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Acoustic Radiation Force: A Review of Four
Mechanisms for Biomedical Applications
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Abstract— Radiation force is a universal phenomenon in
any wave motion where the wave energy produces a static
or transient force on the propagation medium. The theory
of acoustic radiation force (ARF) dates back to the early
19th century. In recent years, there has been an increasing
interest in the biomedical applications of ARF. Following
a brief history of ARF, this article describes a concise
theory of ARF under four physical mechanisms of radiation
force generation in tissue-like media. These mechanisms
are primarily based on the dissipation of acoustic energy
of propagating waves, the reflection of the incident wave,
gradients of the compressionalwave speeds,and the spatial
variations of energy density in standing acoustic waves.
Examples describing some of the practical applications
of ARF under each mechanism are presented. This article
concludes with a discussion on selected ideas for potential
future applications of ARF in biomedicine.

Index Terms— Acoustics, biomedicine, imaging,
radiation force, ultrasound.

NOMENCLATURE

a Initial beam radius.
c Sound velocity.
dV Infinitesimal volume element.
�f = fi = ( fx , fy, fz) Radiation force acting on a unit

volume of the medium.
�F = Fi = (Fx , Fy, Fz) Radiation force acting on a body

of finite size.
G Shear modulus.
K Bulk compression modulus.
kn Wavenumber for the nth mode.
�n = ni Unit normal vector to the

surface S.
p Acoustic pressure.
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P0(t) Envelope of pulse.
P0 Amplitude of pressure wave.
r Radial coordinate.
R Distance from the sound source to

the focus.
S Surface surrounding the selected

volume V .
ui Particle velocity vector compo-

nents.
�U Displacement of medium element

vector.
V Volume.
W Potential energy.
x Longitudinal coordinate.
α Damping coefficient.
γ Form factor (a number).
κ Refection coefficient.
ρ Medium density.
ω Angular frequency
σik Stress tensor.
�· · · � Brackets mean averaging over the

oscillation period.
∇ Gradient operator.
� Laplace operator.
sin Trigonometry function (sine).
exp Exponential function.∫

Integral.∮
Closed surface integral.

I. INTRODUCTION AND BRIEF HISTORY

RADIATION force is a universal phenomenon in any
type of wave motion. Acoustic waves produce different

types of radiation force caused by a change in the density of
energy and momentum of the propagating wave. The history
of acoustic radiation force (ARF) is in detail described in
our review article “Biomedical applications of radiation force
of ultrasound: Historical roots and physical basis” [1]. First
observations of radiation force were made by Faraday [2],
and Kundt and Lehmann [3], and the physics of ARF was
first analyzed by Rayleigh [4]. Further progress in ARF
studies in the following decades was made in experimental
works by Bjerknes [5], Wood and Loomis [6], and Hertz
and Mende [7]. In the following decades, Leon Brillouin
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Fig. 1. Dynamics of publications on ARF-based SWE.

and Paul Langevin (1932) made significant progress in the
theory of radiation force [8]. Closer to the end of the century,
numerous biomedical applications of ARF were developed and
the biophysical basis of these applications was presented in
reviews and original articles of Nyborg [9] and [10]. Newly
developed areas of biomedical applications of ARF included
ARF Impulse Imaging, Vibro-acoustography, shear wave elas-
ticity imaging (SWEI), SuperSonic Shear Imaging, Harmonic
Motion Imaging, MR elastography, assessment of biological
fluids’ and tissues’ viscoelastic properties, monitoring lesions
during therapy, assisting targeted drug and gene delivery,
and manipulation of biological cells and particles in standing
ultrasonic wave fields [1], [11]–[24].

Currently, the widest area of biomedical applications of
radiation force is related to medical imaging [11]–[13], [24]
and, more specifically, to shear wave elastography (SWE) [25].
The radiation force of a focused ultrasound beam acts as
a virtual finger for remote probing internal tissue structures
and obtaining diagnostic information. Fig. 1 illustrates the
dynamics of publications on ARF-based SWE according to
the PubMed database for the last two decades (1999–2019).
This type of exponential growth is typical for publications on
many biomedical applications of ARF.

A list of variables, function, and operations used in this
article and their dentitions are provided in Nomenclature.

II. PHYSICAL MECHANISMS OF GENERATION OF

RADIATION FORCE IN TISSUE-LIKE MEDIA

Mechanisms of ARF generation include [11] the following.
(A) Change in the density of energy of the propagating

wave due to dissipation of energy because of absorption and
scattering.

(B) Reflection from various types of interfaces, such as
inclusions, walls, or other interfaces.

(C) Spatial variations of energy density in standing acoustic
waves.

(D) Spatial variations in propagation velocity and/or density
of the medium.

In Sections II-A–II-D, we describe each mechanism with
some representative examples of its biomedical applications.

A. Mechanism a
Let us refer to ARF produced by the mechanism (A) as

A-ARF.
The A-ARF, which is based on the dissipation of acoustic

energy of propagating waves, is one of the most widely used
acoustic techniques in medical imaging.

This loss of acoustic energy responsible for A-ARF may
happen due to wave dissipation, which means the transforma-
tion of mechanical energy into heat. In this case, the mechan-
ical moment of the wave is partly transferred to the absorbing
medium and it creates a radiation force. Losses can also occur
due to the scattering when the part of energy carried by the
wave begins to flow at different angles to the original direction
of propagation of the wave. Strictly speaking, scattering in
a medium does not lead to dissipation of the wave, but to
decrease in its amplitude.

Let the radiation force acting on a unit volume of the
medium be �f = fi = ( fx , fy, fz). A force fi dV acts on a
small volume dV . To calculate the radiation force for a body
of finite size, it is necessary to integrate over the volume or
over the closed body surface (S) [26]

Fi =
∫

fi dV =
∫

∂σik

∂xk
dV =

∮
σiknkd S. (1)

Here, as it is customary in the theory of elasticity, tensor
notation is used. The summation is performed over twice
repeating indices, that is σiknk = σi1n1 + σi2n2 + σi3n3 =
σi x nx + σiyny + σi znz . Here �n = ni is the unit normal
vector to the surface S surrounding the selected volume V ,
and σik is the stress tensor. Expression (1) is commonly
used in the theory of elasticity. It is written in the Lagrange
representation.

The propagation of acoustic waves in soft tissues can usually
be described by equations of fluid mechanics, and in formula
(1) one should put σik = −pδik + ρui uk [27]. Here ui is the
particle velocity, p is pressure, and ρ is the medium density.
When describing the fluid, it is customary to use Euler’s
approach [28].

Radiation forces in solids depend on spatial derivatives
of the displacement vector. Forces contain both linear and
non-linear combinations of these derivatives. Therefore

�F = �FLIN + �FNL. (2)

For linear combination, as it is well known, �f LIN =
(K + G/3)∇∇ �U +G� �U , where �U is the displacement vector.
The nonlinear part is cumbersome and is not specified here. K
is the bulk compression modulus, and G is the shear modulus.

If the periodic oscillations contain several harmonics like in
sawtooth wave 〈 �FLIN

〉
= 0,

〈 �F
〉
=

〈 �FNL
〉
. (3)

Here, the angle brackets mean averaging over the oscilla-
tion period. The radiation force is completely determined by
nonlinear terms.

It should be noted that nonlinearity in solids could be
of a different nature. The nonlinear term in the relationship
between stress and strain tensors is referred to as “geometric”
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nonlinearity. The nonlinearity of Hooke’s law, usually written
in terms of Landau moduli, is called “physical.” The third
type is huge “structural” nonlinearity; it occurs in defected and
granular media as well as in condensed media saturated with
gas bubbles. The fourth type (boundary nonlinearity) is asso-
ciated with finite displacements of an oscillating source. These
nonlinearities and corresponding phenomena are reviewed
in [29] and [30].

Complete expressions for the radiation force with allowance
for geometric and physical nonlinearities are given, for exam-
ple, in [30]. They are very cumbersome, and, therefore, are
not presented here.

For the sake of simplicity and demonstration of the basic
ideas, we restrict ourselves to the approximations made in [31].
This gives the formula〈 �f NL

〉
= − 1

c2ρ
∇〈

p2〉. (4)

Here C is the sound velocity.
It is helpful to emphasize the analogy between (4) and the

general relationship �F = −∇W between force and potential
energy W . One can see that �p2�/c2ρ plays the role of a
potential function.

For a plane monochromatic wave attenuating due to
dissipative or scattering properties of the medium, we
obtain

p = P0 exp(−αx) sin ω
(

t − x

c

)
〈
f N L
x

〉 = αP2
0

c2ρ
exp(−2αx). (5)

Due to attenuation, a dependence on the longitudinal coor-
dinate x exists in the averaged expression for �p2�. Because
of this, when differentiating (4), a nonzero force appears
along the direction of wave propagation that is proportional
to the damping coefficient α. This is typical A-ARF. It should
be noted that if the amplitude depends on the transverse
coordinates, the plane wave turns into a wave beam. In this
case, “transverse” components f NL

y , f NL
z of the radiation force

will also appear.
1) Biomedical Applications: Examples of A-ARF-based

modalities are SWEI [24], [25] and ARF Impulse Imag-
ing [12], [13] developed in the 1990s. There are two
synonyms: “Elasticity Imaging” and “Elastography” used in
describing these A-ARF-based technologies. The first ultra-
sonic elastographic technology that uses ARF-generated shear
waves is SWEI, more often called SWE, not SWEI, appar-
ently renaming the original technology. Numerous other elas-
tographic modalities using A-ARF were developed in the
next decade. These modalities include but are not limited to
SuperSonic Imaging [32], Harmonic Motion Imaging [33],
crawling wave estimator [34], shearwave dispersion ultrasound
vibrometry (SDUV) [35], lamb wave dispersion ultrasound
vibrometry (LDUV) [36], attenuation measuring ultrasound
shear wave elastography (AMUSE) [37], ARF Induced
Creep-Recovery [38], Local Phase Velocity-Based Imag-
ing [39], viscoelastic response (VisR) Imaging [40], Shear
Wave Spectroscopy for quantification of tissue viscoelastic-
ity [41], fractional derivative group shear estimation [42],

reverberant shear wave fields for estimation of shear wave
speed [43], two-point frequency shift for shear wave atten-
uation measurement [44], and spatially-modulated ultrasound
radiation force (STL-SWE/SMURF) [45]. A detailed descrip-
tion of the clinical applications of selected technologies based
on mechanism A-ARF can be found in [12] and [24]. To date,
numerous review articles have been published on ARFI, SWE,
and SuperSonic Imaging. A more recent review of these
elastography techniques and their clinical applications can be
found in [46]. SWE has found clinical success in staging liver
fibrosis, and in the visualization of soft tissue lesions in the
breast, thyroid, and prostate [47]–[51].

An example of non-imaging application of A-ARF is in
the investigation of the mechanical properties of the urinary
bladder. The overall approach is based on the ARF-induced
Lamb waves in the bladder wall to evaluate the detrusor
muscle compliance in the neurogenic bladders [52]–[54].
Another example where A-ARF has been used to exploit
guided waves phenomena is to measure the stiffness of arte-
rial walls [55], [56]. Vibro-acoustography is another imaging
technique that benefits from the A-ARF mechanism [57]–[59]
where tissue attenuation is the main contributor to the gener-
ation of ARF.

B. Mechanism B
Radiation force based on mechanism (B), let it be called

B-ARF, arises from the reflection of the incident wave from
various interfaces. The B-ARF is the basis of radiation force
balance, one of the earliest applications of ARF, to measure the
total power in ultrasonic beams for testing ultrasonic therapy
devices [6]. In the simplest case, B-ARF occurs when a wave
is reflected from an immovable wall.

Let us use the expression following from formulas (1)
and (4):

FNL
i =

∫ 〈
f NL
i

〉
dV = − 1

c2ρ

∮ 〈
p2〉ni d S. (6)

For the incident and reflected plane harmonic waves travel-
ing along x , we have

pIN = P0 sin
(

t − x

c

)
pREF = κ P0 sin

(
t + x

c

)
〈
p2

〉∣∣
x=0 = (1 + κ)2

2
P2

0 . (7)

Here κ is the coefficient of reflection from the wall. If κ =
1, we get an ideal reflection, which is similar to an elastic
ball-wall collision. In this case, the double moment of the ball
transmits to the wall.

Let us take into account that the acoustic field exists only
in front of the wall, but not behind the wall. In this situation,
formulas (6) yield

FNL
x = (1 + κ)2

2c2ρ
P2

0 S. (8)

So, reflecting from a rigid fixed boundary, the wave pushes it
forward. For brevity, we do not discuss the difference between
Rayleigh and Langevin radiation pressures, i.e., two types
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of radiation force analyzed in detail in numerous theoretical
studies [60]–[62].

Another type of B-ARF appears when an acoustic wave
reflects from a solid particle or other reflecting inhomogeneity.
Now the problem becomes 3-D and requires the use of
complex formulas describing a wave scattered in all direc-
tions on a specific irregularity. It is convenient to calculate
the reaction force from the scattered field in the far zone,
where the wave becomes spherically divergent. In this case,
the expression of the following form should be substituted into
Formula (6): 〈

p2〉 = 1

2
P2

0

(r0

r

)2
A2(θ, φ). (9)

Here θ, φ are the polar and azimuthal angles of the spher-
ical coordinate system. The polar axis is aligned with the
X -direction. The function A(θ, φ) determines the angular dis-
tribution of the amplitude or the directivity characteristic of the
scattering. There are many single and multiple scatterers with
different shapes, density, and compressibility. Due to the great
variety of scatterers, for each of them, the function A(θ, φ) has
its own specific form, we refer to the general theory of sound
scattering by inhomogeneities described in the textbook [26],
paragraph 58. As examples, two specific functions are given
in [26], the first for the scattering cross-section of a plane wave
on a solid ball, and the second for the scattering on a liquid
drop, taking into account its radial and translational vibration
caused by an acoustic wave.

1) Biomedical Applications: This mechanism is the basis
of many applications employing vibro-acoustography prin-
ciples developed by Fatemi, Greenleaf, and their cowork-
ers [57], [59], [63]. In such applications, tissue reflection
is considered the main contributor to the generation of
ARF. The clinical applications of vibro-acoustography for
breast imaging can be found in [64]–[66]. Applications of
vibro-acoustography for other organs, such as thyroid [67],
prostate [68]–[70], kidney [71], and peripheral arteries [72]
have been reported. Review articles on vibro-acoustography
and its potential applications in medicine are presented in [58],
and more recently in [73]. The B-ARF mechanism is also
used to reposition kidney stones and improve the clearance of
residual stone fragments after surgical management [74].

C. Mechanism C

The ARF based on mechanism (C), let it be called C-ARF,
results from the spatial variations of energy density in standing
acoustic waves.

By description, the acoustic pressure in a standing wave is
p = P0 sin(ωt) cos(knx), where kn are the wave numbers for
different modes determined by the boundary conditions. The
density of the radiation force has the following 1-D structure:

〈
f NL
x

〉 = kn P2
0

2c2ρ
sin(2knx). (10)

The force (10) tends to “push” the particles out of the
antinodes and concentrate them at the nodes of the standing
wave, or acts in the opposite direction. In particular, spherical
balls with a density greater than the density of the liquid move

to the antinodes of the vibrational speed, and if the density of
the particle material is low, they tend to concentrate at the
speed nodes. Bunching of particles was observed for the first
time in classical experiments in the Kundt tube.

Manipulating particles with a standing wave is similar to
another manipulation method—using transverse field gradients
in an acoustic beam. The bulk density of the radiation force
for a circular in cross-section Gaussian beam was calculated
in [75]

〈 �f NL
〉

= − P2
0

2c2ρ
∇ 1

g2
exp

(
− 2r2

a2g2

)

g(x) =
√(

1 − x

R

)2 + x2

x2
DIF

. (11)

Here R is the distance from the sound source to the focus,
xDIF = ωa2/2c is the diffraction length, and a is the initial
beam radius. According to the first formula (11), the radial
component of the radiation force is calculated by replacing the
gradient operator by differentiation with respect to r . We see
that the radial component depends on the radial coordinate r
as r exp(−r2/a2). Consequently, the radiation force is directed
from the beam axis.

If there is a particle in the beam, it can be pushed out from
the beam axis or, on the contrary, be attracted to the center,
depending on its properties. One can create a beam that has a
dip on the axis. In this case, the force will change its direction.
This beam can be used in tweezers to capture and manipulate
particles in the liquid.

1) Biomedical Applications: The C-ARF has been exten-
sively studied in the last couple of decades [15]–[23]. It has
been employed for manipulating (separating, washing, sort-
ing, and isolating) biological cells and particles as well as
for enhancing bead-based immunochemical assays [21]. The
C-ARF is the principal mechanism of the acoustic tweezers
that are capable of separating, enriching, and patterning
bioparticles in complex solutions [22], [23]. A recent review of
the acoustic-tweezer technology and its applications in biology
and medicine, including isolation of circulating biomarkers,
and single-cell analysis, are presented in [23]. There are
several applications of radiation force in microfluidics and
biotechnology [11]. In various biotechnological applications,
the diffusion rate in microvolumes of liquids is the main
factor limiting the efficiency of the process of interest. A new
technique, called the “swept-frequency method” [20], based
on the use of radiation force in the standing acoustic wave for
microstirring and mixing liquids may provide a solution to this
problem. Adapting these techniques to the needs of current
biotechnology, microfluidics, and nanotechnology often deals
with microliter and submicroliter volumes of liquids. There are
numerous biotechnological applications where diffusion is the
main factor limiting the rate and efficiency of the process, such
as in microarrays, which are widely used for the identification
of proteins, oligonucleotides, and other biologically important
molecules. Microarray analysis became the basis for the recent
advances in high-throughput technologies for studying genes
and their functions. One of the drawbacks of a microarray
analysis is the long testing time, which could be in the range of
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hours. Effective stirring of the sample tested by the microarray
analysis may reduce diffusion limitation and may significantly
improve the performance of the method. Such stirring can
be achieved by adding a small amount of microparticles to
the test sample and moving these particles by the radiation
force of a standing acoustic wave. The theoretical basis of
this stirring technique, named the “swept-frequency standing
wave” method, is described in detail in [20]. By changing
the frequency of the driving signal applied to the transducer
of a resonator, various harmonics of the standing wave are
generated, urging microparticles to jump from one nodal pat-
tern to another. This method of microstirring was implemented
in the system for ultrasound-assisted immuno-agglutination
test for HIV detection [76]. Swept-frequency standing wave
stirring helped to destroy nonspecifically bound aggregate,
thus improving the sensitivity of the HIV detection method by
nearly two orders of magnitude. Some of the other applications
and the swept-frequency tools are described in [77].

D. Mechanism D
The ARF based on mechanism (D), let it be called D-ARF,

results from the variation in acoustic energy density due to
gradients of compressional wave speeds and mass densities
in the medium [31], [78]. Similar to B-ARF, it also is not
related to the dissipation of energy. Consider an undamped
plane wave pIN(t − x/c1) incident on the interface between
two media. This wave propagates from a medium where the
speed of sound and density are c1, ρ1 to the medium with
parameters c2, ρ2. The acoustic pressures on the boundary are
equal on both sides. On the contrary, the radiation forces are
different. The difference between these forces is〈

FNL
x

〉
1 − 〈

FNL
x

〉
2 = S

(
1

c2
1ρ1

− 1

c2
2ρ2

)〈
p2

〉
(12)

where p = pIN is as defined above. The resulting force can
have different signs, which will lead to either pushing the
boundary from the ultrasonic source or pulling toward it [78].
This possibility of changing the direction of force was first
demonstrated in the experiment of Hertz and Mende [7].

The effects of this D-ARF are most pronounced in sonica-
tion of the medium by short ultrasonic pulses with durations on
the order of microseconds. The D-ARF is generated locally at
the boundaries between tissue structures and the contribution
of D-ARF could be pronounced in the case of short excitation
pulses in the microsecond range, as it follows from available
experimental data [78]. At longer ultrasound exposures in
the range of milliseconds and longer, which are typically
used in many acoustic imaging technologies, the contribution
of D-ARF becomes negligible relative to A-ARF because
of great absorption of ultrasound in biological tissues. The
pushing or pulling effects of D-ARF will depend on the
sign of the gradient of the energy density of the boundary
between adjacent media. Under the action of the radiation
force (12), the interface between the adjacent media bends
until the radiation force is compensated by the restoring elastic
force. This force tends to smooth out the convexity of the
boundary and return it to its original position. The time
dependence of the displacement is determined by the envelope

of the ultrasonic pulse P0(t) and, as the calculation shows,
is

X(t) = γ

G

〈
FNL

x

〉 ∼ P2
0 (t). (13)

This force is inversely proportional to the shear elasticity
G of the soft tissue. Formula (13) is derived as a solution
to a simple problem in the theory of elasticity, namely,
to the problem of the dynamic deformation of an elastic half-
space, to the boundary of which a time-varying radiation
force is applied. This force is created by an acoustic wave
beam bounded in a cross-section. Here γ is a form factor
that depends on the structure of the acoustic beam and its
cross-sectional area. Formula (13) has a transparent physical
meaning. The greater the radiation force �FNL

x �, and the lower
the shear elasticity G of the medium, the greater the deflection
X (t) of the boundary. If instead of a soft solid we have an
interface between two liquids, like in the experiment of Hertz
and Mende, the formula (13), instead of shear elasticity G, will
contain surface tension and gravity force due to the difference
in the density of two liquid media.

It is seen that with a decrease in the envelope duration,
the boundary displacement velocity can increase, as the veloc-
ity is proportional to the time derivative of X (t), or of
the square of the envelope of the ultrasound pulse, P2

0 (t).
Thus, the Doppler frequency shift of the recorded signal
will also increase. This makes it possible to perform a local
(within the cross-section of the focused beam) measurement of
module G.

The main difference between B-ARF and D-ARF is that
B-ARF may produce only a pushing effect on tissue, while
D-ARF can be both pushing and pulling depending on the
sign of the gradient of the energy density of the propagating
wave [31]. The main similarity of B-ARF and D-ARF is that
both are generated locally at the boundary between tissue
structures and are “nondissipative,” that is, they do not depend
on the attenuation of ultrasound. On the contrary, A-ARF
is a bulk volumetric effect, depending on both ultrasound
attenuation coefficient of the tissue and the duration of the
ultrasonic pulse. The longer the pulse, the larger the volume
of tissue affected by ultrasound and greater is A-ARF. But
with decreasing the pulse duration, the contribution of A-ARF
becomes negligible relative to B-ARF and D-ARF. The con-
tribution of B-ARF relative to D-ARF, analyzed in [78] using
theory of D-ARF developed by Beyer [79] is shown to be on
the order of a few percent. For example, it is estimated that the
contributions of B-ARF relative to the D-ARF acting on the
interface between blood and liver and between blood and brain
are 1.7% and 4.2% correspondingly. In [78], it was shown that
in sonicating the tissues mimicking medium by short ultrasonic
pulses in the microsecond’s range, where the contribution of
A-ARF is negligible, D-ARF provides the main contribution
to net radiation force. Therefore, we may hypothesize that
D-ARF is a significant phenomenon in conventional ultrasound
exams where microsecond scale pulses are used. However,
there are no studies related to this phenomenon and it could be
an important subject for future research related to the physics
of ultrasonic imaging.
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1) Biomedical Applications: As shown in [78], the D-ARF
can be used for remote measurement of shear elasticity
of soft tissue samples. In a broader spectrum, the D-ARF
mechanism has not been used extensively in biomedical
applications, as the contribution of D-ARF becomes negli-
gible compared to A-ARF in typical biomedical ultrasound
systems.

III. SELECTED IDEAS ON FUTURE

BIOMEDICAL APPLICATIONS

In addition to the well-established applications mentioned
above, the ARF has considerable potential in numerous other
biomedical areas.

Despite the fact that ARF-based imaging modalities have
advanced significantly in recent years (for example, advances
in ARF-based elastography are described in [24]), there are
still some poorly explored areas in this field. The ability of
SWEI to quantitatively assess tissue’s multiple parameters,
such as viscosity, elasticity, and anisotropy, was never fully
implemented in the current commercially available elastog-
raphy devices to design a composite multidimensional tissue
characterization tool. Such multidimensional parameters may
serve as a new powerful biomarker for differentiating masses
in tissue.

Another potential application of ARF is the estimation of
nonlinear elasticity. To date, different approaches have been
proposed for this application. A method presented in [80]
uses static elastography and SWE together to derive the non-
linear shear modulus utilizing the acoustoelasticity principles.
Another approach, named C-elastography, estimates the local
third-order modulus of elasticity at the focus of the ultrasound
beam. The theory and early results of this approach can be
found in [81] and [82]. The potential application of ARF for
the assessment of the skeletal system described in [11] needs
to be further developed. The application is based on remotely
generating different modes of acoustical waves in bones using
radiation force and evaluating the propagation parameters of
the waves sensitive to both mechanical and structural features
of the bones [83]. This approach would greatly increase
the potential of bone ultrasonometry for osteoporosis assess-
ment [84] and, especially for applications related to neona-
tology. The development of methods for assessment of the
skeletal system in newborns and infants, where conventional
bone ultrasonometry is inapplicable and X-ray densitometry
is restricted in its application, is extremely important. The
problem is especially vital because of the growing incidences
of osteopenia of prematurity, which decreased bone mass and
density in premature and low-birth-weight infants to assess
newborn bone growth and ossification [85], [86].

As mentioned above, the D-ARF has never been employed
in biomedical applications. However, we hypothesize that
there is a possibility of developing new elastometric and
elastographic technologies based on the use of D-ARF induced
by the microsecond scale, high-intensity ultrasonic pulses. The
pattern of deformations induced by D-ARF has additional
information relative to that provided by conventional elasticity
imaging. Tissue structures could be potentially visualized in

terms of variation in acoustic energy density due to the
gradients of acoustic properties at the boundaries between
adjacent tissue structures. The contribution of A-ARF can be
neglected in the case of short excitation pulses because D-ARF
is generated locally at the boundaries between tissue structures,
in contrast to A-ARF, which is a bulk volumetric effect. How-
ever, the main problem is the detectability of nanometer-scale
motion induced by microsecond range ultrasound pulses, and
it may seem impossible to make use of D-ARF for imaging
and elastographic applications. However, there are preliminary
experimental data demonstrating the possibility of using a
continuous wave Doppler to detect the motion induced by the
D-ARF [78].

Imaging application of D-ARF might be possible with the
use of principles of ultrafast ultrasound, an emerging modality
in medical imaging [87], [88]. Ultrafast ultrasound imaging is
achieved by transmitting an unfocused wave, recording the
resulting backscattered echoes and performing digital parallel
beamforming of the echoes to reconstruct the ultrasonic image
from a single transmission. Building an image is mainly lim-
ited by the time required for a wave to make a two-way travel,
which is less than 0.1 ms for the imaging depth of up to 7 cm.
It should be noted that D-ARF detection by ultrafast ultrasound
may be inhibited by the loss in SNR and spatial resolution
due to high frame rate. Several ultrafast imaging technologies
have emerged in the last decade, including ultrafast Doppler
imaging [88]. We hypothesize that elastographic application of
D-ARF, which we may call Ultrafast Elastography, should be
based on visualizing the pattern of Doppler signals induced by
an ultrasonic pulse propagating through a composite medium
containing numerous interfaces between structures differing in
ultrasound velocity. The pattern of Doppler signals will contain
information on the map of tissue elasticity. To make that map
quantitative, additional estimates of ultrasonic parameters of
tissues will be needed. The feasibility of the proposed ultrafast
elastography will depend on the sensitivity of the Doppler
imaging. Based on our experimental data [75], the necessary
sensitivity should be on the order of mm/s, which is close
to the range achieved in the application of ultrafast Doppler
imaging to blood flow speed measured in the brain [88], [89].
There is a chance that the use of D-ARF for ultrasound
imaging and tissue characterization could serve as a basis for
a new mode of elastography.

IV. CONCLUSION

This article describes four mechanisms for the generation of
ARF in tissue-like media. Examples of biomedical applications
are presented. Although ARF has been successfully used in a
wide range of biomedical applications, particularly in medical
imaging, there are still many application areas that remain to
be explored.
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