to the limited aperture of
the probe.

C. Uncertain Reflector Inclination

In Section III, we observed that traveltimes are highly
sensitive to the reflector inclination angle. As a result, if we
use inaccurate values of α in the forward problem, we may
expect meaningless solutions. This is illustrated in Fig. 9(a),
where we consider the same example as before but with
errors of 5◦ in reflector inclination angles. That is, we fix
the values of α as 5◦ and 10◦ instead of 0◦ and 5◦ to
invert anisotropy parameters. The marginal pdfs show that
reconstructed parameters deviate strongly from the true values.
Their mean values provide a model with a negative log-
posterior value of 2.74e5, meaning that there is a substan-
tial mismatch between observed and predicted traveltimes.
To circumvent this issue, we suggest extending the Bayesian
formulation by including inclination angles as unknown model
parameters, i.e., m = (v1, v2, ϕ, α1, α2). This also allows
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Fig. 8. (a) Posterior pdf when traveltimes from two different reflector inclinations (0◦ and 5◦) are considered. We use the same true model (red star)
and acquisition setup as in Fig. 7. Unsampled models by the algorithm are shown as white areas. The posterior has a unique maximum indicating that
model parameters are well constrained by the traveltimes. (b) Marginal pdfs for v1, v2, and ϕ, respectively. The marginals are histograms obtained
with the MCMC algorithm and represent the sampling frequency of the values for each model parameter. The solution for each parameter is given
in terms of the mean and standard deviation, shown on top of the histograms. The velocity across fibers (v2) is better constrained than the velocity
parallel to fibers (v1).

us to incorporate in the prior pdf our rough estimations
and uncertainties of α1 and α2. To be consistent with the
previous example, we assume Gaussian priors with means at
5◦ and 10◦ and a standard deviation of 3◦. That is, we shift
Gaussian means by 5◦ from true values, with a standard
deviation that excludes the true values from most probable
setups. Although derivations provided in Section II-D are
not sufficient to demonstrate the solution uniqueness in this
case, the marginal pdfs shown in Fig. 9(b) (in gray) have
a clear, unique maximum for each parameter. We show in
the Supplementary Material that different MCMC realizations
converge to the same posterior pdf, suggesting that the solution
uniqueness is still given within the model subspace defined by
the priors. The model based on mean values of marginal pdfs
has a negative log-posterior value of 15.11; thus, it predicts
observed traveltimes accurately. This result demonstrates that
the anisotropy estimation is robust against uncertainties in
reflector inclinations when the extended Bayesian formulation
is used. The most sensitive parameters are v2 and ϕ, with
uncertainties that increase more than two times compared to
those in Fig. 8. Furthermore, the posterior provides accurate
values for α1 and α2, despite the substantial deviations between
their prior means and true values. This indicates that the data
likelihood is sufficiently informative about reflector inclination
angles, as already observed in Section III. Thus, one should
always consider reflector inclination angles as model parame-
ters to retrieve meaningful anisotropy parameters.

D. Probe-Reflector Distance Mismatch
In practice, varying the reflector inclination angle between

measurements could alter the probe-reflector distance.
To understand how this affects the inversion and particularly
the uniqueness of the forward problem, we consider the
same example as before, but with traveltimes measured using

L = 8 cm for α1 and L = 7 cm for α2. The marginal
pdfs obtained in this case are shown in pink in Fig. 9(b).
Compared to our previous example, the solution is almost
unaffected. Again, the mean values correctly represent the true
model. However, the anisotropy angle becomes slightly more
uncertain, whereas the standard deviation of v1 is reduced.
The reduced probe-reflector distance may explain the latter.
In this case, the components of ray paths along v1-direction are
increased, constraining the parameter better. This result shows
that a correct solution is still guaranteed when a mismatch in
L exists between different reflector inclinations.

E. Impact of Experimental Setup, Anisotropy Properties,
and Data Noise

Previous results suggest that experimental conditions influ-
ence the uncertainties of retrieved parameters. Here, we ana-
lyze these effects more in detail when the following five
aspects are modified separately: the probe-reflector distance
L, the true anisotropy angle ϕtrue, the true velocity differences

vtrue = v1,true − v2,true, the reflector inclination angle α2,true

while α1,true = 0◦, and the standard deviation of obser-
vational errors σnoise. All examples consider the reference
model mtrue = (1560 m/s, 1540 m/s, 0◦, 0◦, 5◦), and distance
L = 8 cm, same as in previous examples. Fig. 10 shows
how the standard deviations of inverted model parameters
vary in each case. As observed before, uncertainties in v1

decrease when ray paths become closer to v1-direction, either
by decreasing L [see Fig. 10(a)] or by increasing the ϕtrue

[see Fig. 10(b)]. The latter also increases uncertainties in
v2 due to the opposite effect of ray paths in this case. As a
result, both velocities would be equally constrained when
ϕtrue = 45◦. Interestingly, varying 
vtrue [see Fig. 10(c)] or
α2 [see Fig. 10(d)] do not affect v1 and v2, but ϕ becomes
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Fig. 9. Marginal pdfs of model parameters. We use the true model mtrue = (1560 m/s,1540m/s, 0◦) and reflector inclination angles 0◦ and 5◦
to generate artificial observables. (a) Inversion includes an error of 5◦ in reflector inclinations. As a result, anisotropy parameters with the highest
probabilities deviate strongly from true values (negative log-posterior: 2.74e5). (b) Inversion considers reflection inclination angles α1 and α2 as
model parameters to retrieve. Inclination angles have Gaussian priors with their mean shifted 5◦ from true values and 3◦ standard deviation. In gray,
we show results when probe-reflector distance L is 8 cm, same as in (a). The solution for each parameter is given in terms of the mean and standard
deviation, shown on top of histograms. Mean values of marginals accurately predict true anisotropy parameters (negative log-posterior: 15.11).
In pink, we show results when we use L = 8 cm for α1 and L = 7 cm for α2. A mismatch in L between measurements has no significant effects, and
the correct solution is still guaranteed.

less constrained when these are small. The effect with 
vtrue

is related to the forward problem in (12), which shows that
traveltimes become independent of ϕ when the medium is
isotropic. Therefore, we expect larger uncertainties in ϕ when
approaching isotropic conditions. The effect with α2, on the
other hand, is related to the nonuniqueness of the forward
problem. As analyzed in Fig. 4, model parameters are more
difficult to constrain as differences between α1 and α2 become
smaller. When α1 = α2, the problem is nonunique, and ϕ
cannot be constrained, explaining the large uncertainties in
ϕ when α2 → 0. In all these cases, standard deviations of
reflector inclination angles remain constant, suggesting that
they are nearly uncorrelated to other model parameters.

In general, we observe that the method is capable of
accurately distinguishing velocity differences larger than 4 m/s
when observational errors are 0.1% of maximum travel-
times [43]. This is substantially smaller than velocity dif-
ferences in muscle reported in the literature (>10 m/s)
[14]–[17]. Fig. 10(e) shows, however, that parameter uncer-
tainties will increase linearly with σnoise. Still, we could distin-
guish velocity differences larger than 10 m/s for σnoise ≤ 0.2%,
which is a considerable increase in noise. Note moreover
that uncertainties could be reduced by including more sources
in our examples. Therefore, the method presented here has
the potential to provide accurate and statistically meaningful
muscle anisotropy estimates in future clinical applications.
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Fig. 10. Standard deviations of model parameters as a function of experimental setup, medium properties, and standard deviation of noise. The
reference model and experimental parameters (pink circles) are mtrue = (1560 m/s, 1540 m/s,0◦, 0◦,5◦) and L = 8 cm, respectively. We modify
(a) probe-reflector distance L from 4 to 12 cm, (b) true anisotropy angle ϕtrue from 0◦ to 40◦, (c) true velocity differences Δvtrue = v1,true − v2,true
from 10 to 30 m/s, (d) reflector inclination angle α from 2.5◦ to 12.5◦, and (e) standard deviation of traveltime observations from 0.05% to 0.2% of
maximum traveltimes. In general, we can distinguish velocity differences larger than 4 m/s when the standard deviation of noise is 0.1%, as reported
in [43].

VI. DISCUSSION AND CONCLUSION

This article presents a novel method to estimate the speed-
of-sound anisotropy in transversely isotropic tissue. Until
now, only shear waves have been used to characterize tissue
anisotropy in clinical applications [22], [23], [25], [26], [30],
[48], [49]. However, shear and longitudinal waves interro-
gate fundamentally different mechanical tissue properties [28].
Their propagation velocities differ by three orders of mag-
nitude, resulting in decoupled relationships between the two
velocities and elastic moduli [31]. Hence, our work not only
complements other studies on the topic but is pivotal to
characterize mechanical tissue properties comprehensively.

Due to the lack of previous works on tissue speed-of-
sound anisotropy imaging, our work focuses on developing
simplified models that provide an essential theoretical basis
to understand the nature of the problem. In this respect,
we target the average tissue anisotropy by modeling muscles
as homogeneous media. Rather than being intrinsic, muscle
anisotropy is caused by fine-scale heterogeneities in medium
properties (fibers), which we implicitly consider in our for-
mulation. However, local large-scale heterogeneities may also
influence the average anisotropy estimates, hindering their
interpretation. While being beyond the scope of this article,
one could use the effective medium theory to establish the
link between heterogeneities and anisotropy [50], [51]. From
a clinical interest perspective, this link is key to correlating
anisotropy parameters to muscle composition and architecture,
which are affected by musculoskeletal disorders. For instance,
a change in the number and type of fibers is expected to
lead to changes in the average muscle anisotropy. Therefore,

quantifying this property with ultrasound could ultimately
provide a cost-efficient, multiparametric biomarker to assess
disease-related changes in muscle mass and function.

The method presented here relies on an experimental setup
that includes a reflector parallel to the linear probe, with a sen-
sor controlling their distance. This setup can be easily imple-
mented in conventional ultrasound systems and has already
been successfully applied in various clinical studies [12], [13],
[31], [34]–[36]. Yet, it differs from those suggested for shear-
wave anisotropy estimation, which requires either 2-D matrix-
array probes [23], [25], [49] or the rotation of linear probes
around the axial direction [22], [26], [30], [48]. This difference
in setups is a consequence of approximately perpendicular
propagation directions of typically excited ultrasound shear
and longitudinal waves. In any case, quantifying anisotropy of
any kind will require redesigning current ultrasound systems.

The reflector-based setup allows us to measure arrival
times of echoes reflected at known distances from the
probe. One of the most important results of our work is to
show that these traveltimes and anisotropy parameters are
nonuniquely related. We demonstrate that anisotropy can be
constrained nevertheless by combining measurements from
different reflector inclinations. An inclination in the reflector
is unavoidable in practice and conventionally regarded as
a source of unwanted noise. Here we have resignified its
value and transformed it into a key ingredient for success-
fully estimating anisotropy. Importantly, we show that two
reflector inclinations with relatively small angle differences
are sufficient to constrain anisotropy accurately. This facil-
itates the data acquisition procedure and avoids significant
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muscle deformation that could lead to changes in anisotropic
properties.

Traveltimes and anisotropy parameters are nonlinearly
related; accordingly, we solve the inverse problem using
Bayesian inference. Compared to gradient-based optimization
techniques, our choice is computationally more demanding
and may not suit clinical time constraints. However, it is a
powerful approach to quantify uncertainties, crucial for clinical
decision-making. In the current implementation, we sample
the posterior using the Metropolis-Hastings algorithm, which
evaluates approximately 105 models per minute on a single
CPU from a laptop computer with 15%–20% acceptance rate.
This algorithm is known to have a poor acceptance rate,
meaning that a large number of samples is needed to approxi-
mate the posterior sufficiently well [52]. The performance can
be significantly improved by incorporating information from
derivatives of the log posterior through Hamiltonian Monte
Carlo methods [52], [53]. In this way, we can guide the
sampler toward high-probability regions of the model space,
making the inversion computationally more attractive.

Since traveltimes are highly sensitive to reflector inclination
angles, small angular errors in the forward problem will
translate to incorrect anisotropy estimates. We suggest tackling
this by considering reflector inclination angles as parameters
to invert. Although we could similarly include the probe-
reflector distance as another unknown parameter, we consider
its uncertainties negligible, following reported values (5 μm)
in similar works [4]. Under this formulation, our examples
show that uncertainties in velocity estimates are sufficiently
low to significantly distinguish velocity differences typically
observed in muscle tissue (>10 m/s) [14]–[17]. As suggested
by Fig. 10(e), the validity of this conclusion closely depends
on the level and nature of observational errors, which in
turn depend on the applied traveltime estimation technique.
Here we assume normally distributed noise, which may be
justified when large measurement errors are minimized by:
1) carefully selecting time intervals of expected first-arrival
reflection traveltimes and 2) avoiding outliers due to cycle
skips. We can satisfy these conditions with traveltime esti-
mators based on reflector delineation approaches, commonly
employed for speed-of-sound tomography [4], [43]. They
are designed to remove outliers by including information on
the expected reflector depth and forcing smooth traveltime
variations between adjacent sensors. However, our study does
not consider other sources of errors that may arise in practice
(e.g., poor tissue-reflector coupling). Thus, to better understand
the clinical potential of our method under realistic condi-
tions, a Bayesian formulation integrating comprehensively and
empirically characterized observational errors is required.

For nonlinear problems, the posterior pdf depends on the
anisotropy model. Still, we can draw some general conclusions
about uncertainties in inferred anisotropy parameters.

1) Velocities in directions more parallel to the probe
(i.e., fiber direction) are generally less constrained than
those in perpendicular directions due to the limited
aperture of the acquisition setup.

2) The anisotropy angle ϕ is the least constrained para-
meter with relative uncertainties that are two orders

of magnitudes larger than those for velocities. In fact,
ϕ becomes increasingly unreliable as velocity differ-
ences approach isotropic conditions or the difference
between reflector inclination angles becomes very small.
Yet, such uncertainties do not affect velocity estimates,
which encode more relevant information about tissue
anisotropy.

3) Overall, the largest standard deviations in ϕ (3◦) are sub-
stantially smaller than those reported in similar numer-
ical studies with shear waves (5.6◦–36.3◦) [23]. Maxi-
mum relative errors in velocities are also considerably
lower in our case (0.2% versus 20%) [23]. It suggests
that quantifying anisotropy in longitudinal waves could
potentially be more robust than in shear waves.

APPENDIX A
ELLIPTICAL ANISOTROPY

This appendix discusses the elliptical anisotropy assumption
in muscle and shows the conditions under which (1) is
satisfied. The wave surface given by (1) is an ellipsoid only if
the slowness (reciprocal of the phase velocity) surface is also
an ellipsoid [32], [54]. We therefore focus on analyzing the
expression for phase velocity.

For simplicity, we consider a transversely isotropic medium
with the symmetry axis parallel to x1-direction. The elastic
stiffness tensor ci jkl characterizing this medium has five inde-
pendent components, which are c1111 ≡ c11, c1122 ≡ c12,
c2222 ≡ c22, c2323 ≡ c44, and c1212 ≡ c66 in Voigt notation.
The parameters c44 and c66 are related to shear moduli; thus,
in soft tissue, c44, c66 � c11, c12, c22 [29]. We can relate the
stiffness tensor to phase velocities V through the Christoffel
equation

det
[
ci jkl ni nl − ρV 2δ jk

] = 0 (20)

where the Einstein summation convention is implied for
repeated indices. Here, ρ denotes medium density, the Kro-
necker delta δ jk is equal to one when j = k and zero
otherwise, and ni refers to the i th component of the wavefront
normal vector (slowness vector). By considering a 2-D prob-
lem defined in the x1x2 plane and taking an arbitrary wavefront
direction n = (sin φ, cos φ), (20) leads to

V 2(φ) = 1

2ρ

[
c11 sin2 φ + c22 cos2 φ + G(φ)

]
(21)

for longitudinal waves, with

G(φ) =
[(

c11 sin2 φ − c22 cos2 φ
)2 + c2

12 sin2 2φ
] 1

2
. (22)

The elliptical anisotropy assumption is only valid when
the slowness surface in (21) is an ellipse, which is gener-
ally not the case. Only when the medium satisfies c12 =
(c11c22)

1/2, (21) reduces to the ellipse

V 2(φ) = 1

ρ

[
c11 sin2 φ + c22 cos2 φ

]
(23)

with semiaxes (ρ/c11)
1/2 and (ρ/c22)

1/2. In muscle tissue,
empirical studies have shown that c12 ≈ (c11c22)

1/2 [29], [55],
with reported deviations that are below 0.3%. This justifies the
elliptical anisotropy model used in this study.
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