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Abstract— Deep learning for ultrasound image forma-
tion is rapidly garnering research support and attention,
quickly rising as the latest frontier in ultrasound image
formation, with much promise to balance both image quality
and display speed. Despite this promise, one challenge
with identifying optimal solutions is the absence of unified
evaluation methods and datasets that are not specific to a
single research group. This article introduces the largest
known international database of ultrasound channel data
and describes the associated evaluation methods that were
initially developed for the challenge on ultrasound beam-
forming with deep learning (CUBDL), which was offered as a

Manuscript received May 3, 2021; accepted July 1, 2021. Date of
publication July 5, 2021; date of current version November 23, 2021.
The work of Alycen Wiacek and Muyinatu A. Lediju Bell was supported
by the National Institutes of Health (NIH) Trailblazer Award under Grant
R21 EB025621. The work of Sobhan Goudarzi and Hassan Rivaz was
supported by the Natural Sciences and Engineering Research Council
of Canada (NSERC) under Grant RGPIN-2020-04612. (Corresponding
author: Muyinatu A. Lediju Bell.)

This work involved human subjects or animals in its research. Approval
of the ethical and experimental procedures and protocols was granted by
either the Johns Hopkins Medicine Institutional Review Board (IRB), the
Regional Committee for Medical and Health Research Ethics in Norway,
or Tsinghua University.

Dongwoon Hyun is with the Department of Radiology, Stanford Univer-
sity, Stanford, CA 94305 USA.

Alycen Wiacek is with the Department of Electrical and Computer
Engineering, Johns Hopkins University, Baltimore, MD 21218 USA.

Sobhan Goudarzi and Hassan Rivaz are with the Department of
Electrical and Computer Engineering, Concordia University, Montreal,
QC H3G 1M8, Canada.

Sven Rothlübbers, David Sinden, and Hannah Strohm are with
the Fraunhofer Institute for Digital Medicine MEVIS, 28359 Bremen,
Germany.

Amir Asif is with the Department of Electrical Engineering and Com-
puter Science, York University, Toronto, ON M3J 1P3, Canada.

Klaus Eickel is with the Department of Physics and Electrical Engineer-
ing, University of Bremen, 28359 Bremen, Germany.

Yonina C. Eldar is with the Department of Mathematics and Computer
Science, Weizmann Institute of Science, Rehovot 7610001, Israel.

Jiaqi Huang was with the Department of Biomedical Engineering,
Johns Hopkins University, Baltimore, MD 21218 USA.

Massimo Mischi is with the Department of Electrical Engineering,
Eindhoven University of Technology, 5612 Eindhoven, The Netherlands.

Ruud J. G. van Sloun is with the Department of Electrical Engineering,
Eindhoven University of Technology, 5612 Eindhoven, The Netherlands,
and also with Philips Research, 5656 Eindhoven, The Netherlands.

Muyinatu A. Lediju Bell is with the Department of Electrical and Com-
puter Engineering, the Department of Biomedical Engineering, and the
Department of Computer Science, Johns Hopkins University, Baltimore,
MD 21218 USA (e-mail: mledijubell.@.jhu.edu).

Digital Object Identifier 10.1109/TUFFC.2021.3094849

component of the 2020 IEEE International Ultrasonics Sym-
posium. We summarize the challenge results and present
qualitative and quantitative assessments using both the
initially closed CUBDL evaluation test dataset (which was
crowd-sourced from multiple groups around the world) and
additional in vivo breast ultrasound data contributed after
the challenge was completed. As an example quantitative
assessment, single plane wave images from the CUBDL
Task 1 dataset produced a mean generalized contrast-to-
noise ratio (gCNR) of 0.67 and a mean lateral resolution
of 0.42 mm when formed with delay-and-sum beamforming,
compared with a mean gCNR as high as 0.81 and a mean
lateral resolution as low as 0.32 mm when formed with
networks submitted by the challenge winners. We also
describe contributed CUBDL data that may be used for
training of future networks. The compiled database includes
a total of 576 image acquisition sequences. We addition-
ally introduce a neural-network-based global sound speed
estimator implementation that was necessary to fairly eval-
uate the results obtained with this international database.
The integration of CUBDL evaluation methods, evaluation
code, network weights from the challenge winners, and
all datasets described herein are publicly available (visit
ht.tps://cubdl.jhu.edu for details).

Index Terms— Beamforming, channel data, deep learning
benchmark, evaluation metrics, neural networks, open sci-
ence, sound speed estimation, ultrasound image formation.

I. INTRODUCTION

S IGNIFICANT research has been dedicated recently to
developing methods for deep learning in ultrasound imag-

ing, as summarized in several recent review articles and special
issue editorials [1]–[4]. The merger of deep learning and
ultrasound image formation is promising because it has the
potential to shed light on features that are not considered
by algorithmic approaches that underlie the mathematical,
model-based component of image formation, with multiple
input-output and training options [5]–[7]. These data-driven
deep learning approaches have the potential to be more
robust than the traditional model-based beamforming methods,
as they do not require parameter changes when switching to
different scanners, they are able to generalize across differ-
ent datasets, and they can infer from advanced beamform-
ing methods in less time than that required to perform the
otherwise computationally intensive calculations associated
with advanced beamformers [8]–[11]. Despite the promising
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potential of deep learning approaches applied to ultrasound
imaging, there has been a noticeable dearth of publicly avail-
able frameworks to evaluate new deep learning methods with
the same reference data. Such open frameworks are useful
for benchmarking and comparing methods against each other,
as demonstrated in the fields of visual recognition [12] and
computed tomography [13].

One outcome of the Challenge on Ultrasound Beamforming
with Deep Learning (CUBDL), offered as a component of
the 2020 IEEE International Ultrasonics Symposium, was the
development of an open evaluation framework that may be
used as a standard for deep learning image formation methods
in ultrasound imaging. The overarching goal of this challenge
was to explore the potential of deep learning to improve ultra-
sound image quality and to balance these improvements with
implementation practicality (i.e., reasonable display frame
rates) [14]. Comparisons were completed on the same datasets
and with the same evaluation methods and framework.

This article summarizes and compares submissions to
CUBDL using the evaluation framework developed for this
challenge. We present results on both the initially closed
CUBDL evaluation test dataset and additional in vivo breast
ultrasound data contributed after the completion of the chal-
lenge. Components of this evaluation framework were publicly
available while CUBDL was in progress, and the framework
is now merged with the CUBDL test data and the additional
datasets described herein. This framework merger and the
associated datasets are publicly available at [15] and [16],
respectively (visit ht.tps://cubdl.jhu.edu for more details). The
summary within this article and the accessibility of our data
and code are provided in efforts to enable future benchmarking
and evaluation of new methods.

The remainder of this article is organized as follows.
Section II provides an overview of the CUBDL challenge,
including dates associated with major milestones. Section III
describes details of the open datasets, the top challenge
submissions, the CUBDL evaluation process, scoring and
ranking methods, and the post-CUBDL analyses implemented
to ensure robustness and reproducibility of our shared code
and challenge winner declaration. This section is organized to
align with the sequential timeline of events and is effectively
a combination of materials used and methods implemented by
three categories of contributors to this article: 1) the CUBDL
organizers who implemented dataset curation, evaluation, scor-
ing, assessment, and rankings; 2) the top challenge participants
who provided network details; and 3) A.W. who completed
the independent post-CUBDL evaluations and curation of the
post-CUBDL datasets. Section IV presents the results from the
perspective of the CUBDL organizers, detailing our evaluation
and analysis findings, with post-CUBDL contributions from
A.W. Section V discusses results within the broader context
of the current state of the field from the perspective of the
CUBDL organizers. Finally, Section VI concludes the article.

II. CHALLENGE SUMMARY AND TIMELINE

Organization of this challenge initiated on October 13,
2019. The complete challenge setup, submission process, and

discussion of the challenge organization are described in detail
in the associated conference proceedings coauthored by the
challenge organizers [20]. To briefly summarize details in [20]
that are relevant to this article, the challenge was designed with
no specific training data provided by the CUBDL organizers,
because a review of current literature on the topic of deep
learning for ultrasound beamforming reveals that there are
multiple possibilities for both training approaches and training
datasets. Therefore, the CUBDL organizers decided to keep
the training open-ended, with the goals of encouraging a
wide variety of submission approaches, enabling participants
to innovate on the training methods, and challenging partic-
ipants to produce a network that achieved specific tasks and
met specified requirements. The publicly available PICMUS
data [21] were additionally advertised and considered to serve
as possible training data for participants who desired more
structure. From November 22, 2019 to January 23, 2020, test
data were crowd-sourced from multiple groups around the
world, representing the largest known international database
of ultrasound channel data.

The challenge opened to participants on January 30, 2020,
and closed to participants on the submission deadline of
June 23, 2020. Although three optional tasks were con-
ceived by the CUBDL organizers [20] and advertised on the
CUBDL website [14], all participants submitted networks to
be evaluated for Task 1, which was beamforming with deep
learning after a single plane wave transmission, with two
optional subtasks. Task 1a was explicitly focused on creating
a high-quality image from a single plane wave to match
a higher quality image created from multiple plane waves.
Three participants submitted to this subtask. Task 1b allowed
more flexibility to create images with the highest possible
image quality metrics, including metrics that exceeded those
obtained with multiple plane wave transmissions (e.g., no
speckle preservation required). One participant submitted to
this subtask. Note that the dates that CUBDL was open to
participants overlapped with the onset and peaks of the global
COVID-19 pandemic [22], which likely affected participation
rates.

Participants were instructed to train networks using their
preferred machine learning frameworks (e.g., TensorFlow,
PyTorch) and submit final model files to the IEEE DataPort
website [16]. The CUBDL organizers then downloaded the
submitted models and launched a Python script to perform
evaluation [15] on the internationally crowd-sourced database
of test data [16]. Evaluation metrics advertised since the launch
of the CUBDL website [14] were pre-selected by the CUBDL
organizers based on literature from multiple groups reporting
beamforming with deep learning (e.g., [8], [9], [11], [23])
and based on common computer vision literature containing
assessments of network complexity (e.g., [24]–[26]).

After evaluation, two participants (one submitting to Task
1a and the other submitting to Task 1b) produced networks
that showed evidence of overfitting to the training data when
tested on the closed CUBDL test dataset for Task 1 [19],
[27]. These participants were declared the runners up of
the challenge. Details about their networks and performance
results are available in [19] and [27] and in the presentation
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TABLE I
SUMMARY OF CUBDL TASK 1 TEST DATA AND ADDITIONAL POST-CUBDL EVALUATION DATA

document published on the CUBDL website [14], which was
initially prepared for the live CUBDL challenge session on
September 11, 2020, at the 2020 IEEE International Ultrason-
ics Symposium. The remaining two network submissions [28],
[29] are compared and evaluated in greater detail in this
publication, which upholds the commitment advertised on the
CUBDL website that only top submissions would be included
in the journal publication associated with the challenge [14].
Also as promised on the CUBDL website, the trained model
weights for these top submissions are available with the public
release of the CUBDL evaluation code [15] and datasets [16].

III. MATERIALS AND METHODS

A. Open Datasets

1) CUBDL Task 1 Dataset: The test data for Task 1 of
the challenge consisted of 21 image acquisition sequences
crowd-sourced from six institutions, referenced hereafter by
the short-hand three-letter code provided in parentheses: 1)
Department of Biomedical Engineering, Tsinghua University,
Beijing, China (TSH); 2) Department of Radiology, Mayo
Clinic, Rochester, MN, USA (MYO); 3) Microelectronic Sys-
tems Design Laboratory, University of Florence, Florence,
Italy (UFL); 4) Signal Processing Systems group, Eind-
hoven University of Technology, Eindhoven, The Netherlands
(EUT); 5) CREATIS, INSA Lyon, Lyon, France (INS); and
6) Research Group for Digital Signal Processing and Image
Analysis, University of Oslo, Oslo, Norway (OSL).

The test data from these institutions consisted of 21 image
acquisition sequences from targets including phantoms, sim-
ulation, and an in vivo brachioradialis. The phantom data
consisted of a total of 9 different phantoms from three
manufacturers including: 1) CIRS models 040, 049, 054GS,
050, and ATS549; 2) GAMMEX models 404GSLE, 403, and

410 SCG; and 3) NPL Thermal Test Phantom. Two MYO
phantom acquisitions included a layer of ex vivo porcine
abdominal tissue to introduce acoustic clutter. The in vivo
data were acquired after informed consent and ethics approval.
This wide range of channel data was acquired with three
ultrasound scanner models (i.e., Verasonics Vantage 128, Vera-
sonics Vantage 256, and ULA-OP 256) and six ultrasound
transducer models. The acquisition center frequencies ranged
from 3.1 to 8 MHz. The sampling frequencies ranged from
6.25 to 78.125 MHz. The ultrasound transducers consisted of
linear and phased arrays.

Each contributed dataset for Task 1 consisted of acquisitions
from 31 or 75 steered plane waves, with transmission angles
ranging −15◦ to 15◦ or −16◦ to 16◦. Additional summary
details and acquisition parameters are reported in Table I,
along with references to reports in which the data first
appeared. The full list of sequence numbers and more specific
details are available in the Appendix, which mirrors a majority
of the information that was provided in the CUBDL Data
Guide while the challenge was open.

2) JHU In Vivo Breast Dataset for Post-CUBDL Evaluation: To
improve the variety of in vivo datasets, the Photoacoustic and
Ultrasonic Systems Engineering Laboratory, Johns Hopkins
University, Baltimore, MD, USA (three-letter code: JHU),
contributed additional test data for network evaluation after
the challenge was closed. These in vivo breast ultrasound data
(initially reported by Li et al. [19]) consisted of 11 acqui-
sition sequences, acquired from six patients, including two
orthogonal scans (i.e., radial and anti-radial) of five patients
and a radial scan of one patient. These data were acquired
after informed consent and with approval from the Johns Hop-
kins Medicine Institutional Review Board (IRB). Specifically,
raw plane wave radio frequency channel data were acquired
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with an Alpinion ECUBE-12R research ultrasound scanner
connected to either an L8-17 or an L3-8 linear array ultrasound
transducer, with 75 plane wave transmissions including angles
ranging −16◦ to 16◦, or with 73 plane wave transmissions
including angles ranging −8◦ to 8◦. The sampling frequency
was 40 MHz. Additional details and acquisition parameters
are reported in Table I and in the Appendix.

3) Additional Dataset Contributions: A subset of contributed
data not selected by the CUBDL organizers for evaluation
of Task 1 are included in the open dataset [16] published
with this article for potential future training of new networks.
There were various reasons these data were not selected for
Task 1, including a desire to maintain sufficient variability,
to avoid dominance of data from one group, phantom, subject,
or system setting, and to exclude data acquired with focused
transmissions for the unattempted Task 3. These additional
data consisted of 544 image acquisition sequences (including
529 acquired with plane wave transmissions and 15 acquired
with focused transmissions), contributed from MYO, UFL,
TSH, EUT, INS, OSL, and JHU. Image targets included
simulated structures, experimental phantoms, and in vivo heart,
breast, brachioradialis, and carotid. The in vivo data from
JHU and OSL were acquired after informed consent and IRB
approval, as noted in [30] and [31], respectively. The in vivo
data from TSH were acquired after informed consent and
ethics approval. The phantom data consisted of 12 different
phantoms from six manufacturers including: 1) CIRS models
040, 049, 054GS, 050, 059, and ATS549; 2) GAMMEX
models 403 and 410 SCG; 3) NPL Thermal Test Phantom;
4) CAE Blue Phantom Elastography Breast Model; 5) True
Phantom Solutions Brain Phantom; and (6) Dansk Phantom
Service Model 453. One of these phantom acquisitions (i.e.,
from MYO) included a layer of ex vivo porcine abdominal
tissue to introduce acoustic clutter. These data were acquired
with 4 ultrasound scanner models (i.e., Verasonics Vantage
256, Verasonics Vantage 128, Alpinion ECUBE12-R, and
ULA-OP 256) and 11 ultrasound transducer models. The
acquisition center frequencies ranged from 2.97 to 12.5 MHz.
The sampling frequencies for this dataset ranged from 6.25 to
100 MHz, representing a larger range than that reported
in Section III-A1. The ultrasound transducers consisted of
linear and phased arrays. Additional details and acquisition
parameters are reported in the Appendix.

4) Sound Speed Correction Applied to Phantom Data: In
ultrasound imaging, the sound speed is often assumed to be
globally constant at 1540 m/s when computing focusing time
delays. However, the true sound speed often differs from
this assumption and depends on specific properties of the
underlying tissue. For example, the sound speed of fat is lower
than that of liver or muscle [32], [33], and the sound speeds of
calibrated tissue-mimicking phantoms are known to vary with
the ambient temperature [34]. Improper focusing can degrade
image quality, lead to worsened metrics such as contrast and
point target resolution, and cause incorrect positioning of
image targets. As CUBDL evaluation heavily depended on
these and other image quality parameters [20], the CUBDL
organizers applied an initial sound speed correction to the
contributed test data.

Fig. 1. (a) Wide range of optimal sound speeds were observed in
contributed phantom datasets after 30 iterations of speckle brightness
maximization. (b) Phantom images from sequences INS023, INS018,
MYO001, and MYO003 are shown (from left to right, respectively)
before (top) and after (bottom) global sound speed correction, displayed
with 50-dB dynamic range. Arrows and boxes highlight locations where
lesion boundaries are considerably sharper, point targets are visually
more separable, and targets are repositioned to calibrated depths after
sound speed correction.

Sound speed correction is an active area of research with
many proposed figures of merit, including speckle bright-
ness [35], [36], coherence factor [37], among many oth-
ers [38]–[41]. Considering this multitude of validated options,
the CUBDL organizers selected speckle brightness maximiza-
tion for its simplicity and its wide acceptance as a criterion
of focusing quality [35]. More specifically, the correct global
sound speed was selected as the one that maximized the
average brightness in a homogeneous region of speckle [36].

PyTorch [42] provides a convenient differentiable frame-
work to perform per-image optimization. Using the same
PyTorch implementation of delay-and-sum (DAS) plane wave
beamforming provided to CUBDL participants, the sound
speed was adjusted via gradient ascent until speckle brightness
was maximized using the Adam optimizer (initial step size:
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10 m/s, decay rate: 0.9, 30 steps). Despite the use of PyTorch,
we emphasize that this sound speed correction did not involve
any actual deep learning. Specifically, no parameters were
trained, and no future predictions of sound speed were per-
formed. PyTorch was simply used to execute a well-known and
previously validated sound speed correction algorithm [36] on
a per-image basis.

For each of the 49 phantom acquisition sequences acquired
using plane wave transmissions (including 19 of the plane
wave sequences described in Section III-A1 and 30 of
the plane wave sequences described in Section III-A3),
the PyTorch DAS beamformer and associated sound speed
correction implementation processed the 75 plane-wave raw
data in a pixel grid corresponding to a homogeneous region of
speckle. Fig. 1(a) shows the sound speeds obtained throughout
30 iterations of speckle brightness maximization for each of
the 49 phantom acquisition sequences. After 30 iterations,
a wide range of optimal sound speeds were observed across
these contributed datasets, ranging from 1453 to 1618 m/s.
The corrected value is largely grouped by institution. The two
sequences from MYO acquired with the clutter layer (i.e.,
MYO004 and MYO005) are most deviant in comparison to
the remaining sequences from the same institution. The data
submitted by INS, which included nine different phantoms,
demonstrated the largest variation. The sound speed correction
was sensitive to the chosen speckle region for some of these
phantoms.

Fig. 1(b) shows example phantom images created from
sequences INS023, INS018, MYO001, and MYO003. The
sound speed included in the files submitted by data contribu-
tors for these four data sequences was 1540 m/s (although
the sound speed values provided on data sheets from the
associated phantom manufacturers were unlisted, 1540, 1580,
and 1580 m/s, respectively). When using 1540 m/s as the
sound speed to create images, lesion inclusions and point
targets were visible, yet with degraded contrast and resolution,
as seen in the top row of Fig. 1(b). However, when the same
channel data were used to create images with the corrected
sound speeds, this update yielded considerably sharper lesion
boundaries, more visually separable point targets, and target
repositioning to calibrated depths, as seen in the bottom row
of Fig. 1(b). The specific sound speed values used to create
the example images in Fig. 1(b) are reported in the top left
corner of each image.

This sound speed correction was a necessary step imple-
mented by the CUBDL organizers to enable fair evalua-
tions, and the corrected sound speed values were not shared
with the participants while the challenge was open. The
corrected sound speeds for the 49 phantoms are now avail-
able with the CUBDL evaluation code [15] and associated
datasets [16]. During the evaluation process, the corrected
sound speeds were provided as inputs to the networks sub-
mitted by participants and were used to calculate the image
quality metrics reported throughout the article.

5) Summary of Compiled Open Datasets: In summary,
the complete CUBDL + post-CUBDL datasets released with
this publication contain a total of 576 acquisition sequences
with the following breakdown: 1) 49 experimental phantom

data sequences acquired with plane wave transmissions; 2) 11
in vivo data sequences from the breast of six patients, each
acquired with plane wave transmissions; 3) 500 in vivo data
sequences from the brachioradialis of a healthy volunteer, each
acquired with plane wave transmissions; 4) six experimental
phantom data sequences acquired with focused transmissions;
5) eight in vivo data sequences comprising the carotid artery
of a healthy volunteer, the heart of two healthy volunteers,
and the breast of two patients, each acquired with focused
transmissions; and 6) 2 Field II [43], [44] simulations.

The phantom data consisted of a total of 13 different phan-
toms from six manufacturers, including: 1) CIRS models 040,
049, 054GS, 050, 059, and ATS549; 2) GAMMEX models
404GSLE, 403, and 410 SCG; 3) NPL Thermal Test Phantom;
4) CAE Blue Phantom Elastography Breast Model; 5) True
Phantom Solutions Brain Phantom; and 6) Dansk Phantom
Service Model 453. Three of the phantom acquisitions (i.e.,
from MYO) included a layer of ex vivo porcine abdominal
tissue to introduce acoustic clutter.

This wide range of channel data was acquired with four
ultrasound scanner models and 11 ultrasound transducer mod-
els. The acquisition center frequencies ranged from 2.97 to
12.5 MHz. The sampling frequencies ranged from 6.25 to
100 MHz. The ultrasound transducers consisted of linear and
phased arrays. These data were provided by seven groups
total: 1) MYO; 2) UFL; 3) EUT; 4) INS; 5) OSL; 6) TSH;
and 7) JHU. More details about these data are available in
Tables IV through X in the Appendix.

We additionally provide sound speeds for the 49 phantom
acquisition sequences acquired using plane wave transmis-
sions with the released datasets [16], including corrected
sounds speeds from the procedure described in Section III-
A4, sound speeds submitted by data contributors, and sound
speeds reported in publicly available datasheets from phantom
manufacturers for comparison.

B. Top Challenge Submissions

1) Rothlübbers et al. [28]: A fully convolutional network
was submitted by Rothlübbers et al. [28], and the follow-
ing summary includes details that are not available in [28].
The network had four layers. The network input was time-
delayed, magnitude-normalized, complex-valued data from the
0◦ plane wave transmission angle. The network output was
a real-valued (scalar) weighting factor for each reconstructed
pixel. The network was designed to model the united sign
coherence factor (USCF) [45] by computing pixel-wise
weighting. The final pixel values were obtained by multiplying
the unweighted sum absolute pixel values by the network
output pixel weights, followed by log compression and a
correction for the maximum value.

Batch normalization and ReLU activation followed each
convolution. To account for memory limitations during train-
ing and inference, a patch-based approach was used, dividing
input and target data into patches of size 200 × 200. Con-
volutions were applied in the channel domain only, resulting
in individually processed pixels. This network used an Adam
optimizer with a learning rate decay of 0.1 every five epochs,
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and it was trained for 15 epochs. The loss was computed
as a linear combination of mean-squared error (MSE) and
multiscale structural similarity (MS-SSIM) [46] loss on the
log-compressed, normalized final images. The trained network
weights are available with the evaluation code provided with
this publication.

The training data consisted of 107 US raw datasets of a
phantom (Model 054GS, CIRS, Norfolk, VA, USA), acquired
with multiple angles using a 128-element linear array trans-
ducer (DiPhAS, Fraunhofer IBMT, Sankt Ingbert, Germany)
operating at 4 MHz. High-quality target images were recon-
structed using multi-angle USCF imaging [45], using data
from seven plane wave angles. The reconstruction grid was
chosen with an equidistant isotropic pixel spacing of a third
of the wavelength and positioned such that artifact-prone areas
such as, for example, near the transducer were excluded. The
publicly available PICMUS dataset [21] was used to test the
model prior to submitting it to the challenge.

2) Goudarzi et al. [29]: The details in the following
summary parallel the details provided in Section III-B1 if
direct comparison between the two networks is desired,
and this summary includes additional details that are not
available in [29]. The submission by Goudarzi et al. [29]
used the MobileNetV2 [47] architecture, which consists of
depth-wise separable convolution building blocks, linear bot-
tlenecks between layers, and shortcut connections between
the bottlenecks. The network input was a 2 × m × n matrix
in which first the two channels were the real and imagi-
nary parts of in-phase and quadrature (IQ) data, n is the
number of channels, and m is the length of the window
considered for temporal averaging to preserve the speckle
statistics. The network output was a two-dimensional (2-D)
vector containing real and imaginary parts of the beamformed
data. The network was designed to estimate and apply an
apodization window to the input IQ channel data for mini-
mum variance beamforming [48]. The output IQ data were
then envelope-detected and log-compressed to obtain the final
B-mode ultrasound image. This network used an AdamW
optimizer [49] with default parameters (i.e., β1 = 0.9 and
β2 = 0.999). The loss was computed as the L1-norm between
the network output and the IQ pixel values obtained using the
minimum variance beamformer. The trained network weights
are available with the evaluation code provided with this
publication.

The training data for this network consisted of the publicly
available plane wave and focused transmission datasets avail-
able in the Ultrasound Toolbox [21], [31], [50]. This toolbox
contains replicates of data sequences OSL008-OSL009 [51],
OSL011-OSL014 [31], and OSL015 [52] in a different file
format. Plane wave datasets from this toolbox were acquired
with a Verasonics Vantage 256 scanner and L11-4v probe
(phantom and in vivo data), an Alpinion E-Cube12R scanner
and L3-8 probe (phantom data), and Field II simulated data.
Focused imaging datasets were acquired with a Verasonics
Vantage 256 scanner connected to a P4-2v probe and an
Alpinion E-Cube12R scanner connected to a L3-8 probe.
Although up to 75 plane waves were available, images
were reconstructed from data received after only a single 0◦

plane wave transmission as the ground-truth output images
during training, because the objective when implementing
this network was to mimic minimum variance beamform-
ing [48] (which is a real mapping function on the channel
data).

C. Evaluation Metrics

1) Local Image Quality Metrics: Contrast, contrast-to-noise
ratio (CNR), generalized contrast-to-noise ratio (gCNR) [51],
[53], and signal-to-noise ratio (SNR) within selected regions of
interest (ROIs) were measured on the envelope of beamformed
images from CUBDL Task 1 data as follows:

Contrast = 20 log10

(
μ1

μ2

)
(1)

CNR = μ1 − μ2√
σ 2

1 + σ 2
2

(2)

gCNR = 1 −
∑

x

min
x

{ f1(x), f2(x)} (3)

SNR = μo

σo
(4)

where μi , σi , and fi represent the mean, standard deviation,
and histogram, respectively, of ROI i . The gCNR metric was
calculated with 256 bins. The SNR metric was used to measure
speckle preservation with the ground truth derived from the
75 plane wave image. In addition to the above metrics,
the axial and lateral full-width at half maximum (FWHM) of
point targets was calculated to determine resolution. Details
surrounding the specific ROIs chosen for each test case are
available in in the Appendix and in our public evaluation
code [15]. This code will further include routines for evalu-
ating speckle pattern autocorrelations for resolution measure-
ments.

2) Global Image Quality Metrics: The more global �1 loss,
�2 loss, peak signal-to-noise ratio (PSNR), and normal-
ized cross correlation (ρ) metrics were computed from
CUBDL Task 1 data for image-to-image comparisons between
network-produced envelope images and the corresponding
75 (or 31 for sequence TSH002) plane wave envelope
image

�1 = 1

N

N∑
n=1

|xn − yn| (5)

�2 =
√√√√ 1

N

N∑
n=1

|xn − yn|2 (6)

PSNR = 20 log10
Dynamic Range√
1
N

∑N
n=1 |xn − yn|2

(7)

ρ =
∑

n(xn − μx)
(
yn − μy

)
√(∑

n|xn − μx |2
)(∑

n

∣∣yn − μy

∣∣2
) (8)

where x and y denote the two images being compared,
each containing N pixels. The image comparisons were per-
formed using pixels within the dynamic range of −40 to
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TABLE II
SUMMARY OF LOCAL IMAGE QUALITY COMPARISONS AND NETWORK COMPLEXITY,

OBTAINED WITH [28] AND [29] EVALUATED ON SINGLE PLANE WAVE DATA

0 dB with respect to the maximum pixel value of the
ground truth image to avoid overemphasis of small magnitude
differences and to avoid penalizing networks that do not
reproduce the acoustic clutter that resides at magnitudes less
than −40 dB [54]. In addition, both the �1 and �2 losses
were computed for images on a linear scale (i.e., before log
compression, denoted as �1 and �2, respectively) and on a
log-compressed scale (i.e., after log compression, denoted as
�1-log and �2-log, respectively). The linear scale is expected
to be more sensitive to high-amplitude variations (e.g., edges),
whereas the log scale is more sensitive to low-amplitude
variations (e.g., speckle). These metrics were computed on
images that were normalized to minimize the achievable loss,
as described in the Appendix of [11]. Overall, these global
image quality metrics provide quantitative information that is
not subject to the region selection requirement of the local
metrics.

3) Network Complexity: Network complexity was deter-
mined by the number of learnable parameters in each sub-
mitted model. Although the CUBDL organizers initially
intended to include network speed as an additional parame-
ter to assess network complexity, there was greater variety
in the “preprocessing” prior to entering the network than
anticipated, which complicated fair comparisons of network
speed. For example, the submission by Goudarzi et al. [29]
needed the data to be reshaped and reformatted into 1-D
kernels along the axial dimension, all of which was imple-
mented outside of PyTorch, whereas the two submissions
from the runners up [19], [27] needed a 2-D image inter-
polation in numpy. For this reason, the CUBDL organizers
only considered network size, as each participant successfully
addressed the proposed task which purposefully did not spec-
ify which component of the image formation process had to be
learned.

D. Scoring and Ranking

The four CUBDL participants were evaluated using the
test data described in Section III-A1 and received a rank
based on each quantitative network performance described in
Section III-C. These rankings were grouped into two cate-
gories: 1) image quality and 2) network complexity, consid-
ering that participants were challenged to balance both image
quality and display frame rates. We averaged the ranks of the
metrics obtained by each participant within these two groups.
The average rank from each group was summed. This scoring

Fig. 2. Results from the baseline PICMUS dataset [21] of simulated
anechoic lesions, displayed with 60-dB dynamic range.

Fig. 3. Example results from the lesion test set, taken from dataset
sequences UFL001 (top) and MYO001 (bottom), displayed with 40-dB
dynamic range. The ROIs used for image quality metrics are overlaid on
the 75 plane wave images, which served as the ground truth.

system is represented mathematically as follows:

Final Score =
∑

image quality metric rankings

TIQ

+
∑

Network complexity metric rankings

TNC
(9)

where TIQ and TNC are the total numbers of image quality met-
ric rankings and network complexity rankings, respectively.

E. Post-CUBDL Analyses

To improve the robustness of our evaluation methods and to
ensure the robustness of our open-source code, two additional
analyses were implemented. First, a two-sample, two-tailed t-
test with a 5% significance level was performed to determine
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Fig. 4. Example results from the speckle test set, taken from dataset
sequences MYO002 (top) and INS016 (bottom), displayed with 40-dB
dynamic range.

the statistical significance of differences among the top two
submitted networks described in Section III-B when evaluating
the global image-to-image metrics described in Section III-C2.
Second, the test data were evaluated by an independent user
(A.W.) after the challenge was closed to new submissions. This
independent user provided feedback to increase compatibility
of the evaluation framework and also used this framework to
evaluate the submitted networks with the post-CUBDL data
described in Section III-A2.

IV. RESULTS

A. Network Performance Evaluation

1) Baseline Evaluation: To ensure that participant submis-
sions from different deep learning frameworks (e.g., Tensor-
Flow and PyTorch) were properly loaded into our evaluation
code, we used a baseline evaluation on the publicly available
PICMUS data [21], as shown in Fig. 2. All submissions were
confirmed to produce images morphologically similar to the
single and 75 plane wave images before proceeding with the
evaluation [14].

2) Lesion Targets: Fig. 3 shows two lesion examples from
dataset sequences UFL001 and MYO001. Each column con-
tains the results produced by the top two submitted net-
works, with the single and 75 plane transmission results
shown for comparison on the far left and far right, respec-
tively. Both submitted networks successfully created the larger
lesion shown on the top of Fig. 3 with contrast, CNR, and
gCNR of −15.29 dB, 1.40, and 0.86, respectively, for the
network submitted by Goudarzi et al. [29] and −11.13 dB,
0.84, and 0.62, respectively, for the network submitted by
Rothlübbers et al. [28]. The corresponding contrast, CNR, and
gCNR of the single and 75 plane wave results for this lesion
were −14.65 dB, 1.38, and 0.84, and −25.84 dB, 1.58, and
0.96, respectively.

For the smaller lesion on the bottom of Fig. 3, the net-
work submitted by Goudarzi et al. [29] produced the only
successful result for this lesion (contrast, CNR, and gCNR of
−12.38 dB, 1.44, and 0.82, respectively), which is remarkable
considering that a single plane wave transmission was not suf-
ficient to visualize this lesion with the traditional beamforming
methods. The corresponding contrast, CNR, and gCNR of the

Fig. 5. Example results from the point target test set, taken from dataset
sequence UFL004, displayed with 40-dB dynamic range.

Fig. 6. Example results from the image test set, taken from dataset
sequences INS008, OSL010, and TSH002, from top to bottom, respec-
tively, displayed with 60-dB dynamic range. The right column shows
images created after 31 (TSH002) or 75 (INS008, OSL010) plane wave
transmissions.

single and 75 plane wave results for this lesion were −1.16 dB,
0.19, and 0.24 and −17.25, 1.35, and 0.88, respectively.

The quantitative results for lesion visibility were mea-
sured for a total of eight ROIs from the following seven
sequences: UFL001, UFL005 (two independent ROIs from
this sequence), OSL007, MYO001, MYO004, INS008, and
INS021. The mean ± standard deviation of the contrast,
CNR, and gCNR for the eight ROIs is reported in Table II.
No participants achieved greater lesion visibility or detectabil-
ity than that obtained with 75 plane wave transmissions.
Goudarzi et al. [29] achieved the best lesion visibility with the
least variance overall and also achieved the closest metrics to
the 75 plane wave results, while in some cases exceeding the
single plane wave result.

3) Speckle Targets: Fig. 4 shows examples from two
speckle targets taken from dataset sequences MYO002 and
INS016. Most participants achieved results that qualitatively
resembled speckle texture. Goudarzi et al. [29] best achieved
the goal of preserving speckle SNR from both single and
75 plane wave transmissions, when measured from six
ROIs total from the following sequences: UFL004, OSL007,
MYO002, EUT003, INS004, and INS016. The mean ± stan-
dard deviation of speckle SNR within these six ROIs is
reported in Table II.
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TABLE III
SUMMARY OF GLOBAL IMAGE QUALITY COMPARISONS (WITH BOLD INDICATING THE BEST MEAN RESULTS FOR EACH METRIC)

4) Point Targets: Fig. 5 shows example results from the
point target evaluation, taken from dataset sequence UFL004.
There were a total of four ROIs from sequences MYO002,
MYO003, UFL002, and UFL004, each containing 3–5 points
that were evaluated. The mean ± standard deviation of the
lateral and axial resolution of these point targets is reported in
Table II as axial and lateral FWHM, respectively. It is remark-
able that the networks submitted by Rothlübbers et al. [28]
and Goudarzi et al. [29] achieved better resolution results
when compared with standard DAS imaging with both single
and 75 plane wave transmissions, considering that the network
images were created from channel data acquired after a single
plane wave transmission.

5) Image Targets: Fig. 6 shows examples from three
image targets. These example images were taken from
data sequences OSL010, INS008, and TSH002. Network
and single plane wave results were compared with the
75 plane wave images, using the global image-to-image met-
rics described in Section III-C2 and the 12 images created with
data sequences EUT006, INS006, INS008, INS015, INS019,
MYO001, MYO002, MYO004, MYO005, OSL010, UFL002,
and TSH002. The corresponding image-to-image comparison
results are reported in Table III.

Summarizing the results in Table III, there were no statis-
tically significant differences ( p > 0.05) when comparing the
mean �1, �1-log, �2, and PSNR of the networks submitted
by Goudarzi et al. [29] and Rothlübbers et al. [28]. However,
there were statistically significant differences (p < 0.05)
when comparing the mean �2-log and ρ of the networks
submitted by Goudarzi et al. [29] and Rothlübbers et al. [28].
The corresponding image quality metrics obtained when the
single plane wave results were compared with the 75 plane
wave results from the same datasets are also reported in
Table III for additional comparison. With the exception of �1,
these single plane wave results produce the best mean values
across the 12 image targets included in the CUBDL evaluation
dataset (as indicated by the bold text in Table III), where lower
values of �1, �1-log, �2, �2-log, and higher values of ρ and
PSNR indicate better matches with the ground-truth 75 plane
wave results. Note that for cases with identical mean �1 and
�2 values in Table III, the corresponding values with the lower
mean �1-log and �2-log, respectively, were bolded.

6) Rankings: Based on the first additive term of (9),
the images created with 75 plane wave transmissions achieved
the highest rank in a majority of cases (i.e., 1), followed by
images created with DAS beamforming after a single plane
wave transmission, then the network submitted by Goudarzi

Fig. 7. Example results of in vivo breast masses from the post-CUBDL
test set, taken from sequences JHU028 (top) and JHU030 (bottom),
displayed with 60-dB dynamic range.

et al. [29], and then the network submitted by Rothlübbers
et al. [28]. Specifically, the average ranks for image quality
[i.e., the first additive term of (9)] were 1.25, 2.58, 2.67,
and 3.58, respectively, for the rank order provided in the
preceding sentence. Based on the second additive term of (9),
Rothlübbers et al. [28] submitted a network with significantly
less network complexity (i.e., 3059 parameters) when com-
pared with that of Goudarzi et al. [29] (i.e., 2 226 146 parame-
ters), as reported in Table II. Therefore, Rothlübbers et al. [28]
received a rank of 3 in the network complexity category,
followed by Goudarzi et al. [29] receiving a rank of 4, consid-
ering that both single and 75 plane wave DAS implementations
had 0 trainable parameters for this evaluation.

When combining the two additive terms in (9) to determine
the winner, Rothlübbers et al. [28] and Goudarzi et al. [29]
achieved final scores of 6.58 and 6.67, respectively, result-
ing in both being declared by the CUBDL organizers as
the challenge winners. This declaration was made because
Goudarzi et al. [29] achieved both qualitatively and quanti-
tatively high-quality images, and at the same time, it was
remarkable that Rothlübbers et al. [28] produced a network
with significantly low complexity (and generally acceptable
image quality with the best lateral and axial resolution overall).

B. Performance With Post-CUBDL In Vivo Data
Fig. 7 shows example in vivo breast images from the

JHU post-CUBDL dataset described in Section III-A2. These
example images were taken from data sequences JHU028 and
JHU030. Network and single plane wave results were
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compared with the 75 plane wave images, using the global
image-to-image metrics described in Section III-C2 and the
11 images created with data sequences JHU024 through
JHU034. The quantitative image-to-image comparison results
for this dataset are reported in Table III.

The framework developed using the initial CUBDL eval-
uation test set was able to seamlessly incorporate the JHU
post-CUBDL in vivo breast data, which was not included
in the initial test set. Remarkably, the submitted networks
also generalized to these new data from a different imaging
environment. We observed qualitative differences between
the in vivo breast images produced by the two submit-
ted networks, and the results in Table III demonstrate that
the �2-log and ρ metrics consistently show statistically sig-
nificant differences across both datasets (i.e., CUBDL and
post-CUBDL data). Table III also shows that the network
submitted by Goudarzi et al. [29] produced consistently better
quantitative image-to-image comparisons than the network
submitted by Rothlübbers et al. [28] across both datasets.
In addition, the results obtained when testing this network [29]
on the post-CUBDL in vivo dataset were consistently better
than the results obtained with DAS beamforming of the
single plane wave data (as indicated by bold in Table III).
For this post-CUBDL dataset, the network submitted by
Rothlübbers et al. [28] also produced better qualitative results
in some cases (e.g., Fig. 7, sequence JHU028) than the corre-
sponding single plane wave result.

V. DISCUSSION

A. Overview of Challenge Outcomes
The details described in this article serve the threefold

purpose of: 1) summarizing, comparing, and drawing insights
from the top CUBDL submissions; 2) providing a detailed
description of the evaluation process for future benchmarking
of deep neural networks designed to create ultrasound images;
and 3) describing the totality of shared evaluation code and
datasets for ease of future reproducibility and replication.
Our major challenge outcomes include the largest known
international database of raw ultrasound channel data, network
descriptions and trained network weights from the CUBDL
winners, a PyTorch DAS beamformer containing multiple
components that can be converted to trainable parameters, a
data sheet of phantom sound speeds containing optimal speeds
identified by the CUBDL organizers using the PyTorch DAS
beamformer, and evaluation code that integrates these major
outcomes.

During the evaluation process, the first step to achiev-
ing the challenge objectives was to ensure that the image
reconstruction process offered a fair comparison despite
the wide range of test data from multiple groups. Hence,
the development of the neural-network-based PyTorch DAS
beamformer and the associated sound speed correction
(described in Section III-A4) were key contributions to
enable fair comparisons. While these contributions are
the first to implement a differential framework for sound
speed correction, there are other solutions that imple-
ment DAS within a computational framework capable
of automatic differentiation (e.g., PyTorch or TensorFlow)
[55]–[57].

The results from these sound speed correction contributions
(i.e., Fig. 1) support the importance of including a
standardized international dataset for deep learning network
development (e.g., training, testing, and evaluation). In
particular, a dataset containing incorrect sound speeds and
limited acquisition parameter variability may not generalize
well to data acquired under different conditions. Sound speed
differences within groups (e.g., INS) and between groups
(e.g., MYO and UFL) that imaged the same phantom models
can be attributed to a combination of ambient environment,
the presence of an ex vivo tissue layer producing acoustic
clutter, and phantom construction differences. Considering
that many of the observed phantom variations occurred
in the absence of tissue layers and the speckle brightness
sound speed correction method was previously validated [36],
environmental factors (e.g., ambient temperatures, phantom
degradation) are considered to be the primary contributor to
these observed differences.

B. Quality of Image Formation With Deep Learning
One of the underlining questions surrounding CUBDL

Task 1 was an inquiry regarding the capability of deep learn-
ing to create high-quality images after a single plane wave
transmission. The image quality summary in Table II indicates
three insights and capabilities of deep neural networks imple-
mented for beamforming. First, they are capable of preserving
speckle SNR. Second, they may be capable of improving
resolution. Third, the submitted networks (which created
images after only a single 0◦ plane wave transmission) were
capable of producing better qualitative, quantitative, and lesion
detectability results than the single plane wave DAS result
in some cases (e.g., Fig. 3 sequence MYO001, Figs. 5–7,
Tables II and III). It remains to be determined whether the
latter two capabilities can be attributed to the choice of target
beamformer (i.e., USCF, minimum variance) during training,
as opposed to the function-approximating nature of the deep
learning approach itself. In addition, the submitted networks
had difficulty obtaining better lesion detectability than the
75 plane wave DAS images. These observations are based on
the presented image quality metrics and are supported by the
image quality rankings, with associated limitations discussed
in more detail in Section V-E. For example, although speckle
SNR was quantitatively preserved in some cases (see Table II),
it was not always qualitatively preserved (e.g., MYO002 in
Fig. 4), when comparing both single plane wave results and
network results with the 75 plane wave results.

We also observed that learning a single, intermedi-
ate step of the image formation pipeline (as pursued by
Goudarzi et al. [29] and Rothlübbers et al. [28]) represents a
more clearly defined transformation for the presented task,
as opposed to attempts to learn the entire beamforming process
(i.e., the approach taken by [19] and [27], which suffered from
overfitting to the training data, as shown in the presentation
of all challenge results [14]). To briefly summarize for the
context of this article, overfitting manifested as an inability
of the submitted networks to detect point targets in the
unseen test data, recreate lesions from the unseen test data,
or replicate the gradation from light to dark shown in Fig. 6
(sequence OSL010). Instead, the images looked more like
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the learned tissue texture or lesions in the training images
in most cases. The training datasets curated by the respective
authors of these two runner-up submissions contained similar
data to each corresponding testing dataset, and the ability
of the resulting networks to produce acceptable results on
these similar data is evident in the articles describing the
associated submissions [19], [27]. These two networks were
also able to successfully reproduce the results shown in
Fig. 2, as presented in [14], likely because the PICMUS data
were included in the training sets of both networks. These
observations highlight successes that can be achieved when
the training and testing sets are similar, with a discussion of
the overfitting implications available in Section V-D in the
context of future recommendations.

C. Speed of Image Formation

It is promising that the improvements to image quality
were obtained with network complexity levels that indicate
a possibility for improved speed compared with the tradi-
tional implementations of advanced beamforming approaches.
Although the CUBDL organizers did not specify which parts
of the image formation task had to be learned, participants
were aware that they would be evaluated based on the
number of trainable parameters within submitted networks.
Participants therefore had the freedom to decide whether they
used a network to replace the delay step, the sum step, both
steps, a post-processing filter step, and so on. This freedom
somewhat complicated the network complexity evaluation,
considering that a neural network has the potential to out-
perform deterministic DAS at the cost of adding parameters
that need to be trained. If a network replaces both “delay” and
“sum,” it might be more complex than a network that replaces
just the “sum,” but it may also rely on fewer assumptions and
thus would have greater potential to give better results. This
tradeoff was considered to be captured sufficiently by counting
the number of trainable parameters.

It is possible that an additional dimension of complexity
could have been included by adding a metric for “number of
processing components replaced”. However, this addition is
not trivial to implement, considering the wide range of possible
steps outside of basic DAS beamforming. While different
network architectures with the same number of parameters
may have different inference speeds, oftentimes this difference
in speed is due to nuanced hardware- and software-specific
optimizations. It is also possible that we could have estimated
the number of floating point operations (FLOPs), but there
are multiple methods and implementations for estimation with
no clear standard. These considerations point to the additional
importance of learning from these CUBDL challenge results
to produce updated guidelines if a similar undertaking is
attempted in the future.

D. Future Recommendations

The observations summarized in Section V-B highlight the
importance of a truly blind test set to detect and prevent
possible overfitting, which is a secondary outcome of the
CUBDL challenge (i.e., the newly available database [16]
and evaluation code [15] being released with the publication
of this article). Regarding the choice not to provide training
data for CUBDL participants, the intent was to create a

challenge that represented the current state of ultrasound
imaging research. In particular, prior to the dataset contribution
described in this article, there was no previously curated stan-
dard training set specifically catered to deep learning tasks for
ultrasound image formation. Instead, the CUBDL organizers
encouraged participants to make intellectual contributions on
both the choice of architecture and training data, rather than to
find a single optimal architecture for a given training dataset.

Now that the challenge is completed, we propose the use
of the datasets described in Sections III-A1 and III-A2 as
testing data (with caution to avoid overfitting if the dataset
described in Section III-A3 is also used for training). Sim-
ilarly, we propose the use of the top CUBDL challenge
submissions as benchmarks for future work in this research
domain. For example, related work on the topic of CUBDL
Task 1 published after the close of the challenge [58]–[62] can
potentially be reevaluated and compared using the CUBDL
data [16] and code [15] released with this publication, with
no alterations to network training weights and with attention
to the overfitting challenges experienced by the runners-up,
particularly when considering that some of these methods
were similarly trained and tested with the PICMUS data.
We are essentially challenging the community to achieve
better results than the CUBDL submissions and to make more
headway toward explaining why the results are better based
on the open research questions articulated in this discussion
of challenge results. We also welcome new contributions to
the field of ultrasound beamforming with deep learning (and
possibly beamforming without deep learning) based on new
ideas conceived while reading this article and while working
with our open source data and code. The shared datasets
and code provide a major step toward making meaningful
comparisons in future work.

E. Limitations and Additional Considerations
Three possible factors that may be viewed as limitations of

administering CUBDL include the novelty of the sound speed
correction approach, the subjectivity of decisions surrounding
the ranking method (which is arguably a limitation of any
challenge [63]), and the diversity of the datasets.

First, sound speed optimization is not widely used, and its
implementation in a deep learning framework (i.e., PyTorch)
may be considered novel and thus inappropriate to introduce in
a challenge. The decision to include sound speed correction
was threefold: 1) correction was critically needed to enable
fair contrast and resolution evaluations in the challenge [see
Fig. 1(b)]; 2) the sound speed correction algorithm itself was
based on a well-established criterion [35] (see Section III-A4);
and 3) the specific implementation of the algorithm (e.g.,
traditional brute-force search versus PyTorch optimization)
does not affect the final result. Thus, the PyTorch-optimized
sound speeds were included in the challenge. A potential
limitation of this work is that further validation of the sound
speed correction was considered out of scope and thus not
performed. However, we note that this correction was intended
solely as a coarse improvement over assuming 1540 m/s rather
than as a perfect sound speed correction, which cannot be
achieved by any assumed global sound speed due to the
heterogeneity of real targets.
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Second, CUBDL placed an equal weighting on the objec-
tives of image quality and network complexity, which may
be considered arbitrary and subjective. Indeed, establishing
absolute rankings in any multi-objective task is non-trivial
because it is possible to be optimal in one metric but sub-
optimal in another, that is, to be “Pareto-optimal.” In such
a system (known as a partial order), the only way for one
method to be definitively superior is to dominate all others in
all categories. Although a worthy goal, such an optimum often
does not exist and thus cannot be relied upon for challenge
administration. Furthermore, it is important to recognize that
each image quality metric alone measures a narrow aspect of
image quality, such that optimality in that individual metric
may not correspond to perceived image quality. For example,
speckle SNR measures only first-order statistics and does not
capture second-order statistics of speckle structures, making it
a poor indicator of image quality alone; however, the �1 and �2

losses provide complementary spatial information. To reliably
obtain a final rank (a total order) from multiple independent
categories, one must necessarily apply subjective opinions as
to the importance and weighting of each category.

Our chosen approach (detailed in Section III-D) effectively
placed less weight on any individual image quality metric and
greater weight on overall network complexity. The CUBDL
organizers made a conscious decision to emphasize network
complexity as a distinguishing factor in anticipation of numer-
ous submissions with similar imaging performance, consid-
ering that ultrasound beamforming needs to be real-time for
practical application and implementation. It is possible that a
low-complexity network producing poor image quality would
have achieved a good score with the chosen approach. In par-
ticular, according to the image quality rankings reported in
Section IV-A6, the current approach favored single plane wave
DAS over the submitted networks due to a combination of the
better rank performance of the global metrics (summarized
in Table III for Task 1 data) and the absence of trainable
parameters with traditional DAS beamforming (despite the
better performance of the networks over single plane wave
DAS images with regard to local metrics, as summarized in
Table II). Other weightings are equally subjective, thus equally
valid, and may result in different final rankings. The CUBDL
organizers are making all data and evaluation scripts available
with the publication of this article, leaving room for others to
implement alternative analyses if desired.

Finally, while the diversity of the test datasets is viewed
as a strength with regard to assessing network generaliz-
ability (as discussed in Section V-A) and with regard to
detecting possible overfitting to training data (as discussed
in Section V-D), this diversity may have also been viewed
as a barrier for entry into the challenge. In particular, vari-
ations in multiple parameters that are routinely modified to
achieve a desired ultrasound image were advertised (e.g.,
variations in transducers, ultrasound systems, system oper-
ators, plane wave angles, center frequencies, sampling fre-
quencies, bandwidths, transducer properties, image depths,
and imaging targets), with example images provided in the
CUBDL Data Guide [14] and replicated in [20]. Although
the PICMUS data were advertised and available, the PICMUS
data did not contain this wide range of varying parameters.

Concerns regarding limited knowledge of either beamforming
or deep learning may have also been a barrier to entry. How-
ever, the CUBDL participants reported experience levels with
beamforming and deep learning that ranged from novice to
expert [14], [20].

VI. CONCLUSION

This article summarizes the results of the CUBDL
challenge, as well as the detailed evaluation process
implemented by the CUBDL organizers and associated
insights gained from the evaluation process and challenge
results. Evaluation was further analyzed independently, and
the associated evaluation code and datasets are newly released
with this publication. The open datasets include the CUBDL
test data, additional in vivo breast data included after the close
of the challenge, and a subset of internationally crowd-sourced
data that were not used for evaluation, but may potentially be
used for future network training and comparison to the results
presented within this article. The complete dataset includes
576 image acquisition sequences and represents the largest
known open international database of ultrasound channel
data. We are releasing this combination of CUBDL results,
evaluation code, and open datatasets to our community in
efforts to help standardize and accelerate research at the
intersection of ultrasound beamforming and deep learning.
We additionally propose the use of the top CUBDL challenge
submissions as benchmarks for future work in this research
domain, and we share the totality of released resources to
enable meaningful comparisons of future methods.

APPENDIX

The Appendix includes seven tables describing contributed
ultrasound channel data (see Tables IV–X), followed by the
18 ROIs used to calculate the local image quality metrics
(see Fig. 8).
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TABLE IV
PHANTOM AND SIMULATED TEST DATA FOR CUBDL TASK 1

TABLE V
IN VIVO TEST DATA FOR CUBDL TASK 1

TABLE VI
IN VIVO DATA ACQUIRED WITH PLANE WAVE TRANSMISSIONS FOR THE POST-CUBDL ANALYSIS (AVAILABLE WITH THE OPEN DATASET)
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TABLE VII
REMAINING IN VIVO DATA ACQUIRED WITH PLANE WAVE TRANSMISSIONS

(NOT USED FOR THE CUBDL TASK 1 EVALUATIONS, BUT AVAILABLE WITH THE OPEN DATASET)

TABLE VIII
REMAINING PHANTOM DATA ACQUIRED WITH PLANE WAVE TRANSMISSIONS

(NOT USED FOR THE CUBDL TASK 1 EVALUATIONS, BUT AVAILABLE WITH THE OPEN DATASET)

TABLE IX
PHANTOM DATA AND SIMULATED DATA ACQUIRED WITH FOCUSED TRANSMISSIONS

(CROWD-SOURCED FOR CUBDL TASK 3 AND AVAILABLE WITH THE OPEN DATASET)
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TABLE X
IN VIVO DATA ACQUIRED WITH FOCUSED TRANSMISSIONS (CROWD-SOURCED FOR CUBDL TASK 3 AND AVAILABLE WITH THE OPEN DATASET)

Fig. 8. Images created with 75 plane wave transmissions showing the
ROIs used to measure contrast, CNR, gCNR (where ROI1 is indicated
by the inner circle and ROI2 is indicated by the concentric outer circles),
speckle SNR, and point target FWHM. These images are displayed with
40-dB dynamic range.
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