
IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL, VOL. 67, NO. 12, DECEMBER 2020 2615

A Deep Learning Approach to Resolve Aliasing
Artifacts in Ultrasound Color Flow Imaging

Hassan Nahas, Graduate Student Member, IEEE, Jason S. Au , Member, IEEE,
Takuro Ishii , Member, IEEE, Billy Y. S. Yiu , Member, IEEE, Adrian J. Y. Chee, Member, IEEE,

and Alfred C. H. Yu , Senior Member, IEEE

Abstract— Despite being used clinically as a noninvasive
flow visualization tool, color flow imaging (CFI) is known
to be prone to aliasing artifacts that arise due to fast
blood flow beyond the detectable limit. From a visualiza-
tion standpoint, these aliasing artifacts obscure proper
interpretation of flow patterns in the image view. Current
solutions for resolving aliasing artifacts are typically not
robust against issues such as double aliasing. In this article,
we present a new dealiasing technique based on deep
learning principles to resolve CFI aliasing artifacts that
arise from single- and double-aliasing scenarios. It works
by first using two convolutional neural networks (CNNs)
to identify and segment CFI pixel positions with aliasing
artifacts, and then it performs phase unwrapping at these
aliased pixel positions. The CNN for aliasing identification
was devised as a U-net architecture, and it was trained with
in vivo CFI frames acquired from the femoral bifurcation
that had known presence of single- and double-aliasing
artifacts. Results show that the segmentation of aliased
CFI pixels was achieved successfully with intersection over
union approaching 90%. After resolving these artifacts, the
dealiased CFI frames consistently rendered the femoral
bifurcation’s triphasic flow dynamics over a cardiac cycle.
For dealiased CFI pixels, their root-mean-squared differ-
ence was 2.51% or less compared with manual dealiasing.
Overall, the proposed dealiasing framework can extend the
maximum flow detection limit by fivefold, thereby improving
CFI’s flow visualization performance.

Index Terms— Aliasing, color flow imaging (CFI), deep
learning, Doppler ultrasound, U-net.

I. INTRODUCTION

COLOR flow imaging (CFI) [1] has long been a popular
modality for noninvasive mapping of blood flow in
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vivo [2]. It is particularly relevant to cardiovascular healthcare
where CFI can be used to detect stenosis [3] and to monitor
plaque formation through identifying abnormal flow phenom-
ena, such as jets, turbulence, and flow reversal [1], [4].
However, CFI is known to be prone to aliasing artifacts
that arise when the mean axial flow velocity at certain pixel
positions exceeds the detectable limit [5]. Such aliasing arti-
facts are fundamentally attributed to systemic limitations in
its data acquisition paradigm, in which slow-time pulse-echo
sampling is performed at each pixel position. Aliasing occurs
whenever the pulse repetition frequency (PRF) used for slow-
time sampling at each pixel position falls below the minimum
rate (i.e., the Nyquist limit) needed to acquire an adequately
sampled slow-time signal, whose mean Doppler frequency
supposedly should correspond to the local average axial flow
velocity according to the Doppler equation [5]. If aliasing
is present at a pixel position, its resulting CFI pixel value
would become misleading in different ways for the typical
color encoding scheme that uses a red-blue bicolor hue to
indicate the estimated mean velocity. First, the mapped color
at a pixel position may be flipped to its complementary hue
(i.e., from red to blue, or vice versa), thereby falsely indicating
a change in the flow direction. Second, the mapped color may
fall within a less saturated part of the same hue such that a
fast flow speed is deceptively rendered as slower flow in the
same direction.

From a visualization standpoint, the presence of aliased
color pixels in a CFI frame is known to jeopardize the proper
interpretation of flow patterns in the image view. Indeed,
in the presence of a curvy vessel geometry, the rendered CFI
flow pattern often looks like a color mosaic even without
aliasing [6]. Thus, if some aliased color pixels are present,
gaining an intuitive understanding of the rendered flow profile
becomes an extremely challenging task. Note that, from a flow
quantification perspective, aliasing is an issue that affects the
fidelity of not only CFI but also vector Doppler that seeks to
compute both axial and lateral velocity components [7], [8].
For the latter method, if flow vectors cannot be estimated
accurately, they would not yield vector flow images with
consistent visualization of the true flow profile [9]. Such an
issue, in turn, would make it difficult to properly use the
vector Doppler approach to effectively interpret complex flow
dynamics that frequently appear in diseased vessels [10]–[12].

To resolve aliasing artifacts in CFI data processing, sev-
eral methods and algorithms have been proposed in the
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literature [13], [14]. For instance, an extended autocorrelation
method has been proposed to double the maximum measurable
velocity limit [15]. Also, a staggered data acquisition sequence
may be used to perform aliasing-free CFI below the Nyquist
limit [16]. These methods fundamentally involve changes
to the system’s front-end operations. Alternatively, aliasing
artifacts may be tackled through image processing principles.
For this type of dealiasing algorithm, a two-step process
is commonly adopted: 1) identification and segmentation of
aliased pixels and regions in the CFI frame, and 2) correction
of aliasing errors at the identified pixel positions based on
flow profile properties. Accordingly, solutions based on fuzzy
logic [17] and unsupervised segmentation [18] have been pro-
posed. These image-based dealiasing methods have succeeded
in mitigating single-aliasing errors, which correspond to cases
when the actual Doppler frequency f ′ exceeds the maximum
unaliased frequency fmax by up to onefold of the unaliased
frequency range (i.e., fmax < f ′ < 3 f max, given that the
unaliased frequency range equals to fmax − fmin = 2 fmax).
However, they are not effective in handling the more chal-
lenging double-aliasing cases, which occur when f ′ exceeds
fmax by an amount between onefold and twofold of the
unaliased frequency range; i.e., 3 f max < f ′ < 5 f max) [18].
A more robust dealiasing technique is yet needed for CFI
applications.

In this article, we present a new dealiasing framework that is
based on deep learning principles to suppress aliasing artifacts
in CFI frames. We posit that aliased pixel positions and regions
in a CFI frame can be effectively segmented by devising a
convolutional neural network (CNN) that is trained to identify
both single- and double-aliasing cases. We also posit that
these aliased pixels may be subsequently removed via phase
unwrapping. In approaching the CNN design, we have inves-
tigated the applicability of different ultrasound signal features
as learning input for the CNN to segment aliased pixels
in CFI frames. These features included data types derived
from both the Doppler spectral contents and flow speckle
patterns.

Our dealiasing framework is built upon the recent suc-
cess of CNNs in the domain of semantic segmentation [19],
in which fully-convolved neural networks have been success-
fully applied to a variety of data sets [20]. More specifically,
our framework makes use of a class of CNN architectures
known as encoder–decoder [21], which has demonstrated supe-
rior performance in the segmentation of biomedical images
[22], [23]. An encoder–decoder CNN is known to be potent
in extracting and combining translation-invariant patterns at
multiple scales [24], and these identified patterns can be
refined to achieve high-resolution segmentation through skip
connections [25]. This type of CNN is seemingly suitable
for aliased pixel segmentation that may require information
from a large neighborhood to disambiguate. Indeed, in a
recent preliminary study [26], we have demonstrated the
initial feasibility of devising an encoder–decoder CNN for
single-aliasing detection in vitro. Here, we shall expand the
framework to address practical CFI scenarios in vivo that may
include single aliasing and double aliasing.

Fig. 1. Use of two CNNs for aliasing detection in ultrasound CFI.
CNN #1 is for the general segmentation of aliased pixels, which may
include single aliasing and double aliasing. CNN #2 is specifically for the
segmentation of double aliasing.

II. THEORETICAL PRINCIPLES

A. Overall Framework for Aliasing Segmentation

Our strategy for the identification of aliased pixels in
ultrasound CFI was based on the use of two CNNs. As shown
in Fig. 1, CNN #1 was trained to detect aliased pixels (both
single aliasing and double aliasing) in CFI frames, while
CNN #2 was trained to specifically segment double-aliasing
cases. The second CNN was needed in this work in order to
facilitate the adaptive correction of double-aliasing artifacts
(to be discussed in Section II-E). The training was done
according to supervised learning principles, for which labeled
data sets were generated.

B. Training Features for Aliasing Identification

To successfully apply supervised learning to aliased CFI
pixel identification, it is important to identify the relevant ultra-
sound information (or features) that can be used as training
input. In this work, five different types of image-based data
sets, as obtained from different steps in the CFI data processing
pipeline as illustrated in Fig. 2, were used to train CNNs for
aliasing detection. These data features include: 1) Doppler
frequency; 2) Doppler power; 3) Doppler bandwidth; 4) flow
speckle speed; and 5) flow speckle motion angle. For each
image-based data set, every pixel denoted the value of that
data feature at the corresponding location in the image view.
Further details on each training data type are given as follows.

1) Doppler Frequency: Aliasing typically emerges in CFI as
abrupt disruptions and irregularities in the rendered color map
in the image view. Since CFI maps are after all color-encoded
maps of the mean Doppler frequencies, the spatial distribution
of the mean Doppler frequency values is an obvious data
type to include for the training of an aliasing detection
CNN. In this study, the mean Doppler frequency f̂ at each
pixel position was calculated using the Kasai estimator [27]
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Fig. 2. Data features used for CNN training: 1) Doppler frequency; 2) Doppler power; 3) Doppler bandwidth; 4) speckle flow angle; and 5) speckle
flow speed. These features are derived from different parts of the CFI signal processing pipeline. Optical flow analysis was performed to derive flow
speckle patterns.

(the phase of the lag-one autocorrelation function), as it is
the standard algorithm used in clinical scanner development.
f̂ can be calculated as follows:

f̂ = PRF

2π
� Rs(1) for Rs(l) =

N−l∑
n=1

s∗[n]s[n + l] (1)

where s[n] is the nth sample in the slow-time ensemble (which
is an analytic signal), N is the ensemble size, Rs(l) is the
autocorrelation function at lag l, and � denotes the phase of
a complex data value.

2) Doppler Power: The clutter-filtered power Doppler map
is often used to identify the presence of flow in the image
view, and thus, it could be useful for differentiating between
tissue, flow, and noise. As such, the spatial distribution of the
Doppler power values may serve as complementary input for
aliasing prediction. Each Doppler power value p̂ is simply the
mean power of the slow-time ensemble after clutter filtering

p̂ = |Rs(0)|
N

. (2)

3) Doppler Bandwidth: Aliasing, especially at higher orders,
can impact the Doppler bandwidth through smearing the
Doppler spectrum, thereby resulting in high bandwidth values.
Accordingly, the Doppler bandwidth may be another use-
ful predictor of aliasing artifact. Based on the Kasai algo-
rithm [27], this quantity can be calculated as follows using
the lag-one and lag-zero autocorrelation values:

b̂ =
√

1 − |Rs(1)|
|Rs(0)| . (3)

4) Flow Speckle Speed: Another potentially useful infor-
mation for the detection of aliasing at a given CFI pixel
position is the motion of speckle patterns at that pixel. From
a signal processing perspective, flow speckle maps can be

extracted from the log-compressed magnitudes of individual
clutter-filtered slow-time ensembles. An optical flow algo-
rithm can then be applied to these flow speckle maps to
determine the motion vectors at different pixels. Subsequently,
the flow speckle speed at each pixel can be determined as the
magnitude of the corresponding motion vector. In this work,
the Lucas–Kanade method [28] was used as the optical flow
algorithm.

5) Flow Speckle Angle: Based on the motion vectors derived
from optical flow analysis, directional information about inter-
frame flow speckle motion can be obtained by computing the
angle of each motion vector. This information served as a
complementary data feature for aliasing detection.

C. Candidate Combinations for Training Features

Four combinations of training features were investigated
for aliasing identification in CFI. In all training combinations,
the Doppler frequency and the Doppler power were included
because they were, respectively, the source of CFI aliasing
and a direct indication of the presence of flow at a CFI pixel
position (which may be aliased). Doppler bandwidth and flow
speckle motion characteristics were included in some training
combinations to test their supplementary value to the training
of CNNs for aliasing detection. Based on this arrangement,
the tested training combinations are listed as follows. In each
case, one frame of training sample consisted of multiple data
feature channels.

1) Doppler Frequency + Doppler Power: This combination
was the basic case for CNN training.

2) Doppler Frequency + Doppler Power + Doppler Band-
width: This combination was used to test if the inclusion of
Doppler bandwidth information in the CNN training process
could improve the performance of aliased pixel identification.

3) Doppler Frequency + Doppler Power + Flow Speckle
Motion: In this combination, the benefit of flow speckle
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Fig. 3. Design and implementation of CNN for CFI aliasing detection.
(a) Its architecture is based on a U-net with minor modifications, including
leaky ReLUs, two dropout layers (denoted in black), and top-layer
convolutional kernels whose number equaled to the number of training
features. (b) CNN training was done using augmented data sets that
comprised M original feature frames (e.g., the Doppler frequency maps)
and their derived versions based on axial flipping, sign negation, and
axial flipping with sign negation.

motion information in aliasing segmentation was investigated.
Flow speckle motion was rendered as two additional feature
data channels (speed and angle). Thus, in total, including
Doppler frequency and Doppler power, each training sample
consisted of four data feature channels.

4) Doppler Frequency + Doppler Power + Doppler
Bandwidth + Flow Speckle Motion: This combination
integrated all data features. In principle, it is expected
to give the best CNN training performance for aliasing
detection.

D. CNN Architecture

The neural network architecture used in this work was
based on the U-net, which is a specific implementation of
an encoder–decoder CNN [29]. This architecture was used
because of its known effectiveness in performing image seg-
mentation at a fine resolution [25]. It expands beyond the CNN
architecture devised preliminarily by our group to address
single-aliasing cases in CFI of flow phantoms [26]. As shown
in Fig. 3(a), the CNN consists of an encoder part and a decoder
part, each with 13 layers that are divided into five scales.
Connecting the different scales are skip connections, where the
output of an encoding layer is connected to a decoding layer of
the same scale. The effective reception field of the encoder was
162×162 (pixels). The use of these network architecture para-
meters was empirically based on in-house pilot trials, and they
were deemed to provide sufficient neighborhood information

to discern aliased CFI pixels. Note that the use of multiscale
information is important in this CNN design because CFI
aliasing can occur at varying regional sizes, from local to
global discontinuities. Also, the use of skip connections is
critical to improve both the training of deep networks and the
segmentation resolution [25]. These connections can facilitate
the training of CNNs that can track the often irregular and
sharp boundaries of aliased regions in the CFI image view.

Since the CNNs used in this work were expected to process
multiple channels of data features for each input frame,
the first layer in the U-net architecture was modified from the
original formulation [29] to include more convolutional ker-
nels that equaled to the number of data feature channels in each
input frame. In addition, leaky rectified linear units (ReLUs)
were used, and the leak parameter was set to 0.3. This CNN
design choice was made to improve learning and to reduce
the occurrence of “dying ReLU” cases [30]. Moreover, two
50% dropout layers were added [denoted in black in Fig. 3(a)]
to improve the generalizability of the model. The size and
number of filters were left as they were in the original U-net
design [29].

E. Dealiasing and Image Regularization

Correction of aliasing errors was performed using an in-
house adaptive phase unwrapping algorithm that is inspired
by the literature [18]. In brief, it works by assuming that the
segmented pixels were clustered in connected islands. As illus-
trated in Fig. 4(a), for each connected island, the internal
and external boundary’s normalized CFI pixel values were
extracted, and their median was evaluated. The difference
between the internal and external boundary medians was
then rounded to yield potential outcomes of −1, 0, or +1.
In turn, this rounded difference outcome served to determine
whether a negative or positive full-cycle phase should be
subtracted from the CFI pixels of that aliased island to achieve
phase unwrapping (or to not perform phase unwrapping if the
rounded difference was 0).

In our dealiasing procedure, phase unwrapping was applied
twice, as shown in Fig. 4(b). First, based on the segmenta-
tion results from CNN #1, phase unwrapping was applied
once to the CFI pixel values of identified aliasing regions
[i.e., either adding or subtracting the full-cycle phase based on
the algorithm in Fig. 4(a)]. The output of this step was then
fed through the same algorithm for a second time, wherein
the segmentation results from CNN #2 were used to per-
form another round of phase unwrapping on double-aliasing
cases. After these two rounds of phase unwrapping, the nor-
malized Doppler frequency range effectively extended from
[−0.5, +0.5] to [−2.5, +2.5].

At some pixel positions, aliasing may corrupt the pixels
beyond utility. Indeed, our in-house spectral analysis showed
significant folding due to aliasing and the normalized band-
width approached unity in those pixels. To circumvent this
issue, all pixels with a normalized Doppler bandwidth exceed-
ing 0.9 were sifted from the resulting CFIs. In replacement,
those sifted pixels were filled with a posthoc inpainting
algorithm that consisted of averaging the nearest eight pixels
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Fig. 4. Dealiasing based on CNN inference output. (a) Original normalized CFI is the first phase unwrapped once using the segmentation from
CNN #1. External and internal boundaries of aliased CFI islands were extracted to determine the signage of full-cycle phase subtraction during
phase unwrapping. 2valias denotes the original CFI dynamic range. (b) Stepwise illustration of the entire dealiasing algorithm. Phase unwrapping
is performed for a second time using CNN #2 to resolve double-aliasing cases. Denoising, inpainting, and median filtering were then applied to
regularize the dealiased CFI values.

[fourth and fifth stages of Fig. 4(b)]. Finally, a 2-D median
filter with a 5 × 5 kernel was applied to eliminate spurious
values in the resulting CFI [last stage in Fig. 4(b)]. Note that
the size of this median filter kernel was chosen empirically
based on in-house testing to adequately remove spurious CFI
values without distorting the flow profile.

III. EXPERIMENTAL METHODS

A. Data Collection
To facilitate performance investigation on the CNN-based

dealiasing framework, in vivo data sets were acquired from
ultrasound long-axis acquisitions of the femoral bifurcation,
which was chosen for its non-trivial geometry and triphasic
flow characteristics with large variations in flow velocity over
a cardiac cycle [31]. Femoral CFI is generally susceptible
to aliasing in the deep femoral artery branch, whose sloped
vessel geometry naturally gives rise to smaller beam-to-flow
angles that favor the generation of higher Doppler frequencies
according to the Doppler equation. The femoral bifurcation
from five healthy volunteers was imaged (with their written
consent). To increase the variability of the data, the femoral
bifurcation from each participant was also subjected to varying
degrees of downstream pressure using a cuff set between 0 and
100 mmHg at increments of 20 mmHg. The data were col-
lected as a part of a femoral bifurcation hemodynamics study
protocol as approved by the human research ethics committee
at the University of Waterloo. Each data acquisition trial was

performed over an entire cardiac cycle, so it included systolic
and diastolic flow as well as flow reversal and recirculation.

Data acquisition was performed using an open-platform
ultrasound research scanner (US4US; Warsaw, Poland) that
was equipped with a linear array transducer (SL1543; Esaote,
Genoa, Italy). The scanner was configured to perform plane-
wave data acquisition, similar to what was described else-
where [32]. Note that, instead of conducting conventional
scanline-based imaging, plane wave data acquisition was per-
formed in this work because of two reasons related to its high-
frame-rate imaging capability. First, it allows for time-resolved
tracking of femoral flow dynamics with significant spatiotem-
poral variations over different phases of a cardiac cycle. Sec-
ond, it benefits the efficacy of our deep learning framework by
providing a diverse range of training data input that spans time
instants at both flow systole and diastole as well as ones with
anterograde and retrograde flow. Accordingly, raw channel-
domain ultrasound data sets of plane wave data acquisition
were collected for offline processing. Table I summarized the
imaging parameters used in this investigation. Note that a
−10◦ steering angle was applied during each plane wave puls-
ing event. Also, the PRF was set to 1500 Hz, in line with what
is used in clinical femoral CFI [31]. The use of such a low
PRF was necessary to consistently track slow flow emerging
during the flow transition phases of the cardiac cycle, thereby
reducing color dropouts in the CFI cine loops. Both single-
and double-aliasing artifacts were observed in the resulting
CFI frames.
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TABLE I
IMAGING PARAMETERS USED IN DATA COLLECTION

B. Signal Processing

The raw data sets collected from the scanner were processed
in MATLAB (version 2016a; MathWorks, Natick, MA,
USA) to generate the five training features described in
Section II-B. The processing platform was a computer server
(SYS-4028-TRT; Super Micro, San Jose, CA, USA) that was
equipped with a Xeon E5-2620 central processing unit (Intel,
Santa Clara, CA, USA) and an RTX-2080 graphical processing
unit (GPU) (NVidia, Santa Clara). Using MATLAB, beam-
forming was performed on this platform via a GPU-based
delay-and-sum algorithm [33], with the Gaussian apodization
window and dynamic receive focusing. The key processing
parameters are listed in Table I. Note that the receive aperture
size (i.e., number of channels used to form each pixel) was
automatically adjusted within GPU beamformer to consistently
achieve an F-number of 1.0 for all pixel positions, thus
yielding a lateral beamwidth of 0.68 mm (full-width at half-
maximum value; derived from in-house field simulations). The
receive aperture’s lateral position was automatically centered
about the corresponding pixel in all instances. Also, a steering
angle of −10◦ was applied during this beamforming process
to avoid instances of a 90◦ beam-to-flow angle at different
pixel positions.

From the beamformed data frames generated, slow-time
clutter filtering was performed at each pixel position using
an equiripple infinite impulse response filter with a cutoff
of 0.1 normalized frequency (i.e., 150 Hz). Subsequently,
the Doppler frequency, the Doppler power, and the Doppler
bandwidth were computed at each pixel position using an
ensemble size of 48 and the formulas in Section II-B. Also,
optical flow analysis (using the Lucas–Kanade algorithm) was
performed on the log-compressed, clutter-filtered data frames
to determine the flow speckle speed and the flow speckle angle
at each pixel position. For this analysis, data for flow speckle
speed and angle were averaged over 32 frames to reduce noise.

For CNN training, the computed values for all these features
were normalized with respect to the largest magnitude value
of each map frame.

C. Data Organization for CNN Training
In total, eight acquisitions were performed. Among all data

frames, 284 CFI frame samples were generated for CNN train-
ing. The data feature frames used for the training of CNN #1
(for general identification of aliasing, including both single
and double cases) were augmented to improve generalizability.
Specifically, as illustrated in Fig. 3(b), the data feature frames
were flipped about their depth axis to introduce flow conditions
going in the opposite lateral direction; moreover, for the
Doppler frequency frames and optical flow angle frames, their
additive inverse forms were derived to change the assumed
flow direction. In total, the augmentations resulted in a final
training set of 1136 frames (i.e., fourfold of the 284 original
CFI frame samples). It is worth noting that the number of
pixels affected by double aliasing constituted only a small
portion of the entire data set. As such, for CNN #2 (intended
to solely identify double aliasing), another training set was
produced by excluding all frames without double aliasing.
In turn, 476 frame samples were used to train CNN #2.

For each frame of training data, aliased regions were
manually segmented to provide CNN with information on
where aliasing appeared in the image view. This manual
segmentation task was performed using built-in MATLAB
functions. As shown in Fig. 5(a), it first involved, by inspec-
tion, manual demarcation of the aliased zone as a polygon
based on the criterion that aliased CFI pixels were manifested
as anomalous color hue changes (i.e., a sudden change from
red to blue, or vice versa). After that, an aliasing reference
map was formed by finding, within the demarcated polygon,
the CFI pixels with Doppler frequency signage that was
opposite of that for the expected flow direction. For aliased
frames with both single aliasing and double aliasing, manual
segmentation was based on a multistep process. As illustrated
in Fig. 5(b), it first identified a primary zone and searched
for aliased CFI pixels in the same way as the simpler
case shown in Fig. 5(a). Subsequently, the aliasing reference
map was refined by performing another round of manual
demarcation that delineated the boundaries of single-aliasing
regions with CFI pixels whose color was the same as that for
flow. This supplementary demarcation was achieved based on
manual identification of CFI map islands that were surrounded
by single-aliased pixels with anomalous color hue change.
All pixels within this supplementary zone were then labeled
as aliased in the final aliasing reference map. Note that,
following a similar manual segmentation procedure, double-
aliasing zones were separately identified on each CFI frame
based on the principle that each of these zones would be
engulfed within a single-aliased region that shared the same
CFI color as that for flow.

D. Training Implementation
To facilitate CNN training and inference, Python

(version 3.6.7) scripts were written for data fetching
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Fig. 5. Illustration of the manual segmentation procedure, as applied to CFI frames with (a) single aliasing only and (b) single aliasing and double
aliasing. For the latter, the procedure was separately performed to obtain the aliasing reference map (covering both single aliasing and double
aliasing) and the double-aliasing reference map.

and for the execution of CNN-related operations on the
computing server’s RTX-2080 GPU. These scripts included
calls to the Keras application programming interface (API)
(version 2.1.6) that served to: 1) define the U-net CNN
architecture parameters and 2) invoke CNN computation
operations on the RTX-2080 GPU via implicit calls to the
TensorFlow-GPU (version 1.12) software back end. Each
CNN was trained by optimizing the binary cross-entropy
loss between prediction and the reference outcome derived
from manual segmentation. Such optimization was achieved
using Adam optimizer [34] with a learning rate of 10−4.
To prevent overfitting, an early stopping mechanism was
implemented such that the training was terminated when
the loss on the validation set did not improve for 5 epochs.
Moreover, only the model with the lowest validation loss
was saved from each training procedure. Memory constraints
in the GPU hardware (with only 8 GB of random access
memory) necessitated a batch size of 1. To account for
the variability of initialization and data sampling, seven
models (i.e., seven CNN training trials) with different
random starting conditions were trained for each training
feature combination, and their performance distribution was
analyzed.

E. Testing and Segmentation Evaluation

With the trained CNNs, inferences on aliasing detection
were made on 100 test frames that were acquired on a different
subject. Phase unwrapping was performed using the algorithm
described in Section II-E to recover the expected flow profile.
The prediction results were compared against references
derived from manual segmentation of aliased regions (realized
using the same procedure presented in Section III-C). The
efficacy of a CNN in identifying aliased pixel positions
was evaluated using precision, recall, and intersection-
over-union (IoU) metrics that are, respectively, defined as
follows:

Precision = |y ∩ ŷ|
|y| (4)

Recall = |y ∩ ŷ|
|ŷ| (5)

IoU = |y ∩ ŷ|
|y ∪ ŷ| (6)

where |.| denotes the size of the set, y is the reference
segmentation map, as obtained from manual segmentation,
and ŷ is the predicted segmentation for aliasing.
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Fig. 6. Radar plots of recall, precision, and IoU for four feature combinations in training aliasing-detection CNNs. Over seven CNN training and
inference trials, the median values are shown in different test cases. (a) Entire data set for femoral CFI. (b) CFI frames taken during systole. (c) CFI
frames taken during postsystolic recirculation. (d)–(f) each metric’s range (i.e., maximum minus minimum) in the seven trials.

An adjunct CNN training and inference experiment was
performed to gain cursory insight into the effects of reduced
training data size on CNN’s aliasing detection performance.
This adjunct experiment was conducted using a subset
of 159 CFI frames formed from five of the eight human
volunteer acquisitions. It made use of the same train-
ing data augmentation strategy and CNN implementation
specifics as described in Sections III-C and III-D. The cor-
responding precision, recall, and IoU were derived for result
analysis.

F. Dealiasing Performance Evaluation

The dealiased CFI frames obtained from the CNN-based
framework were compared with the ones obtained from man-
ual dealiasing, which involved manual segmentation of aliased
pixel positions (as explained in Section III-C) and the use
of the same dealiasing algorithm presented in Section II-E.
Their difference was quantified using the root-mean-squared
difference (RMSD) metric, which is defined as

RMSD =
√√√√ 1

M

M∑
i=1

[xi(CNN) − xi(manual)]2 (7)

where M is the number of pixels being evaluated, while
xi(CNN) and xi(manual) are respective the i th pixel value in the
CNN-based dealiased CFI and in the manually dealiased CFI.
The results were normalized with respect to the postcorrection,
extended Doppler frequency limit (i.e., 5 fmax).

IV. RESULTS

A. CNNs Trained With Frequency, Power, and
Bandwidth Features Yielded the Best
Aliasing Detection Performance

For aliasing-detection CNNs, all candidate combinations of
training features being tested (as presented in Section II-C)
had converged in training, and they yielded CNNs with varying
degrees of success in identifying aliasing (whether it is single
aliasing or double aliasing) at different pixel positions. Fig. 6
summarizes the aliasing segmentation performance for the
CNN of each training feature combination by plotting the
median and range (i.e., maximum minus minimum) of its
precision, recall, and IoU derived from seven CNN training
trials. Results are shown for different test cases: over the entire
test set (left column), for CFI frames taken during systole
(middle column), and for CFI frames acquired in the presence
of flow recirculation (right column).

As shown in Fig. 6, the CNN exhibited the best aliasing
detection performance when it was trained using the features
of Doppler frequency, Doppler power, and Doppler bandwidth
(red line in the plots). This training feature combination
yielded the highest median recall, precision, and IoU for
the seven CNN training trials in all test cases. Indeed, for
the global test case, the recall, precision, and IoU were,
respectively, 98.5%, 90.5%, and 89.7%. In comparison, for
an adjunct inference experiment conducted with a CNN
trained using frequency, power, and bandwidth features derived
from a reduced data set of 159 CFI training frame samples
(versus 284 in the main experiment), the global test case had
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Fig. 7. Segmentation performance of the aliasing-detection CNNs. (a)–(d) Original CFI at different phases of the cardiac cycle. (e)–(h) Aliased
regions (including both single aliasing and double aliasing) identified by CNN #1, with errors color-coded. (i)–(l) Double-aliased regions identified by
CNN #2, with errors color-coded. All images are overlaid on top of the original B-mode images.

achieved a recall, precision, and IoU of 88.5%, 85.9%, and
88.2%, respectively (data not shown).

Another observation from Fig. 6 is that the CNN of the
frequency–power–bandwidth training combination generally
yielded the smallest range for the three metrics in the global
test case and the systolic frameset test case. While this
CNN yielded a mediocre median precision and IoU of just
above 50% in the test case involving CFI frames with flow
recirculation, it was still significantly higher than those for
the CNN of other training combinations by at least 15%.
It is worth noting that, for the CNN of the frequency–power–
bandwidth training combination, the inference time required to
generate one frame of aliasing segmentation result was found
to be 44 ms when the inference procedure was executed on
the RTX-2080 GPU.

B. Aliasing-Detection CNN Can Accurately
Identify Most of the Aliased Pixels

Using the three-feature training combination involving fre-
quency, power, and bandwidth, the trained CNN was found to
be potent in correctly identifying the majority of aliased pixels
in the image view over different phases of a cardiac cycle.
Fig. 7 shows the corresponding results for four representative
time points (systole, postdiastolic recirculation, flow reversal,
and diastole). For the CFI frames shown on the first row
of Fig. 7, the bottom two rows show maps of the detection
performance for CNN #1 (for general aliasing identification,

including both single- and double-aliasing cases) and CNN #2
(for double-aliasing detection only). Four color-coded detec-
tion outcome regions are rendered in each map: true posi-
tive (green), true negative (black), false positive (red), and
false negative (purple).

As can be observed from Fig. 7, CNN #1 exhibited a strong
performance in correctly identifying aliased pixels throughout
the cardiac cycle. Specifically, it was able to identify most of
the aliased pixels in the systole frame and in the CFI frame
with postsystolic circulation. There were a limited number
of false-positive and false-negative pixels near the tissue-flow
boundary. In the flow reversal and diastole CFI frames, this
CNN yielded true negative detection results with no detection
error. On the other hand, for CNN #2, whose role was to solely
detect double-aliasing cases, it was able to correctly identify
the double-aliasing zone in the systole CFI frame [green zone
in Fig. 7(h)]. Nevertheless, it also yielded some false-positive
instances in the form of scattered islands in certain CFI frames
[red zones in Fig. 7(h) and (i)].

C. Visualization of Dealiased CFI Frames After
Adaptive Phase Unwrapping

Based on the CNN-identified aliasing regions, adaptive
phase unwrapping was found to be capable of resolving single-
and double-aliasing artifacts in the CFI frames taken during
systole and in the presence of recirculation. As an illustration,

Movie 1 shows a cine loop (playback rate: 30 frames/s)

http://dx.doi.org/10.1109/TUFFC.2020.3001523/mm1
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Fig. 8. CFI visualization of femoral bifurcation before and after dealiasing. In (a), the time plot of spatially averaged Doppler frequency is shown
for the red box shown in (c); two time points of interest are indicated: systole (red line) and postsystolic recirculation (green line). For systole,
three CFI frames are shown. (b) Original without dealiasing. (c) After dealiasing using the proposed framework. (d) After manual dealiasing.
(e)–(g) Corresponding results for postsystolic recirculation.

of dealiased CFI over an entire triphasic cardiac cycle in
the femoral bifurcation. Shown in this movie is a side-
by-side comparison between the original CFI (left column),
the dealiased CFI (middle column), and the CNN-derived
aliasing segmentation map (right column). Representative tem-
poral snapshots of dealiased CFI are shown in Fig. 8, specif-
ically for frames taken during systole (red box), postsystolic
recirculation (green box), flow reversal (blue box), and diastole
(yellow box). Note that the velocity scale bars in Movie 1
and Fig. 8, as derived from the Doppler equation assuming
0◦ beam-to-flow angle, are not the same for the original
and the dealiased CFI because of their difference in the
Doppler frequency range (see Section II-E). Also, for refer-
ence, a time plot of postcorrection mean Doppler frequency
(spatial-averaged over the red box within the dealiased CFI)
is shown in the top row of Movie 1 and Fig. 8.

Three major observations should be noted in the dealiased
CFI results. First, after resolving the aliasing artifacts, antero-
grade flow during systole can be consistently visualized in the
dealiased CFI (red box; Fig. 8). Second, during postsystolic

recirculation, the dealiased CFI yielded a more consistent
depiction of the flow recirculation zone compared with the
unaliased CFI (green box; Fig. 8). Third, when comparing
with the segmentation results in Fig. 7, the extraneous pixels
that were misidentified as double aliasing did not signifi-
cantly affect the visualization performance of the dealiased
CFI because connected bodies of misidentified pixels were
not phase unwrapped as they did not exhibit a significant
difference with respect to their neighborhood.

For the dealiased CFI frames, their RMSD relative to the
reference based on manual segmentation and dealiasing is
shown in Table II. In all test cases (global, systole, and
recirculation), NRMSD values were under 2.51%, indicating
that the CNN-based dealiasing approach yielded similar CFI
quality as the manual approach.

V. DISCUSSION

A. Summary of Contributions

In recent years, the application potential of deep learning
in medical imaging is serendipitously becoming established

http://dx.doi.org/10.1109/TUFFC.2020.3001523/mm1
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TABLE II
RMSD BETWEEN THE CNN-BASED DEALIASED CFI

AND THE MANUALLY DEALIASED CFI

due to the concurrent advances in high-throughput comput-
ing hardware such as the GPU. Harnessing such emerging
potency, this work represents the first attempt to address the
aliasing problem in ultrasound CFI scenarios in vivo using a
deep learning approach. In particular, we have devised and
trained CNNs to identify and segment aliasing artifacts in
CFI using multiple data features derived from different steps
of the CFI data processing pipeline (see Fig. 2). The CNNs
were trained based on a U-net architecture (see Fig. 3), and
inferences drawn from the trained CNNs were used to correct
for aliasing errors (both single- and double-aliasing cases)
through an adaptive phase unwrapping strategy (see Fig. 4).
Our in vivo femoral bifurcation experiments showed that the
new dealiasing framework was able to detect aliased CFI
pixels (see Fig. 7) and, in turn, resolve them to generate
unaliased CFIs with the Doppler frequency dynamic range that
was five times wider than the conventional range ( Movie 1
and Fig. 8).

Compared with existing CFI dealiasing methods [17], [18],
our CNN-based segmentation approach made no assump-
tions on the size of aliasing region(s) in the image view
and incorporated multiple CFI data features to achieve more
consistent aliasing detection performance. In doing so, our
framework was able to identify single- and double-aliasing
zones even in CFI frames taken where the majority of the
flow region was aliased (see Fig. 7, top row). In addition, our
framework did not falsely identify CFI regions with arbitrary
discontinuities as aliased pixels (such as those emerging from
recirculation zones). As well, it was able to extrapolate aliasing
segmentation to regions where its boundaries were ill-defined.

It is worth reiterating that aliasing occurs in CFI whenever
the PRF is lower than the Nyquist limit such that the actual
Doppler frequency is greater than the maximum unaliased
frequency. On this issue, our CNN-based dealiasing framework
has served well to relax the Nyquist constraint in CFI by
identifying and correcting CFI pixels with the aliased Doppler
frequency estimates such that they would not disrupt CFI’s
flow map appearance. In achieving so, CFI can ascertain itself
as a flow mapping modality that is resilient against aliasing
artifacts even when a relatively low PRF is used. This notion
has been demonstrated in our femoral imaging experiments.
Bolstering CFI’s resilience against aliasing would also be of
practical significance to other flow mapping scenarios in vivo
(to be elaborated in Section V-C).

B. Insights on CNN Training for Aliasing Detection
As a part of this investigation, different combinations of

data features were used to train CNNs for aliasing detection.

It was found that the combined use of Doppler frequency,
Doppler power, and Doppler bandwidth led to the best aliasing
detection performance as quantified from the metrics of recall,
precision, and IoU (see Fig. 6). Note that as substantiated by
the strong performance metrics for this training feature combi-
nation, the size of training data sets used for CNN development
can generally be regarded as adequate in our experiments.
Even if CNN was trained with 56% of the original data set
size, the resulting aliasing segmentation performance was only
reduced slightly, as mentioned in Section IV-A.

Doppler frequency and power were obvious to include as
training features given their respective roles as the origin
of CFI aliasing and the primary flow indicator. In contrast,
Doppler bandwidth’s utility in aliasing segmentation can be
rationalized by noting that the Doppler spectral contents
exceeding the Nyquist limit were unpredictably rendered as
aliased spectral contents in the sampled spectrum, thus adding
variability to the estimated Doppler bandwidth. In turn, these
spurious bandwidth estimates manifested themselves as spatial
outliers over a 2-D frame of bandwidth estimates, so they
served well as complementary training input for the CNNs.

Flow speckle motion, as derived from optical flow analysis,
was considered as a candidate data feature for CNN training.
Nonetheless, it did not seem to improve aliasing detection.
The reason is likely because speckle tracking is prone to be
inconsistent in scenarios with low signal-to-noise ratios as was
the case in flow estimation [35]. If flow speckle motion is to
become a practically useful training feature for CNN-based
aliasing detection, more advanced speckle tracking algorithms
probably need to be implemented [36].

C. Applications of Interest

In practice, there are at least three scenarios in vivo where
aliasing is inevitably prone to occur. The first scenario is when
a relatively low PRF is used to track slow flow in a pulsatile
flow cycle with the fast systolic flow. For instance, we used
a PRF of 1500 Hz for femoral bifurcation flow imaging. The
use of this relatively low PRF value, which was in accordance
with that used clinically in femoral CFI [31], was necessary to
capture slow but dynamic flow patterns that occurred during
the flow phase transitions of the artery’s triphasic pulsatile
flow cycle. However, as a result of using this low PRF value,
aliasing unavoidably emerged during systole with fast flow
velocities. After performing dealiasing with our algorithm,
the resulting CFI flow visualization became more visually
intuitive, as rendered in Movie 1 and Fig. 8.

The second applicable scenario arises when a relatively
low PRF is needed to monitor fast flow dynamics away from
the surface. As known in pulse-echo imaging, the maximum
PRF that can be used is inversely proportional to the max-
imum intended imaging depth (since PRFmax = co/2zmax).
Because the choice of PRF is limited by the depth resolv-
ability constraint, aliasing would be inevitable when the
flow is relatively fast. Accordingly, an effective dealiasing
algorithm is needed to resolve aliasing artifacts originating
from pixels with fast flow. Practical examples of this imaging
scenario include: 1) intraventricular flow imaging [37], and

http://dx.doi.org/10.1109/TUFFC.2020.3001523/mm1
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2) transperineum urinary flow imaging [38]. In these cases,
flow speeds can be well above 2 m/s, and the beam-to-flow
angles may be small; in turn, the actual Doppler frequency
may be relatively high. Nevertheless, the imaging depth can
be up to 20 cm (for cardiac imaging) and 8 cm (for peritoneal
urinary flow imaging), thus precluding the use of a high PRF,
such as 10 000 Hz.

The third application scenario of interest is when relatively
fast flow speeds emerge in the CFI image view. A prime
example of this application scenario is the high-speed flow jet
that arises at a carotid artery stenosis site. These flow jets can
readily yield a peak systolic velocity of over 3 m/s for stenotic
sites whose narrowing level is 70% or higher [39]. In such
a peripheral flow mapping scenario, CFI may be performed
with a relatively high PRF of 10 000 Hz. However, aliasing is
still prone to occur since, according to the Doppler equation,
the actual Doppler frequency tends to be high (and greater
than the maximum unaliased frequency) due to the fast flow
speed.

Aside from CFI applications, the CNN-based dealiasing
algorithm may be applied to vector Doppler estimation.
Aliasing is an inherent concern in vector Doppler estimation
because the use of multiple transmit angles necessitates the
use of lower PRF values for the Doppler estimation at each
angle [40]. To tackle the aliasing problem in vector Doppler,
different CNNs can be trained for each angle to remove
aliasing from that angle. Note that the segmentation maps
obtained here may be used with more advanced aliasing
resistant algorithms [41] suited for vector flow imaging to
minimize their errors.

D. Limitations of Investigation

A few caveats should be acknowledged about the current
body of work. First, when assessing the aliasing detection
performance of our CNN-based framework, we have primarily
made reference to manually identified aliased CFI regions.
It would be beneficial in the future to more comprehensively
validate the efficacy of our proposed algorithm by comparing
its dealiased CFI maps with flow profiles obtained from
another intraluminal flow measurement technique such as
magnetic resonance angiography.

Another limitation to be noted is that since the application
focus of this work was exclusively on femoral CFI, we have
yet to evaluate the efficacy of CNN-based dealiasing in other
CFI scenarios, such as the ones mentioned in Section V-C.
To generalize our dealiasing algorithm in other CFI scenarios,
the CNNs should be retrained to include sample input from
these imaging scenarios. Along this line of investigation,
it would also be worthwhile to verify the robustness of the new
dealiasing framework for different training data set sizes and
when applying it to CFI data acquired using different imaging
parameters.

VI. CONCLUSION

Aliasing has been a long-standing nuisance in CFI. With the
use of our CNN-based dealiasing algorithm, CFI pixels suf-
fering from single aliasing or double aliasing were identified,

and they were resolved through adaptive phase unwrapping
to effectively extend the Doppler dynamic range by fivefold.
In doing so, CFI flow visualization quality was significantly
improved. Through creating properly trained CNNs for alias-
ing detection, the proposed framework is expected to help
disentangle aliased-induced color mosaics in CFI frames.
In turn, it can potentially improve CFI’s utility in clinical
vascular diagnostics, especially in cases with tortuous vessels
with significant temporal variations in flow profile.
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