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Abstract— Lightweight segmentation models are becom-
ing more popular for fast diagnosis on small and low cost
medical imaging devices. This study focuses on the seg-
mentation of the left ventricle (LV) in cardiac ultrasound (US)
images. A new lightweight model [LV network (LVNet)] is
proposed for segmentation, which gives the benefits of
requiring fewer parameters but with improved segmentation
performance in terms of Dice score (DS). The proposed
model is compared with state-of-the-art methods, such
as UNet, MiniNetV2, and fully convolutional dense dilated
network (FCdDN). The model proposed comes with a post-
processing pipeline that further enhances the segmentation
results. In general, the training is done directly using the
segmentation mask as the output and the US image as the
input of the model. A new strategy for segmentation is also
introduced in addition to the direct training method used.
Compared with the UNet model, an improvement in DS per-
formance as high as 5% for segmentationwith papillary (WP)
muscles was found, while showcasing an improvement of
18.5% when the papillary muscles are excluded. The model
proposed requires only 5% of the memory required by a
UNet model. LVNet achieves a better trade-off between the
number of parameters and its segmentation performance
as compared with other conventional models. The devel-
oped codes are available at ht.tps://github.com/navchetan-
awasthi/Left_Ventricle_Segmentation.

Index Terms— Deep learning (DL), lightweight models,
neural networks, segmentation, ultrasound (US) imaging.

I. INTRODUCTION

ULTRASOUND (US) imaging is a cheap and noninvasive
technique, which can be easily utilized for assessing the

geometry and function of the heart [1]. Segmentation of the left
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ventricle (LV) of the heart is a key task in the measurement of
cardiac function parameters, such as ejection fraction, systolic
and diastolic volumes, and myocardium mass, which are all
indicators of cardiac health. The segmentation of the LV
also aids in regional analysis and surgical planning [2], [3].
Thus, segmentation of LV is an important step in diagnosis
of cardiopathies albeit a challenging task because of the
limited and inhomogeneous contrast between myocardium
and endocardium, which is due to physical artifacts, such
as acoustic shadowing, edge dropouts, clutter, speckle noise,
and so on. There are various techniques for segmentation of
the endocardium, such as classical feature extraction tech-
niques [4], deformable models [5], and active contour meth-
ods [6], [7]. These techniques have various limitations: using
computationally expensive feature extraction, requiring prior
information about the tissue properties, and overall lack of
robustness [8]–[10].

In this study, we focus on the segmentation of the LV in
images of the short axis views of the heart. Short axis views are
clinically relevant and commonly acquired in a standard echo
test, and hence, an automatic algorithm for these views will
benefit the community. There are two types of segmentation,
which we discuss in this study—with papillary (WP) and with-
out papillary (WOP). Identification of the papillary structure
is important for various reasons. Segmentation of the LV WP
structure helps in accurately and easily determining the LV
mass for predicting cardiovascular morbidity [11]–[13] while
the segmentation of the region WOP muscle helps in assessing
the cardiac output, ejection fraction, and in cardiac strain
imaging [12], [14]. Few of the segmentation studies address
the importance of including or excluding the papillary muscles
while performing segmentation [1], [15]. Manual segmentation
is time-consuming and a challenging process because of
factors, such as low contrast and poor boundary definition.
Therefore, automated segmentation of such structures in US
images is of utmost importance for determining the cardiac
function in an accurate manner.

Previously, many methods have been developed for LV
segmentation, including machine learning-based methods, e.g.,
structured random forest was used, but it requires manual
selection of features [16]. Various deep learning (DL)-based
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models were also developed for the same task of LV seg-
mentation [3], [17]. DL techniques have been shown to be
effective for a variety of tasks, such as classification [18], [19],
segmentation [20], [21], super-resolution [22], [23], recon-
struction [24], [25] of images in medical applications, and
other areas. Recently, DL architectures, such as convolutional
neural networks (CNNs), have shown promise for cardiac
image segmentation by improving the segmentation quality
and speed [17], [26]. These models are currently being used
widely for 2-D and 3-D US cardiac segmentation [27], [28].
Veni et al. [29] proposed a DL-based framework utilizing a
UNet followed by a level set framework for refining the results
for LV segmentation in B-mode echocardiography images.
Jafari et al. [30] proposed a combination of UNet and bidi-
rectional LSTM for capturing the spatiotemporal information
simultaneously for improving the LV segmentation.

In recent years, segmentation models have been optimized
in terms of size and memory requirements compared with
larger state-of-the-art models, such as the UNet. DL has shown
to be a very promising technique for segmentation in med-
ical images; however, standard networks are computationally
expensive. Lightweight networks require less computational
power and, hence, can be easily deployed on resource-
constrained devices. The successful implementation of these
models can result in almost real-time segmentation [31]. Thus,
lightweight segmentation architectures are an important and
interesting field of investigation for implementation of image
processing pipelines, such as segmentation tasks. The number
of parameters of the network architecture has been reduced
substantially while maintaining or even improving segmenta-
tion performance [32]–[34]. Lightweight CNNs have proven to
form a basis for efficient and accurate semantic segmentation
tasks for medical images [35]–[37], such as detecting lung
pathologies, abdominal structures, tumors, and heart structures
with the advantage of fast and accurate prognosis [1], [36],
[38], [39]. In this study, we focus on the segmentation of
LV in US images of the short axis views of the heart using
lightweight CNNs. A deep model (without overfitting and
underfitting) with a higher number of layers is supposed to
perform better than a model with a lower number of layers.
Still, the focus is shifting toward shallow models, because
these have demonstrated to provide similar results as the deep
model architectures [40]. As the model becomes more shallow,
the number of parameters decreases, which will lead to a
lower demand in terms of computing resources, and the costs
associated. Thus, lightweight models with fewer parameters
are an important step to reduce the dependency on costly
computing resources [41], [42]. Hence, lightweight models
are highly suitable for implementation in low-cost hardware in
low-resource settings where memory usage forms a restriction
for implementation of DL models [34]. This will allow faster,
point-of-care diagnosis by providing cardiac geometry and
function without human intervention.

This study proposes a new lightweight model architec-
ture [LV network (LVNet)], which requires fewer parameters
while achieving better performance as compared with other
state-of-the-art architectures, i.e., the well-established UNet,
and two different lightweight algorithms called MiniNetV2

and fully convolutional dense dilated network (FCdDN)
[34], [43]. The performance of UNet and existing lightweight
architectures, including MiniNetV2, a state-of-the-art network,
and FCdDN, a network proposed by Ouahabi and Taleb-
Ahmed, were compared on LV US images. In the original
paper, the FCdDN model portrayed promising results for US
thyroid images as compared with other lightweight networks,
such as E-net [34], [43]. Several modifications are proposed to
improve the trade-off between the performance and the amount
of parameters. The architecture details of UNet, MiniNetV2,
FCdDN, and the proposed model will be given later in
Section II-D.

This article makes the following contributions in the field
of LV segmentation.

1) Introduction of a new lightweight segmentation network
that has a better trade-off between the number of para-
meters and the segmentation performance.

2) Introducing a different training strategy combined with
a post-processing pipeline, which can also be used for
other segmentation tasks.

3) Introduction of a parameter reduction technique by
incorporating a channel split to extract features,
whereas most model architectures perform single chan-
nel convolutions.

4) The proposed model is shown to perform favorably as
compared with state-of-the-art DL-based techniques.

II. RELATED WORK

A. Related Work

In the previous studies, typical state-of-the-art networks,
such as UNet, produce accurate results but are computationally
costly because of their complex architectures [33], [44]. Other
methods, such as the one proposed by Hsu [1], combine Faster-
region-based CNN (RCNN) with active shape contours to seg-
ment the inner region of the LV; however, segmenting the outer
region is much more challenging especially in apical views.
Dong et al. [45] proposed a combination of a deformable
contour method and a DL-based model for LV segmentation
in 3-D echocardiography. Smistad and Østvik [27] developed
a UNet-based model for 2-D echocardiograhpy images for
LV segmentation, and Oktay et al. [46] extended this model
for further improving the UNet-based segmentation. These
models benefit from the knowledge of the expert and use
prior knowledge for location-based guidance, for segmentation
of the desired structure. These methods are helpful in cases
where the DL model is not able to distinguish between
two distinct objects having the same contextual and inten-
sity information [47]. However, these methods require prior
knowledge or morphological features and show poor real-time
performance with high computing power. Jafari et al. [48]
proposed a pipeline for real-time segmentation of the LV on a
mobile device, taking the input from point of care devices and
performing segmentation using a lightweight model based on
the UNet.

1) Lightweight Semantic Segmentation Architectures: In gen-
eral, segmentation models make use of an encoder–decoder
structure, where the encoder is used to learn features and
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downsamples the input, whereas the decoder upsamples the
output of the convolutions [31].

B. Minimizing Computational Complexity

Convolutions are performed by means of applying a filter to
an input. However, different methods for executing such a filter
can change the computational complexity of this operation.
Two ways in which these filters can be adapted to decrease
the number of parameters are as follows.

1) Filter Kernel Size: To reduce the amount of parameters,
an effective method is to make use of filter stacking. Typically,
this can be done by decomposing one k × k convolution layer
into multiple 3 × 3 convolution layers. Previous works have
shown that stacking three 3 × 3 convolution layers can have
the same receptive field as a 7 × 7 convolution but with a
decrease in parameters of 44.9% [49].

2) Filter Kernel Factorization: Another highly effective
method is to replace k × k convolution kernels by multiple
1-D convolution kernels, such that they are decomposed in
1 × k and k × 1 kernels, which reduces computational cost
effectively while maintaining the same receptive field as stan-
dard convolutions [43], [50]. The approach is very common
and can be utilized to reduce the for any convolutional filter
for reducing the computational complexity [51].

C. Convolution Designs

This section introduces several convolution designs widely
used in lightweight models to reduce the number of parameters
as compared with conventional networks.

1) Pointwise Convolution: This type of convolution consists
of 1 × 1 projections and can be used to reduce the number of
feature maps from the input [31]. These types of convolutions
are often used in combination with 3×3 kernels to reduce the
amount of output filters, leading to a decrease in computational
complexity and, thus, the number of parameters [36].

2) Depthwise Separable Convolution: Typically, this type of
convolution is characterized by a combination of convolutions
over the input channel followed by a pointwise convolu-
tion [34]. The first step performs convolutions of size d × d
over the input of size i × i , which is performed over the
number of input filters (C). At the end, a pointwise convolution
is performed over the amount of input filters for the amount
of output filters required (O). This reduces computational cost
compared with regular convolutions by a factor ( f ) given
by [36], [49]

f = 1/O + 1/d2. (1)

3) Dilated Convolutions: Several architectures, such as
MiniNetV2 and FCdDN, make use of dilated convolutions in
convolution blocks to learn multiscale features [33], [34], [43].
The dilation will enable the model to explore a wider feature
space with fewer parameters needed. For example, a 3 × 3
kernel with a dilation rate (r ) of 3 will resemble the feature
space of a 7 × 7 kernel. The advantage of this approach is
that more of the spatial information is retained compared with
downsampling. Hence, this method can be used to minimize
the amount of downsampling needed [43]. Dilation can also be

used to create a multidilation depthwise separable convolution
(MDSC) layer [34]. By performing this type of convolution
operation, the number of parameters is reduced due to its larger
receptive field in the feature space. In this case, the input is
split over two channels. One channel performs a convolution
over the input filters without dilation, and one channel per-
forms convolution with dilation. These convolutions are added
together after which a pointwise convolution is performed.
An example is shown in Fig. 1.

D. State-of-the-Art Models

1) UNet: The UNet consists of a contracting path and an
expanding path at different downsampled levels [52]. The
contracting path consists of repeated pairs of 3 × 3 con-
volutions, followed by a rectified linear unit (ReLU) and a
2 × 2 max pool operation with stride 2 for downsampling.
At each downsampling step, the number of feature channels
is doubled. Every step in the expansive path consists of
an upsampling of the feature map followed by a 2 × 2
convolution (“up-convolution”) that halves the number of
feature channels, a concatenation with the correspondingly
cropped feature map from the contracting path, and two
3 × 3 convolutions, each followed by a ReLU. At the final
layer, a 1 × 1 convolution is used to map each 64-component
feature vector to the desired number of classes. The UNet
architecture with its various blocks is shown in Fig. 2(a).

2) MiniNetV2: MiniNetV2 consists of different building
blocks with several convolution modules incorporated [53].
The model is build as follows.

1) Downsample Block: Multiple 3 × 3 convolutional mod-
ules, downsample operations, and depthwise separable
convolutions.

2) Feature Extraction Block: This is the most important
module in the encoder. It provides multiple MDSCs with
different dilation rates.

3) Refinement Block: Extracts additional features from the
input image, which can assist in the refinement of
previously learned features during the feature extractor
block. This block is added after the feature extraction
block.

4) Upsample Block: Upsamples the output with stride 2.

Compared with the original version of MiniNet [32], with
3.1 M parameters, MiniNetV2 consists of 0.52 M parameters
and provides similar results. The model takes up a storage
capacity of only 7.3 MB [34]. The MiniNetV2 architecture
with its various blocks is shown in Fig. 2(b).

3) FCdDN: The network consists of 15 layers and is built
up from different blocks [43]. The model is built as follows.

1) 1-D Dilated Layers: Combines factorized convolution
with a dilation rate of 2.

2) Transition Down Blocks: Downsamples the input by use
of max pooling.

3) Dense Dilated Blocks: In these blocks, dense connectiv-
ity, dilated convolutions, and factorization are combined.
This block consists of three dilation layers, with different
dilation rates (r = 2, 4, 8) and a dropout of 0.2.
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Fig. 1. Proposed split block with multidilation, depthwise, separable convolutions and factorized convolutions with the various kernel sizes and type
of layer.

After every convolution, the output is concatenated with
the previous input layer.

4) Deconvolution Layers: Used to upsample the output with
strides of 2.

FCdDN is a lightweight segmentation model consisting of
0.2 M parameters and a model size of 3.4 MB, making
it highly suitable for implementation in small devices.
The FCdDN architecture with its various blocks is shown
in Fig. 2(c).

III. METHODS

A. LVNet (Proposed)

A new architecture is proposed, which is inspired by the
FCdDN network, making use of both the dilation layers and
the dense block. The proposed architecture is called LVNet.
A new block (split block) (Fig. 1) is proposed, and the model
architecture is visualized in Fig. 3. The description of the
proposed split block and the model architecture is given in
more detail in Sections III-A1 and III-A2.

1) LVNet Architecture: LVNet first uses a 3 × 3 convolution
over the input image. After this, the channels are split and fed
into two split blocks, and the features are extracted in parallel.
The motivation behind this is that it will help in extracting

slightly different features in both channels, which enables the
model to benefit from both channels’ learning processes.

2) Split Block: The newly proposed block is called split
block that is inspired by lightweight encoder–decoder network
(LEDNet) [54]. In this split block, first two channels are
created that acquire different features from the image.

1) One channel consists of two consecutive factorized
convolutions. In the second factorized convolution, the
dilation rate can be adapted, which helps in increas-
ing the field of view without affecting the number of
parameters.

2) The other channel is again factorized into two parallel
convolutional channels—convolutional and dilated con-
volutional channels. The output of these channels is
added, and finally, a pointwise convolution is performed.

The output of these two channels is concatenated and forms the
output of this split block. This proposed block is different from
the block utilized in LEDNet, as one of the channels consists
of an MDSC instead of a factorized convolution to keep the
number of parameters low while learning both local and global
information [34]. At the end of the block, the channels are
concatenated to combine features from both channels. The
proposed block is portrayed in Fig. 1.

The channels consist of identical structures and consist
of a split block differing in dilation rates. The split block
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Fig. 2. Visualization of the UNet, MiniNetV2, and the FCdDN architectures and its different blocks. (a) Visualization of the UNet architecture and
its different blocks. (b) Visualization of the MiniNetV2 architecture. The different blocks are shown in (a). (c) Visualization of the FCdDN architecture
and its different blocks. The different blocks are shown in (a).
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Fig. 3. Details of the proposed LVNet architecture. (a) Visualization of the proposed LVNet architecture (model architecture is shown in Table I) and
its different blocks. (b) Post-processing pipeline utilized in this study combining Experiments 1.0 and 2.0.

uses the dilation rates of 2 and 3, respectively, in each
branch. The small dilation rate of 2 in the first split block
in the early layers will enable the model to efficiently extract
features without losing too much of the local information,
whereas large dilation rates will deprive too much local
information [55]. This layer is followed by downsampling
to reduce the size of the features. Next, a dilation layer is
utilized, which consists of a dilation rate of 1, followed by
another downsampling layer. It is followed by a dense block
layer having the dilation rates of 2, 4, and 8, respectively.
Finally, the channels are concatenated to utilize and fuse all
the information from both the channels [56]. The middle layers
of the model architecture consist of a dilation layer (dilation
rate = 2), split block (dilation rate = 6), and another dilation
layer (dilation rate = 2). Compared with FCdDN, dropout is
not used, because this might lead to loss of important features,
which could lead to a disadvantage in a model with a low
amount of parameters. Finally, the result is upsampled by
three consecutive transposed convolutions. At the end, first,
a convolution and then a pointwise convolution are performed

to place the output onto one feature map. The structure of
LVNet is shown in Fig. 3(a), and the complete architecture of
all the layers is given in Table I.

B. Experiments

The following different experiments were conducted to
compare the performance of all models.

1) Regular Training: UNet, MiniNetV2, FCdDN, and the
architecture proposed were all trained on the data for
segmentation of the LV region WP and WOP muscles,
which are referred to as Exp1.0 and Exp1.1, respectively.
This is the strategy generally used for training of the
segmentation models.

2) Mask Subtraction: A new strategy was proposed to fur-
ther improve the segmentation outputs from the model.
To improve the training process, the models were trained
for the inner region WP muscle (endocardium border),
the inner region WOP muscle, and for the outer region
separately. It is expected that in this way, the model is
able to learn lower level features, such as edges, more
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TABLE I
LVNet ARCHITECTURE OVERVIEW WITH THE TYPE OF THE LAYER,

INPUT TO EACH LAYER, THE NUMBER OF FILTERS, AND THE

OUTPUT SHAPE CORRESPONDING TO EACH LAYER

accurately, because it will be able to focus more on
a specific area within the images. After training, the
predicted inner mask was subtracted from the predicted
outer mask. Simple processing was performed for all
models by mapping any negative intensity value outside
the final region after subtraction to 0, as this area is
not relevant for the desired segmentation. These results
can still contain oversegmented areas if the outer region
segmentation results are poor. The result WP muscle is
referred to as Exp2.0, while the result WOP muscle is
referred to as Exp2.1.

C. LVNet + Post-Processing

Various post-processing pipelines have been proposed
depending on the region to be segmented [57], [58]. The
various techniques for post-processing include different types
of morphological operations, contour refinement, and con-
ditional random field-based post-processing methods [59]–
[61]. Looney et al. [62] proposed a post-processing tech-
nique to remove the disconnected parts from the seg-
mented region. They used binary dilation and erosion using
a 3-D kernel having a radius of three voxels followed
by a hole filling filter. This method removed the smaller
regions and also filled the holes in the segmented area.
Benjdira et al. [63] proposed a post-processing step using
morphological operations for improving the segmentation
quality of the images. It consists of four substeps for
improving the segmentation consisting of removing small
objects, removing the holes, and morphological closing

followed by morphological opening. We also developed
a post-processing pipeline based on morphological operations
for further improving the segmentations obtained from the
DL-based technique.

Exp 1.0 and Exp 2.0 denote the results of the normal
training and training using mask subtraction WP muscles,
while Exp 1.1 and Exp 2.1 denote the results of the normal
training and training using mask subtraction WOP muscles.
A new post-processing pipeline for LVNet is proposed, which
takes the union of the results from regular training (Exp1.0 and
Exp2.0) and the results from separate training after mask
subtraction (Exp1.1 and Exp2.1). The post-processing pipeline
is shown in Fig. 3(b). This creates an ensemble of models
in which the models can enforce each other. After taking
the union, morphological operations are performed, with a
circular kernel of 7 × 7, consisting of closing and opening,
consecutively. This fills small unsegmented areas in the outer
region areas and removes small incorrectly segmented areas
outside the outer region or inside the LV.

IV. DATASET AND METRICS

A. Data Processing

An existing and fully annotated dataset of cardiac US image
of the canine LV was reused in this study for training the
models. These 2-D B-mode US (434 × 636 pixels) images
originated from several US sequences in adult mongrel canines
(n = 13) as reported in these previous studies [64], [65].
Animal handling was performed according to the Dutch
law on animal experimentation and the European directive
for the protection of animals used for scientific purposes
(Directive 2010/63/EU). The protocol was approved by the
Animal Experimentation Committee of Maastricht University.
The US data were acquired using a GE Vivid5 US machine
(GE Vingmed Ultrasound, Norten, Norway) [64], [65]. A GE
PA2-5 phased array transducer (3-MHz center frequency,
75◦ opening angle, 90 frames/s) was used to image the short
axis of the LV at the level of the papillary muscle.

The dataset was split into a training, validation, and test
set, such that data from each canine are only present in one
of the three sets, thereby making a canine-level split. The
sequence length for each sample acquired varies from one
canine to another, and the number of sequences also varies
between 1 and 3. In total, the training data were derived
from 16 sequences, while the validation and test datasets were
derived from five sequences each. The training, validation,
and test datasets consisted of 1445, 475, and 342 images,
respectively. The images were resized to a resolution of
256 × 256 pixels.

Annotation was performed using a custom tool developed
in MATLAB (The Mathworks Inc., Natick, MA, USA) for
a previous study [65]. The endocardial boundary of the LV,
including papillary muscle, the endocardial boundary WOP
muscle, and the epicardial boundary, was segmented by three
researchers and validated by two cardiac experts. The ground
truth labels are made separately by three raters, and we did
not performed the segmentation for the same image from the
three raters. We did perform the validation analysis indepen-
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TABLE II
TOTAL PARAMETERS INCLUDING THE MODEL PARAMETERS (TRAINABLE AND NON-TRAINABLE

PARAMETERS), MODEL SIZE, AND THE FLOPS ARE SHOWN FOR ALL THE MODELS

Fig. 4. Segmentation boundary of the outer region (shown in blue),
the inner region WP muscles (shown in red), and the inner region WOP
muscles (shown in yellow) for one example dataset.

dently by two experts, and if the experts do not agree, the
segmentation was done again for those LV images. These
boundary annotations are transformed to a complete mask for
training the network. An example image is shown in Fig. 4.

B. Training Protocol

The training process was performed on a GPU (GeForce
RTX 2080 Ti with 10.98-GB memory), with the same initial
settings for all the models. The models were trained for a
maximum of 300 epochs with batch size of 8, initial learning
rate of 10−4, and an Adam optimizer was utilized. To optimize
the training, early stopping criteria on the validation set with
a waiting period of 50 epochs, and learning rate reduction at a
plateau for a waiting period of 20 epochs with a factor of 0.1,
were utilized [66]. The loss function used for backpropagation
is the Dice loss for all the models. The Dice loss considers
the intersection between the prediction and the ground truth.
Moreover, it is unaffected by the number of foreground
or background pixels reducing the class-imbalance problem
where learning algorithms reflect relatively low predictive
accuracy concerning the infrequent class [67], [68].

C. Evaluation Measures

The main metric for evaluating the model performance is
the DS, which is widely used for evaluating segmentation
performance [1], [69]. The DS represents the overlap of the
ground truth and the predicted segmentation output from the
model

DS = 2TP

2TP + FN + FP
. (2)

Jaccard index (JI) or Intersection over Union (IOU) is another
popular metric for measuring the degree of overlap between
the two segmentation frames and is represented as [70]

JI = DS

2 − DS
. (3)

Other metrics used are the sensitivity (SE) [71], specificity
(SP) [71], and accuracy, serving as extra indicators of model
performance [72]. The SE describes the portion of true pos-
itives (TPs) that are correctly classified by the model, with
respect to the total number of positives [both TPs and false
negatives (FNs)]

SE = TP

TP + FN
. (4)

The SP describes the portion of true negative (TN) values that
are correctly classified with respect to the total number of neg-
ative values, i.e., the sum of the TNs and false positives (FP)

SP = TN

TN + FP
. (5)

Finally, accuracy describes the portion of correctly classified
pixels from the total amount of classifications in an image

ac = TN + TP

TP + FN + FP + TN
. (6)

V. RESULTS

A. Model Parameters

Table II describes the model parameters consisting of the
total amount of parameters, trainable parameters, and non-
trainable parameters with the model size for each of the models
compared. The FCdDN network consists of the least amount
of parameters, while UNet consists of the highest number of
parameters and the model proposed lies in between. LVNet
has a total of 1.6× less parameters (64% parameters) than
MiniNetV2 resulting in a 1.5× lower memory usage (33.37%
decrease in the model size). However, LVNet has 1.3× as
many parameters as the FCdDN network at a 1.4× higher
memory usage. The memory requirement of an LVNet model
is only 5% as compared with a UNet model and only slightly
higher than the FCdDN model. We also compared the floating
point operations (Table II, column 6) required for running a
single instance of the model. The proposed model requires the
same number of flops compared with the FCdDN model while
it requires more flops than the MiniNetV2 model.
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Fig. 5. Results of the segmentation WP muscle for different models. (a) Ground truth mask. (b) and (c) UNet. (d) and (e) MiniNetV2.
(f) and (g) FCdDN. (h)–(j) LVNet.

TABLE III
PERFORMANCE OF THE DIFFERENT MODELS IN TERMS OF SE, SP, ACCURACY, DS, AND JI FOR THE

SEGMENTATION WP MUSCLE FOR ALL THE MODELS FOR THE TEST DATASET

B. Segmentation Including Papillary Muscle

The examples for the results of a segmentation including the
papillary muscle are portrayed in Fig. 5 and the ground truth
manual segmentation [Fig. 5(a)] performed by the experts.
Fig. 5(b) and (c) visualizes the segmentation obtained using
the UNet model for Exp1.0 and Exp2.0, respectively (for
details of experiments, please refer Section III-B). As seen
from the results, the segmentation results reveal gaps inside
the mask as well as missing structure for the outer part.
Fig. 5(d) and (e) visualizes the segmentation obtained using
the MininetV2 model for Exp1.0 and Exp2.0, respectively. The
results are better as compared with the UNet segmentation.
Fig. 5(f) and (g) visualizes the segmentation obtained using
the FcdDN model for Exp1.0 and Exp2.0, respectively. For
the FCdDN model, the segmentation for Exp1.0 is incomplete,
and the model is unable to identify all edges and can barely
segment the outer region correctly.

Concerning Exp2.0, the segmentation of the inner region is
more accurate as compared with Exp1.0; however, structures
outside the desired region are included into the segmentation
of the outer area, and thus, the shape is distorted. Comparing
MiniNetV2 and LVNet, it can be observed that for Exp1.0, the
MiniNetV2 had difficulty detecting the outer region correctly.
In Exp2.0, both MiniNetV2 and LVNet mainly improved on

the outer region. The inner structure regarding MiniNetV2 is
elongated as compared with the ground truth, whereas for
LVNet, edges are less sharp on the right wing of the inner
region. Nevertheless, the overall shape matches the ground
truth. Regarding post-processing, it can be seen that distorted
parts are removed in the outer region for LVNet, and the
inner shape is enhanced. At the same time in Fig. 5, it can be
seen that for Exp1.0 for all models, the masks are incomplete
and distorted except for LVNet. For MiniNetV2 and LVNet,
Exp2.0 shows improvements in outer area with similar inner
areas.

Table III shows the results for segmentation of the LV
including the papillary muscle. Regarding Exp1.0, the DS
and JI of LVNet perform in line with MiniNetV2 and UNet,
while the LVNet model gives superior results as compared
with all other models for Exp2.0. LVNet in combination with
the post-processing pipeline proves to be superior in terms of
SP, accuracy, DS, and JI as compared with the other model
architectures reaching the values of 0.985, 0.960, 0.902, and
0.823, respectively.

C. Segmentation Excluding Papillary Muscle

Fig. 6 shows the result of a case for the segmentation
without considering the papillary muscle. From the
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Fig. 6. Results of the segmentation WOP muscle for different models (a) Ground truth mask. (b) and (c) UNet. (d) and (e) MiniNetV2.
(f) and (g) FCdDN. (h)–(j) LVNet.

TABLE IV
PERFORMANCE OF THE DIFFERENT MODELS IN TERMS OF SE, SP, ACCURACY, DS, AND JI FOR THE

SEGMENTATION WOP MUSCLE FOR ALL THE MODELS FOR THE TEST DATASET

visualization of the segmentation, it can be observed that
LVNet and MiniNetV2 give similar visual appearance. Only
for segmentation with FCdDN, it is noticeable that unwanted
areas are segmented, and UNet yields undersegmented
regions. Focusing on Fig. 6, it can be seen that for Exp1.1 for
Unet and FCdDN, the masks are incomplete and distorted.
In general, MiniNetV2 was able to capture the most complete
outer area. Concerning Exp2.1, LVNet shows a more defined
outer area, whereas the inner area is mostly closed. In this
case, post-processing for LVNet is not considered beneficial.

Table IV shows the results for the segmentation of the LV
excluding the papillary muscle. LVNet shows better results
for SP, accuracy, DS, and JI than all other models for Exp2.1,
while MininetV2 shows similar performance to LVNet. LVNet
with the processing pipeline has proven to be powerful in
terms of SP, accuracy, DS, and JI as compared with the other
model architectures reaching the values of 0.985, 0.981, 0.865,
and 0.775, respectively, and improving results with respect
to Exp1.1.

VI. DISCUSSION

This study compares different lightweight segmentation
models for their performance and proposes a new model and
processing pipeline, which outperforms UNet, FCdDN, and

MiniNetV2 for the trade-off between number of parameters
and segmentation performance.

The results suggest that, in general, MiniNetV2 and LVNet
perform similarly, both performing in the range of a Dice
around 0.86–0.88 for segmentation WOP muscle, whereas
FCdDN performs poorly in the range of 0.60–0.70 for most
cases in segmentation WOP muscle. The total parameters and
the model size for all the models are shown in Table II.
In the case of segmentation WP muscle, for Exp1.0, LVNet
outperforms MiniNetV2, while consisting of 187k parameters
less than MiniNetV2. Besides, the model greatly improves
upon FCdDN and UNet. The amount of parameters increased
minimally as compared with FCdDN, which can be caused by
the parallel feature extraction in the split channels and the split
block but with an increased performance. Also, in the case of
segmentation WOP muscle, for Exp1.1, MiniNetV2 performs
similar to LVNet.

For Exp1.0, UNet and MiniNetV2 appear to perform better
as compared with Exp2.0 (see Table III). Nevertheless, visu-
ally, Exp2.0 reflects a better outer region and an improved
segmentation in most cases. However, the subtraction of
masks during Exp2.0 will affect the outer region in cases of
incorrectly segmented structures from the inner region. Hence,
although the segmentation outputs are visually more attractive,
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Fig. 7. Results of the segmentation WP muscle for different models showing the major effect of post-processing. (a) Ground truth mask.
(b)–(d) UNet. (e)–(g) MiniNetV2. (h)–(j) FCdDN. (k)–(m) LVNet.

a lower DS might be reflected by an increase in FN values and
a decrease in TP values [73]. Despite the fact that LVNet and
MiniNetV2 yield high metrics, they both show their limitations
in the segmentation. This happens mainly in cases where the
inner area is small as compared with the outer area. This
variability is revealed by the large standard deviations in the
SE of all models. Meanwhile, FCdDN performs poorly as
compared with the other models.

The UNet model performs better for Exps: 1.0 and 2.0 as
compared with Exps: 1.1 and 2.1 (Tables III and IV). The
reason behind this is the lack of a clear boundary separating
the papillary muscles for the segmentation (Fig. 4). For cases
with relatively small endocardial areas in the LV, segmentation
of the inner region is poor for all models. As the target in
this case is relatively small, as compared with the input size,

downsampling can reduce performance of the model. The
effect of downsampling is known to reduce spatial informa-
tion; hence, the model might be unable to accurately capture
the boundaries of the desired area in those cases [74]. This is
in line with the findings that a good trade-off for the input
resolution and training batch size reflects great impact on
model performances [74].

A. Post-Processing

After performing post-processing on LVNet, DSs improved
for segmentation WP muscle while decreased slightly for
segmentation WOP muscle. The results reflect relatively low
standard deviations, hence portraying more robust results than
the other experiments, which is beneficial over the other
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models as was also observed in the literature [75]. Taking the
union of Experiments 1.0 and 2.0 improved upon the results
of UNet, LVNet, and MiniNetV2. For the segmentation WP
muscles, a Dice of 0.90 was obtained, which shows excellent
performance; meanwhile, a value of 0.87 was obtained for the
segmentation WOP, which also reflects good predictive capac-
ities. As both MiniNetV2 and LVNet performed similarly and
LVNet performs significantly better than FCdDN, performing
post-processing for LVNet will be more beneficial than for
the other models, in terms of the trade-off between amount
of parameters and performance. It is also more applicable to
LVNet, because the number of parameters for using LVNet is
187k less (requiring only 64% parameters) than applying it
for MiniNetV2, resulting in a much lower memory burden.

The results for another set of experiments for the segmen-
tation WP muscle are shown in Fig. 7. Post-processing has
mostly been proven to be successful in reducing the number
of FN values [Fig. 7 (d), (g), (j), and (m)], by enhancing
the outer region and structures around the edges of the
inner area. However, what should be considered is that post-
processing quality is limited by the least performing training
method, mainly for the inner region. Thus, if for example the
inner area is incompletely segmented by Exp2.0, a smaller
inner area will be subtracted from the outer region, hence
resulting in more FP values and thus reflecting a lower visual
quality. Meanwhile, if the outer area is enlarged in one of the
segmentation results, this will also lead to more FP values
and, thus, decreases the SP of the approach. Similarly, if the
outer area is undersegmented or inner area is oversegmented
by Exp 2.0, a larger area will be subtracted from the outer
region, hence resulting in more FN values and decreasing the
SE of the segmentation technique. There are various other
post-processing-based pipelines, which can be explored further
for improving the results of the DL-based methods [59]–[61].

VII. CONCLUSION

For rapid diagnosis of abnormalities and to study LV
function, the segmentation of LV is an important task. This
study presented a lightweight CNN, LVNet, and a processing
pipeline to segment the LV in US images. The method was
demonstrated in a preexisting dataset. LVNet helps in rapid
image analysis as it is a lightweight network, which can
be readily deployed on low cost hardware and, hence, can
be utilized in portable settings. Segmentation was performed
for cases including and excluding the papillary muscle, out-
performing MiniNetV2 for the former and showing equal
performance for the latter. Moreover, LVNet greatly improved
upon the FCdDN, which reflected a DS of 0.620. The model
has proven to be more efficient in terms of amount of
parameters and reduced memory usage more than MiniNetV2
and FCdDN. In addition, the post-processing pipeline has
shown to improve the performance of LVNet, resulting in
superior segmentation results, especially for less complex
cases. In summary, as compared with UNet, FCdDN, and
MiniNetV2, LVNet is considered more suitable for clinical
implementation in terms of efficiency and performance, with
the goal of accurate results and saving costs on memory usage.

This also paves a way for lightweight models, which can be
used for obtaining real-time results in low-cost settings.
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