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Contrast and Volume Rate Enhancement of 3-D
Ultrasound Imaging Using Aperiodic Plane

Wave Angles: A Simulation Study
Sua Bae , Member, IEEE, Jiwon Park, Member, IEEE, and Tai-Kyong Song , Member, IEEE

Abstract— Three-dimensional plane wave imaging (PWI) with
a 2-D array has been studied for ultrafast volumetric imaging in
medical ultrasound. Compared to 2-D PWI, 3-D PWI requires
the transmission of an increased number of plane waves (PWs)
to scan a volume of interest and achieve transmit dynamic
focusing in both the lateral and elevational directions. To reduce
the number of PW angles for a given 2-D angular range by
mitigating the grating lobe level, we propose two aperiodic
patterns of PW angles: concentric rings with a uniform radial
interval and the well-known sunflower pattern. Both patterns are
validated to provide uniform angle distributions without regular
periodicity, and thereby reduce the grating lobe level compared to
a periodic angle distribution with the same number of PW angles.
Simulation studies show that the aperiodic patterns enhance
the contrast of B-mode images by approximately 3–6 dB over
all depths. This enhancement implies that the aperiodic angle
sets can increase the volume rate by approximately 2–6 times
compared to the periodic angle set at the same contrast and
spatial resolution.

Index Terms— 2-D matrix array ultrasonic transducer,
3-D ultrasound (US) imaging, plane wave imaging (PWI).

I. INTRODUCTION

ULTRASOUND (US) volumetric (3-D) imaging has been
shown to offer advantages in relation to traditional

2-D US imaging in various clinical applications [1], [2]. First,
arbitrary image planes, including any desired image plane
that is difficult to capture in the 2-D US, can be obtained via
3-D US imaging. Second, 3-D US imaging can accurately
measure both the 2-D and 3-D anatomical information
required to examine anomalies, such as in gynecologic
ultrasonography, whereas 2-D US imaging systems rely on
a simple geometric model for extrapolation from 2-D to 3-D
anatomy [3], [4]. Third, volumetric scanning is essential for
various applications in functional and molecular US imaging.
In echocardiography, the detection of 3-D heart wall motion
and the estimation of the blood ejection volume can be
performed much more accurately via volumetric imaging
than via 2-D scanning [5]–[7]. In addition, observations of
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the 3-D propagation of shear waves in soft tissues lead to
more accurate measurements of tissue elasticity [8]. Three-
dimensional US imaging is also imperative for functional
brain imaging and photoacoustic imaging [9], [10].

In those applications, the volume rate and the spatial reso-
lution are perhaps the two most important factors determining
the quality and applicability of US 3-D imaging. In the tradi-
tional method of real-time 3-D imaging, a series of multiple
image slices are obtained by mechanically wobbling or moving
a 1-D array transducer. In this case, dynamic focusing is
achieved only in the lateral direction, and fixed focusing is
employed in the elevational direction using an acoustic lens.
This process severely degrades the spatial resolution, particu-
larly when observing images on reconstructed planes that are
not parallel to the acquired image slices. Moreover, wobbling
1-D arrays cannot provide high volume rates because they can
only scan image slices sequentially, one after the other.

Two-dimensional matrix probes have attracted considerable
attention because they can overcome the two drawbacks of
mechanical 3-D scanning using 1-D arrays. In theory, matrix
probes can focus US waves dynamically along both the
lateral and elevational directions because they consist of array
elements arranged in both the dimensions. In addition, a 2-D
matrix array enables ultrafast volumetric imaging by employ-
ing fast imaging techniques, such as parallel beamforming and
synthetic transmit focusing (STF), and plane wave imaging
(PWI) techniques for the simultaneous acquisition of a large
number of scanlines on multiple planes.

Parallel beamforming techniques, such as the multiline
acquisition (MLA) [11]–[15] and multiline transmit (MLT)
[16]–[19] methods, have been shown to improve the volume
rate. However, these approaches present limitations on the
number of scanlines that can be simultaneously obtained
without causing noticeable degradation in the image quality.
Moreover, such parallel beamforming techniques allow for
dynamic focusing only on reception.

Certain STF techniques developed for 1-D array imaging
that utilize plane waves (PWs) or diverging beams have also
been adopted for ultrafast 3-D (or 4-D) US imaging with 2-D
arrays [2], [20]–[24]. Such 3-D STF methods can achieve
transmit (TX) dynamic focusing via the coherent compounding
of unfocused waves at all imaging points. In the case of 3-D
STF using PWs, PW angles are distributed in a 2-D coordi-
nate system, which is defined by the lateral and elevational
directions for synthetic TX focusing in every direction in the
2-D space.
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In [25], a row-column addressing matrix was suggested to
transmit PWs with reduced TX hardware complexity. In this
method, the PW angles form a cross pattern in the 2-D angular
(lateral and elevational) space. Since the cross pattern yields
a beam represented as a sum of two focused beams, one in
the lateral direction and the other in the elevational direction,
it generates high sidelobes in each direction [25]. In contrast,
a fully 2-D angular pattern consisting of PW angles distributed
on a square grid [2] enables dynamic TX focusing in every
direction. However, the number of PW angles on a square grid
increases to N2, where N is the number of PW angles for a
1-D array with the same width.

In PWI with 1-D arrays, the distribution of the PW angles
used for compounding regulates the main lobe width and the
grating lobe positions in the beam pattern. As the range of PW
angles increases, the main lobe width gets narrower, resulting
in a better spatial resolution [26], [27]. In PWI, grating
lobes are not only caused by regularly spaced transducer
elements but also generated when a constant PW angular
interval is employed [26]–[29]. As the constant angular inter-
val increases, the grating lobes move closer to the main
lobe, compromising the contrast resolution. Therefore, in PWI
with a 2-D array, when the PW angles are distributed on a
square grid, both the range and the number of PW angles
should be sufficiently large to obtain high spatial and contrast
resolutions. In this case, however, hundreds or thousands of
PWs must be transmitted. Hence, the image quality may be
compromised for ultrafast 3-D imaging [2].

The aim of this study is to reduce the number of PW
angles for a given 2-D angular range while mitigating the
grating lobe level, which will be accomplished by using PW
angles that are distributed on aperiodic grids but have a rather
uniform density. For this purpose, we propose two aperiodic
angle patterns for 3-D PW synthetic focusing (PWSF): 1) a
concentric ring pattern in which the PW angles are distributed
with a uniform circular interval (i.e., constant arc length) on
each set of concentric rings with uniform increments in the
radial distance and 2) a sunflower pattern, which is a Fermat’s
spiral with a golden angle.

This article is organized as follows. In Section II, we for-
mulate the theoretical (monochromatic) beam pattern of 3-D
PWSF using a matrix array and show that the periodicity of
PW angles causes grating lobes in 3-D PWSF. In Section III,
two aperiodic angle sets (a concentric ring pattern and a
sunflower pattern) are proposed to reduce the grating lobe
level, and the beamforming and compounding schemes using
these angle sets are also presented. In Section IV, the proposed
methods are evaluated by analyzing beam patterns and simu-
lated 3-D images. In Sections V and VI, the discussion and
conclusions are presented.

II. THEORY

A. Beam Pattern of 3-D PWSF Using a Continuous Angle

Fig. 1 illustrates the propagation of 2-D PWs fired from a
2-D rectangular array of size Dx × Dy located on the xy plane.
At t = 0, each 2-D PW is centered at the original point (0, 0,
0), and its planar wavefront lies on the flat surface, for which

Fig. 1. (a) Normal vector �n(α, β, γ ) of a 2-D PW. Point P ′ is the orthogonal
projection of point P onto the yz plane. (b) Synthesis of multiple PWs at a
focus F(xf, yf, zf).

the plane equation is expressed as follows:
xα + yβ + zγ = 0. (1)

In Fig. 1(a), a 2-D PW traveling along the bold arrow
reaches a point P(x, y, z). Let us represent the direction of
the arrow (or the point P) with the azimuth angle θ and the
elevational angle φ. Then, the normal vector of the 2-D PW is
denoted �n = (α, β, γ ), where α = sin θ and β = cos θ sin φ.
Note that the direction of a 2-D PW can be represented by only
(α, β) since γ = (1 − α2 − β2)1/2. The time when the PW
arrives at the point P is then defined as t = (αx +βy +γ z)/c,
where c is the speed of sound.

Let us assume that the planar wavefront is collimated within
a certain volume due to the limited aperture (Dx × Dy), such
as with the PW transmitted by a 1-D array [30]. Within this
volume, the acoustic field of a monochromatic 2-D PW with
a normal vector �n = (α, β, γ ) is given by

�(x, y, z, t) = �α,β(x, y, z)e j2π f0 t (2)

where f0 is the frequency of the PW. In the above equation,
the spatial beam pattern �α,β(x, y, z) is expressed as follows:

�α,β(x, y, z) = e− j k(αx+βy+γ z) (3)

where k is the wavenumber (k = 2π/λ) and λ is the
wavelength of the PW (λ = c/ f0).

Three-dimensional PWSF is conducted by compounding
PWs propagating in different directions with synthetic TX
delays to place them at a focal point F(x f, yf, zf) with the
same phase, as shown in Fig. 1(b). Assuming that the angle of
the PW, (α, β), varies continuously, the synthesized 3-D TX
beam pattern can be described as follows:

�(x, y, z)=
∫ ∞

−∞

∫ ∞

−∞
ps(α, β)�α,β(x, y, z)e jkτtx(α,β)dα dβ

(4)

where τtx(α, β) is the synthetic TX delay. ps(α, β) is a
synthetic window that confines an angular range of PWs to
be compounded, where ps can represent any shape of a finite
angular range on the αβ plane. By defining the synthetic TX
delay as

τtx(α, β) = (αxf + βyf + γ zf)/c (5)
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Fig. 2. (a) Cartesian (α, β) and polar (r , θr) coordinates in the PW direction
domain. (b) Cartesian (x , y) and polar (ρ, θρ) coordinates in the spatial
domain.

Fig. 3. (a) Synthetic window ps, which represents an infinite number of PWs
with a propagation direction of (α2 + β2)1/2 < r0 and (b) 2-D synthetic TX
beam pattern using the continuous PW angles presented in (a). The −6-dB
beamwidth (WB) of the beam pattern is 0.7λ/r0 .

and substituting (3) and (5) into (4), the 2-D beam pattern on
the xy plane at the focal depth (z = zf) reduces to

�(x ′, y ′) =
∫ ∞

−∞

∫ ∞

−∞
ps(α, β)e− j k(αx ′+βy′)dα dβ

= Ps(x ′/λ, y ′/λ) (6)

where x ′(= x − xf) and y ′(= y − yf) are the translated
coordinates centered at (xf, yf) and Ps(·) is the 2-D Fourier
transform of ps(·). For the convenience of analysis, the angular
range defined by ps is circularly symmetric in this article.

Let (r , θr) and (ρ, θρ) denote the polar coordinates to
represent the PW direction in the αβ plane and a point in
the xyplane, respectively, as illustrated in Fig. 2. If PWs with
a range of PW directions of r < r0 are employed, as shown
in Fig. 3(a), then ps is expressed by a circularly symmetric
function

ps(r) = circ(r/r0) =

⎧⎪⎨
⎪⎩

1, r < r0

1/2, r = r0

0, r > r0.

(7)

Substituting (7) into (6) gives the closed-form expression of
the PWSF beam pattern, which is also circularly symmetric
(see Appendix A)

�cont.(ρ) = πr2
0 jinc(2r0ρ/λ) (8)

since the Fourier transform of a disk function is a jinc function.
The result is plotted in Fig. 3(b). Since the full-width half-
maximum (FWHM) of the main lobe of the jinc function,
jinc(Rρ), is approximately 1.4/R, the FWHM beamwidth
(W B) of the synthetic beam pattern in (8) is given by

WB ≈ 1.4λ/(2r0) = 0.7λ/r0 . (9)

Fig. 4. (a) PW set of periodic patterns with a range of r0 . Each seed
(gray dot) represents a PW with a direction of (αn , βn), where n = 0, 1, …,
N −1. (b) 2-D synthetic TX beam pattern using the PWs presented in (a). The
−6-dB beamwidth (WB) of the beam pattern is 0.7λ/r0 and the grating lobes
arise at intervals of λ/dα and λ/dβ in the x- and y-directions, respectively.

B. Beam Pattern of PWSF Using Discrete Angles

In practice, the PW directions must be discretized. When
N PWs are used for the PWSF, the synthetic window can be
represented by a sum of Dirac delta functions as follows:

ps(α, β) =
∑

(αn,βn)∈ S

δ(α − αn, β − βn) (10)

where S = {(α0 , β0), (α1 , β1), …, (αN−1 , βN−1)} denotes a set
of PW directions and each element of S will be called a seed.
By using the synthetic window that represents the distribution
of PW angles, the beam pattern is obtained by substituting (10)
into (6) as follows:

�(x ′, y′) =
∑

(αn,βn)∈ S

e− j k(αn x ′+βn y′). (11)

C. PW Set of Periodic Pattern

Let us first consider the case in which N seeds in (10)
are distributed periodically on a rectangular grid, as shown
in Fig. 4(a). Then, the synthetic window can be defined as
follows:

ps(α, β)=circ

(
r

r0

)
·

∞∑
p=−∞

∞∑
q=−∞

δ(α−dα p, β−dβq) (12)

where dα and dβ are the intervals of the N seeds in α and β,
respectively. Since the synthetic beam pattern is expressed as
the Fourier transform of the synthetic window (ps), the beam
pattern for the synthetic window in (12) is the convolution of
the Fourier transforms of the two factors on the right-hand
side of (12), which is expressed as follows:
�PD = πr2

0
jinc(2r0ρ/λ)

∗
∞∑

p=−∞

∞∑
q=−∞

δ

(
x ′ − λ

dα
p, y ′ − λ

dβ
q

)
. (13)

Fig. 4(b) shows that the resultant 2-D beam profile has the
main lobe at the center (x = 0, y = 0), which is identical to
the beam pattern of (8) for the continuous synthetic window.
In PW imaging with a 1-D array, the PW angle varies only
in the α direction, and hence grating lobes are observed along
the x-axis [27]. Since the PW angles are periodically sampled
in both the α and β directions in Fig. 4(a), the resultant beam
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Fig. 5. PW set of concentric ring patterns with a range of r0. The rings
have different radii with an interval of dr, and the seeds on the pth ring are
regularly distributed with an angular interval of dθ[p]. The first seed in each
ring is indicated by a red circle, and its angle is denoted by θ0[p].

pattern would exhibit grating lobes at integer multiples of λ/dα

and λ/dβ in the x- and y-directions, respectively, as shown
in Fig. 4(b).

The round-trip beam pattern is the product of the TX beam
pattern and the receive beam pattern. The magnitude of the
grating lobes in Fig. 4(b) is reduced after being multiplied
by the focused receive beam pattern. Note that both dα and
dβ should be sufficiently small to move the grating lobes
farther from the main lobe (focus), and thereby to suppress
them below the level required in B-mode imaging. However,
to achieve a high volume rate, the number of PWs should be
reduced by increasing dα and dβ . Then, the grating lobes will
move closer to the main lobe, and hence degrade the image
quality.

III. METHODS

A. Aperiodic PW Angle Distributions

From the grating lobe artifact point of view, using the
periodic PW set is not an optimal strategy. In this article, we
propose two aperiodic direction patterns that yield improved
beam patterns with fewer PWs (i.e., using a smaller number
of seeds).

1) PW Set of Concentric Ring Pattern: Concentric rings with
a constant radial interval can provide a uniform spatial density
of seeds in polar coordinates while avoiding periodicity in the
αβ space [31]. The nth PW direction [i.e., (α, β) of the nth
seed, n = 0, 1, . . . , N − 1] of a concentric ring pattern is
defined as follows:

αn = dr p cos(θ0[p]+dθ[p]·q)

βn = dr p sin(θ0[p]+dθ[p]·q)

p = 0, 1, · · · , P − 1, q = 0, 1, · · · , Q[p] − 1 (14)

where P−1 is the number of concentric rings; Q[p] is
the number of seeds in the pth ring, with Q[0] = 1; dr is the
uniform radial interval between concentric rings; dθ[p] is the
angular interval between the seeds on the pth ring; and θ0[p]
is the angle of the first seed on the pth ring. An example of
a concentric ring pattern is presented in Fig. 5.

For a given total number of PWs (N = Q[0] +Q [1] + . . .+
Q[P − 1]), P and Q[p] should be determined so that the arc

Fig. 6. PW set of the sunflower pattern with a range of r0 .

length between two successive seeds on each ring is close to
dr in an effort to achieve a high degree of uniform density.
In this article, P was chosen such that N ≈ 1+∑P−1

p=1 2πp =
π P2 −π P + 1 (see Appendix B). Different angles of the first
seeds on each ring (θ0[p]) are selected to avoid periodicity
by distributing the first-seed angles as θ0[p] = dθ[p] · p/P .
The first seeds are indicated by red circles in Fig. 5. The
concentric ring pattern in Fig. 5 clearly shows that its seeds are
not distributed on the periodic rectangular grid, as in Fig. 4(a),
and so it would not produce the regularly placed grating lobes
as shown in Fig. 4(b). In the concentric ring pattern, however,
the seeds are not randomly distributed, and hence other specific
grating lobes are still expected, whose pattern and levels will
be investigated in Section IV.

2) PW Set of the Sunflower Pattern: Another set of uni-
formly distributed but aperiodic PW directions can be obtained
from a Fermat’s spiral with the golden angle, which is the
so-called sunflower pattern [32]. This sunflower pattern was
already demonstrated to effectively break the periodicity of the
2-D array elements of an US transducer or antenna in order to
limit the grating lobe level in sparse array design [33]–[35].
The nth PW direction (n = 0, 1, . . . , N − 1) of the sunflower
pattern is defined as follows:

αn = r0
√

n/(N − 1) cos(nθG)

βn = r0
√

n/(N − 1) sin(nθG) (15)

where the golden angle θG is π(
√

5−1). Fig. 6 presents an
example of a sunflower pattern. No seeds have the same
angular position, which results in reduced periodicity.

B. Beamforming for 3-D PWI

In the proposed 3-D US imaging using 2-D PW angle sets,
each PW is fired consecutively, and the backscattered US
waves are received at all array elements. Then, each imaging
point is reconstructed by performing 3-D PWSF using the
synthesis delays of (5) and receive dynamic focusing (RDF).
Therefore, dynamic focusing is achieved on both transmission
and reception. Such two-way dynamic focusing can provide
high spatial and contrast resolutions over the entire field of
view.

Due to the finite 2-D array size, each PW propagates
through a confined region of the volume of interest as
with a 1-D array transducer [30], [36]. For instance, when
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Fig. 7. (a) Propagating region (yellow volume) of a PW that reaches the imaging point at xf (20, −20, 40 mm). (b) Propagating region (yellow volume) of
a PW that does not reach the imaging point. (c) Example of a direction pattern of total PWs (set T, red circles) and PWs [subset S(xf), black dots] that reach
the imaging point. The direction (α, β) and the angle (θ , φ) of each PW are presented on the top of panels (a) and (b). The (α,β) of the PWs of (a) and
(b) are also indicated in (c) by green and blue arrows, respectively.

Dx = 38.1 mm and Dy = 28.5 mm, Fig. 7(a) illustrates a
PW whose propagation region encompasses an imaging point
xf = (20,−20, 40) mm, whereas Fig. 7(b) depicts another PW
that does not reach the imaging point. In Fig. 7(c), only the
seeds marked with black dots (denoting active seeds) represent
the PWs that propagate through the imaging point when a
golden-angle spiral pattern (N = 88, r0 = 0.5) is employed.
The seeds that represent the directions of the PWs of Fig. 7(a)
and (b) are marked by green and blue arrows in Fig. 7(c),
respectively.

Let T = {(α0 , β0), (α1, β1), . . . ,(αN−1 , βN−1 ) denote a set of
total PWs and S(xf) denote a subset of T that contains only
the active seeds for xf. Then, the beamformed signal at each
imaging point xf = (xf, yf, zf) can be expressed as follows:

g(xf) = 1

Ns

∑
(αn,βn)∈ S(xf)

M−1∑
m=0

wrx[m]rn,m(τ n,m)e− jω0τ
n,m

(16)

where rn,m represents the complex base-band signal received
by the mth element for the nth PW and wrx is a receive
apodization function. The Ns is the number of angles in the
S(xf). The term e− jω0τ

n,m
is a phase rotation term generally

used for base-band beamforming, where ω0 is the angular
frequency of the PW. In (16), τ n,m is the beamforming delay
that consists of delays for PWSF and RDF, that is,

τ n,m =
(

αn xf + βn yf +
√

1 − α2
n − β2

n zf

)
/c

+
(√(

xf − xm
e

)2 + (
yf − ym

e

)2 + (
zf − zm

e

)2
)

/c

(17)

where (xm
e , ym

e , zm
e ) is the position of the mth transducer

element.

C. Beam Pattern Analysis

For the comparison of the 3-D PWSFs using the three
PW sets (periodic, concentric ring, and sunflower), their TX
beam patterns in the xy plane at z = zf were investigated by

evaluating (11). Since the fundamental property of the field
response of a beamforming scheme is better understood with
monochromatic excitation, all the TX beam patterns were
obtained for the case where a continuous wave (CW) with a
center frequency of 3 MHz was transmitted from a rectangular
transducer of size 38.4 mm (Dx)× 28.8 mm (Dy). The sound
speed was assumed to be 1540 m/s.

Three angle sets (Tp for the periodic rectangular grid, Tc for
the concentric ring, and Ts for the sunflower) were determined
according to (12), (14), and (15), and each set has N seeds
(i.e., N PWs), where r < r0 = 0.5 (r = (α2 + β2)1/2).
The number of PWs, N , was 81, 149, or 253. The TX beam
patterns were obtained for the three focal points x1

f = (0, 0,
20), x2

f = (0, 0, 50), and x3
f = (20,−20, 40), where all

dimensions are in millimeters (mm).
As described in Section III-B, the active seeds (PWs that

reach each focal point) vary with the focal point. Therefore,
different subsets of each Tp, Tc, and Ts are selected for the
three focal points, which are defined as Sp(xk

f ), Sc(xk
f ), and

Ss(xk
f ) for k = 1, 2, 3. Each beam pattern is obtained by

compounding the PWs contained in each subset S.
Theoretically, the active seeds of the periodic PW set

produce grating lobes with a regular interval λ/d in both the
x- and y-directions, as described in Section II-C. However,
the grating lobe intervals for PW sets with an aperiodic angle
distribution cannot be determined theoretically. In the beam
pattern of the aperiodic PW set, we found a distinct grating
lobe ring, which will be presented in Section IV-A5. Here,
we adopt a Delaunay triangulation-based analysis, which was
suggested previously in [37], to obtain the theoretical position
of the first grating lobe ring. We compared the theoretical
grating lobe position and the position measured from the beam
pattern for each of the three PW sets.

D. Evaluation of 3-D Images

Pulsed-wave beam simulations were conducted to obtain
the 3-D PWSF images of two hypothetical phantoms that
consist of two different sets of point scatterers by using the
periodic, concentric ring, and sunflower PW sets. The first
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Fig. 8. PW direction sets T (N = 149) and subsets S (left) and synthetic TX beam patterns (right) for the focal points at (a)–(c) x1
f = (0, 0, 20) mm,

(d)–(f) x2
f = (0, 0, 50) mm, and (g)–(i) x3

f = (20, −20, 40) mm when using (a), (d), and (g) periodic, (b), (e), and (h) concentric ring,
and (c), (f), and (i) sunflower PW angle patterns. In the left, the seeds of direction set T and subset S are indicated by red circles and black dots, respectively.
The PWs of each subset are employed for each synthetic beam pattern.

hypothetical phantom consists of seven point scatterers with a
regular interval of 10 mm from z = 10 mm to z = 70 mm
along the center scanline (x = y = 0), and the second phantom
has two columns of seven scatterers along two scanlines. The
steering angles of the two scanlines are (θ = 30◦, φ = 0◦)
and (θ = 0◦, φ = 23.4◦); each scanline lies on the xz plane
or yz plane.

In these computer experiments, a 128 × 96-element matrix
transducer was used. The central frequency of the transducer
was assumed to be 3 MHz and the pitch was 0.3 mm [i.e.,
the size of the transducer was 38.4 mm (Dx)× 28.8 mm (Dy)].
The fractional bandwidth of the transducer was set to 78.7%.
To transmit a PW, a single US pulse with a central frequency of
3 MHz was used, and no TX apodization window was applied.
Radio-frequency (RF) data were obtained at 12 MHz using
Field II [38]. A 3-D volume with a trapezoidal prism shape was
reconstructed by employing STF and RDF for each imaging
point according to (16). The 50% Tukey window was applied
for receive dynamic apodization (wrx) with an F-number of 1.

To assess the proposed methods, the spatial resolution and
contrast of the point spread function (PSF) of each method
were measured. The spatial resolution and contrast were
measured as a function of the imaging depth and the number of
transmitted PWs (N). A point target was placed at a certain
position at which the resolution or contrast was measured.
A PSF was obtained by reconstructing a 3-D beamformed
image of the point target according to (16). For the spatial reso-
lution, the FWHM of the main lobe of each 3-D PWSF method
was measured from its PSF in the lateral (in the xz plane)

and elevational (in the yz plane) directions. The contrast was
defined as follows:

contrast(dB) = −10 log10

(∫∫∫
x/∈S |g(x)|2dx∫∫∫ |g(x)|2dx

)
(18)

where g(x) is the PSF image and S is a small sphere with a
radius of 5λ centered at the point target [39]. The numerator
is the power of the sidelobe and grating lobe artifacts, and the
denominator is the total power of the PSF image. The negative
sign makes the higher values of (18) represent better image
contrasts.

IV. RESULTS

A. Beam Pattern Analysis

1) PW Sets and Active Seeds: Fig. 8 shows three PW
sets (Tp, Tc, and Ts, N = 149) whose elements (i.e.,
PW directions) are represented by red circles on the left panel
of each subfigure [Fig. 8(a)–(i)], and the subsets S for each
focal point are marked with black dots. Shown to the right
of each subfigure is the corresponding CW TX beam pattern.
For the first focal point x1

f , which is located at a shallow depth
(z = 20 mm) on the center scanline (on the z-axis), all the
PWs with directions defined by Tp, Tc, and Ts reach the point.
Therefore, the subset S is identical to T, that is, Sp(x1

f ) = Tp,
Sc(x1

f ) = Tc, and Ss(x1
f ) = Ts, as shown in Fig. 8(a)–(c).

In the case of x2
f , the focal depth is moved further on the

z-axis, and the active seeds (elements of subset S) are confined
in the center area in the αβ plane, as shown in Fig. 8(d)–(f),
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because the PWs with large steering angles do not propagate
over x2

f . Note that the active seeds are distributed over a larger
area along the αdirection in all PW patterns, which is an
expected result because the rectangular transducer used has
a larger width in this direction.

The third focal point x3
f is off the z-axis by 20 and

−20 mm along the x- and y-directions, respectively. Therefore,
the active seeds S in each PW set are confined to the
bottom-right corner (α > 0 and β < 0) of each T space,
as shown in the left panels of Fig. 8(g)–(i).

In the cases of x2
f and x3

f , the numbers of active seeds of
the three patterns are different because the discretized angles
are obtained with different sampling geometries (patterns).

2) Main Lobe Patterns: Fig. 8 shows that the main lobe
is centered on the targeted focal point in all cases. The
main lobes of the PWSFs using periodic, concentric ring, and
sunflower sets are circularly symmetric [see Fig. 8(a)–(c)] with
−6-dB beamwidths of 0.73, 0.67, and 0.72 mm, respectively.
The reason why the concentric ring provides a slightly smaller
beamwidth is that it has as many seeds as possible at the
boundary (outer ring at r = r0 = 0.5). In contrast, the periodic
and sunflower PW sets have much smaller numbers of seeds
on the boundary. Hence, the concentric ring PW set (Tc) has
the largest effective range of PW angles.

In Fig. 8(d)–(f), for x2
f , the main lobes for all PW sets

have asymmetric shapes that resemble ellipses whose major
axis is the y-axis, which is also an expected result because
the range of active seeds is larger in the α direction than in
the β direction. Compared to the case of x1

f , the active seeds
of all PW sets for x2

f are confined in smaller areas, which
leads to larger −6-dB beamwidths. For example, the −6-dB
beamwidths for the periodic, concentric ring, and sunflower
PW sets [Sp(x2

f ), Sc(x2
f ), and Ss(x2

f )] are 0.87, 0.89, and
0.87 mm along the x-axis, respectively, and 1.3, 1.2, and
1.2 mm along the y-axis, respectively.

Finally, Fig. 8(g)–(i) shows that the main lobes for Sp(x3
f ),

Sc(x3
f ), and Ss(x3

f ) are tilted along the diagonal direction in
the xy plane because the active seeds are located only in the
fourth quadrant of the αβ plane. Since the 2-D ranges of
the active seeds for x3

f are reduced compared to those for
x2

f , the main lobes have increased beamwidths, as observed
clearly in Fig. 8(g)–(i). The −6 dB beamwidths of the
beam patterns at x3

f using the periodic, concentric ring, and
sunflower PW sets are 1.6, 1.3, and 1.5 mm along the x-
axis, respectively, and 1.9, 1.7, and 1.8 mm along the y-axis,
respectively.

The above results indicate that the main lobe characteristic
of the 3-D PWSF is not influenced by the geometry of the
angle distribution. For the same focal point, the main lobe
patterns of the three PW sets are slightly different only in
terms of the beamwidth because the ranges of active seeds for
the three PW sets cannot be equal due to different geometries
of the sampling (discretizing) PW angles.

3) Grating and Sidelobe Patterns: Compared with the main
lobe, the grating lobes of the three PW sets exhibit different
patterns. The influence of the sampling geometry on the
grating lobes can be best investigated when T = S, as in
Fig. 8(a)–(c). The periodic PW set produces grating lobes with

TABLE I

PEAK MAGNITUDES OF THE GRATING LOBES OF THE BEAM PATTERNS OF
THE PERIODIC, CONCENTRIC RING, AND SUNFLOWER SETS

WHEN N = 149

the same peak magnitude as that of the main lobe, and they
are also periodically distributed on a rectangular grid in the
xy plane, as shown in the right panel of Fig. 8(a).

In the case of the concentric ring [Fig. 8(b)], a circular sym-
metric grating lobe pattern is observed, which is the expected
result due to the circular symmetric distribution of the active
seeds. The first grating lobe is clearly visible as a distinct ring
indicated by a white arrow (with a radius of approximately
7.3 mm), which has a smaller value than the main lobe peak
(−11.4 dB). Moreover, the second grating lobe appears on an
outer ring with a radius of approximately 14.5 mm, and it
also has a smaller magnitude (−11.3 dB). Between the first
and second rings of the grating lobe, the sidelobe levels are
elevated to at most −13.9 dB.

The sunflower PW set [Fig. 8(c)] Ts exhibits a grating
lobe pattern (indicated by a white arrow) and a sidelobe
pattern similar to those of the concentric PW set, although
the first grating lobe pattern does not appear as a distinct
ring. This finding implies that Ts has aperiodic sampling
geometries in both the α and β directions as with Tc, and it
may also be stated that Ts has a circular symmetric nature in
a sense.

Fig. 8(d) and (g) reveals that the sidelobe levels increase
as the number of active seeds decreases. Fig. 8(e) shows
that the ring of the grating lobe is not as distinctive as
in Fig. 8(b) because the active seeds shown in Fig. 8(e) became
less circularly symmetrical and the number of active seeds is
considerably reduced compared to that in Fig. 8(b). Similar
results are observed in Fig. 8(f).

Note that the active seeds of Sc(x2
f ) and Ss(x2

f ) are located
within a rectangular region due to the shape of the transducer
used, which could cause a loss of the circular symmetry of
the seed distribution to some degree. As a result, the sidelobe
levels inside the first grating lobe ring in Fig. 8(e) and (f) are
elevated compared to those in Fig. 8(b) and (c), forming cross
patterns. If a circular transducer can be employed, the cross-
shaped sidelobe might be reduced.

The total number of active seeds of each PW set for x3
f are

all reduced greatly, as shown in the left panels of Fig. 8(g)–(i).
Moreover, the concentric ring and sunflower patterns are
no longer maintained in Sc(x3

f ) and Ss(x3
f ). Consequently,

the grating lobe ring patterns are barely visible in the right
panels of Fig. 8(h) and (i).

Table I presents the peak grating lobe magnitudes of all
the beam patterns of the three PW sets in Fig. 8. The peak
magnitude of the first grating lobe ring was measured for the
aperiodic cases. Table I indicates that the two aperiodic PW
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Fig. 9. PW direction sets T (a)–(c) N = 81 or (d)–(f) N = 253 and subsets S (left) and synthetic TX beam patterns (right) for the focal points at
x1

f = (0, 0, 20) mm when using the (a) and (d) periodic, (b) and (e) concentric ring, and (c) and (f) sunflower patterns. In the left, the seeds of set T

(red circles) are equal to the seeds of subset S (black dots). All PWs in T are employed for each synthetic beam pattern.

sets contribute to suppressing the grating lobes by 11.4 dB
for the focal point x1

f . For x2
f , the grating lobe suppression

level decreases to 8.6 and 7.2 dB when using the con-
centric ring and sunflower PW sets, respectively. For x3

f ,
the grating lobe reduction is reduced to 3.9 and 4.6 dB
with Sc(x3

f ) and Ss(x3
f ), respectively, because of the loss

of distinctive patterns due to the small number of active
elements.

4) Effects of the Number of Seeds (PWs) on the Beam
Pattern: Fig. 9 shows the CW TX beam patterns for x1

f
for the three PW sets used in Fig. 8 when N = 81 and
253. Fig. 9(a)–(c) (N = 81), Fig. 8(a)–(c) (N = 149), and
Fig. 9(d)–(f) (N = 253) show that the main lobe width does
not change with N as long as the angular range of each
set remains the same. However, one can clearly see that the
properties of the sidelobes and grating lobes vary significantly
with the value of N . For all PW sets, one can also see that
the radius of the ring increases and that the sidelobe levels are
lowered with increasing N , from N = 81 [Fig. 9(a)–(c)] to
N = 149 [Fig. 8(a)–(c)] and to N = 253 [Fig. 9(d)–(f)]. Note
that the ring patterns of the grating lobes in Fig. 9(b) and (c)
are blurred and not as clearly visible as in Fig. 8(b) and (c).
In contrast, when N increases to 253 [Fig. 9(e) and (f)], the
grating lobes form a ring pattern more distinctively than those
in Fig. 8(b) and (c).

5) Theoretical Radius of Grating Lobe Ring of Aperiodic
PW Sets: Fig. 10(a) and (b) shows Delaunay triangulations
of the seeds of the concentric ring and sunflower patterns,
respectively, when N = 149; the length of the line seg-
ments represents the distance between neighboring seeds. The

Fig. 10. (a) and (b) Delaunay triangulation of seeds (N = 149) of the
(a) concentric ring pattern and (b) sunflower pattern used in Fig. 8(b) and (c),
respectively. The length of the line segment presents the distance between
neighboring seeds. (c) and (d) Histogram of the lengths of the line segments
in (a) and (b), respectively. The most likely values of the length, d̂, in (c) and
(d) are 0.0745 and 0.0695, respectively.

histogram of the lengths of the triangulation line segments
for each PW set is shown in Fig. 10(c) and (d). The most
likely interval, d̂ , is then the line segment length at which
the histogram has a peak value [37], which is 0.0745 and
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TABLE II

THEORETICAL (λ/dα) AND MEASURED LATERAL POSITIONS OF THE GRATING LOBES OF THE PERIODIC PW SET AND THEORETICAL (λ/d̂)

AND MEASURED RADII OF THE GRATING LOBE RING OF THE APERIODIC PW SETS WHEN FIOCUSING AT x1
F (0, 0, 20 MM)

Fig. 11. 3-D images of seven-point targets at the center scanline reconstructed by using the (a) periodic, (b) concentric ring, and (c) sunflower PW patterns.
The point targets are located at depths of 10, 20, 30, 40, 50, 60, and 70 mm.

0.0695 in Fig. 10(c) and (d), respectively. We will assume
that the theoretical radius of the first grating lobe ring is
approximately given by λ/d̂ .

The theoretical and the measured grating lobe positions
by the three PW sets for the focal point x1

f when N = 81,
149, and 253 are listed in Table II. The theoretical positions
were obtained by using λ/d and λ/d̂ for the periodic and
aperiodic cases, respectively. The measured positions were
obtained from the beam patterns in Figs. 8(a)–(c) and 9. In the
aperiodic cases, measuring the radius of the grating lobe ring
is difficult because the energy of the ring is scattered and does
not form a single lobe. Thus, we transformed the beam pattern
into polar coordinates (ρ, θρ), accumulated the magnitude of
the beam pattern over θρ from 0◦ to 360◦, and smoothed it with
a moving average filter (Hanning window, length = 2.5 mm)
along the ρ-axis. The measured grating lobe position (i.e.,
the radius of the ring) was determined as the ρ value at which
the smoothed radial beam pattern has a peak value outside the
main lobe region.

For the periodic PW set, the measured values match the the-
oretical grating lobe intervals perfectly at all depths. When the
sunflower PW set is used, the measured values are consistent
with the theoretical values. For the concentric ring set, though
small differences are observed between the theoretical and
measured values, they both increase with N and are observed
to be closely related.

Table II also indicates that the radius of the first grating
lobe of the sunflower set is always larger than the grating
lobe position of the periodic set. In addition, as already seen
in Fig. 8 and Table I, the sunflower set produces 11.4 dB
lower grating lobes than that of the periodic set at z = 20 mm.
Hence, the sunflower set is superior to the periodic set with
regard to the grating lobe. The concentric ring produces a ring
of grating lobes that is slightly closer to the main lobe for all
values of N compared to the sunflower. This result may occur
because the concentric ring pattern has a less dense distribution
of seeds than the sunflower because the concentric ring pattern
was designed to have more seeds at the boundary of r = 0.5.

B. Evaluation of 3-D Images

1) 3-D and Cross-Sectional Images: Fig. 11 shows the 3-D
images of the first hypothetical phantom for the (a) periodic,
(b) concentric ring, and (c) sunflower PW sets when N =
149; the dynamic range was set to 60 dB. Fig. 11(a) shows
that the periodic PW set produces grating lobes (> −60 dB).
Notably, when the concentric ring or sunflower PW set is used,
the grating lobe artifacts are suppressed below −60 dB and
do not appear in Fig. 11(b) and (c).

Fig. 12 presents cross-sectional images of each of the 3-D
images in Fig. 11, which are obtained in the xz plane at y = 0,
in the yz plane at x = 0, and in the xy plane at z = 40 mm
from top to bottom. In Fig. 12, we increased the dynamic range
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Fig. 12. The xz plane (y = 0), yz plane (x = 0), and xy plane (z = 40 mm) images (top to bottom) of seven-point targets at the center scanline reconstructed
by using the (a) periodic, (b) concentric ring, and (c) sunflower PW patterns. The point targets are located at depths of 10, 20, 30, 40, 50, 60, and 70 mm.

to 80 dB to observe the grating lobe artifacts of the sunflower
and concentric ring patterns. The artifacts of the two aperiodic
PW sets [Fig. 12(b) and (c)] were approximately 10 dB lower
than those of the periodic set [Fig. 12(a)].

Note that the RDF is employed with a rectangular 2-D
array, as shown in Fig. 1. Then, the receive beam pattern
must have a higher sidelobe pattern along the x- and y-axes
than along any other direction in the xy plane [17]. Therefore,
the grating lobes in the TX beam patterns of the 3-D PWSF
will be less suppressed along the x- and y-directions when
multiplied by the receive beam pattern, which explains why
grating lobe artifacts are observed only along the x- and y-axes
in Figs. 11 and 12.

Fig. 13 shows 3-D images of the second phantom. The same
three PW sets as used for Figs. 11 and 12 were employed, and
the dynamic range was set to 60 dB. For each of these 3-D
images, the three cross-sectional images are also displayed in
Fig. 14: xz, yz, and xy plane images with a dynamic range of
80 dB. Figs. 13 and 14 show that the grating lobe artifacts are
also reduced for the point scatterers on the steered scanlines.

2) Contrast and Spatial Resolution Versus Depth: Fig. 15(a)
and (b) show the contrast curves for point targets on the center

scanline (θ = 0◦, φ = 0◦) and the steered scanline (θ = 30◦,
φ = 0◦), respectively, when N = 149 for all PW sets. Note
that the aperiodic PW sets yield higher contrasts than the
periodic PW set at almost all depths on both the center and
steered scanlines, and the greatest contrast improvement is
6.0 dB for the center scanline and 6.1 dB for the steered
scanline. In the case of the steered scanline [Fig. 15(b)],
the concentric ring pattern seems to be advantageous relative
to the sunflower pattern for all depths.

On the other hand, the lateral and elevational resolutions
for the point targets on the center scanline [Fig. 15(c)] and
the steered scanline [Fig. 15(d)] do not exhibit noticeable
differences between the PW patterns. This observation is
particularly true for the elevational resolution (dotted lines).
In the case of the lateral resolution (solid lines), the concentric
ring pattern provides slightly improved results at near depths
in Fig. 15(c) because the concentric ring pattern has a slightly
narrower beamwidth due to the larger effective range of PW
directions in the αβ-domain, as described in Section IV-A2.
Obviously, such an improvement would also be obtained in
the elevational direction if we used a 2-D array with a larger
elevational width.
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Fig. 13. 3-D images of two columns of point targets reconstructed using the (a) periodic, (b) concentric ring, and (c) sunflower PW patterns. The point
targets are located at depths of 10, 20, 30, 40, 50, 60, and 70 mm.

Fig. 14. The xz plane (y = 0), yz plane (x = 0), and xy plane (z = 40 mm) images (top to bottom) of two columns of point targets reconstructed by using
the (a) periodic, (b) concentric ring, and (c) sunflower PW patterns. The point targets are located at depths of 10, 20, 30, 40, 50, 60, and 70 mm.

In Fig. 15, the spatial resolution and contrast for all PW
sets deteriorated with the depth along both scanlines. This
result is caused by the phenomenon in which the number of
available PWs (or, equivalently, PW angles) decreases with
depth, as observed in Fig. 8. Fig. 8(g)–(i) shows the case of
a focal point on a side scanline, where the active seeds not
only decreased in number but also lost the unique pattern of

each PW set. Similarly, the contrast differences between the
aperiodic PW sets and the periodic PW set decreased after
40 mm in Fig. 15(b).

In Fig. 15(c), the lateral resolution is better than the ele-
vational resolution at depths greater than 20 mm because the
lateral width of the 2-D array is greater than the elevational
width. However, in Fig. 15(d), better resolution is obtained in
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Fig. 15. (a) and (b) Contrast and (c) and (d) lateral (lat.) and elevational (ele.) resolutions measured at the (a) and (c) center scanline and the (b) and
(d) laterally steered side scanline as a function of depth when using the periodic (per.), concentric ring (con.), and sunflower (sun.) sets.

the elevational direction at all depths because the range of α
becomes smaller than the range of β for imaging points on the
scanline that is tilted toward only the positive x-axis (θ = 30◦,
φ = 0◦).

3) Contrast and Spatial Resolution Versus the Number of
PWs: In Fig. 16, the contrast and spatial resolution obtained
with the three PW sets measured for point targets on the center
scanline are plotted as a function of the number of PWs:
N = 13, 29, 49, 81, 113, 197, 253, 313, 377, 441, 529, 613,
and 705. In Fig. 16(a)–(c), the contrast increases for all PW
sets as N increases. This finding can be explained by the beam
patterns in Figs. 8 and 9, which show the increasing distance
between the main lobe and the grating lobe with increasing
N . Fig. 16(a)–(c) demonstrates that aperiodic PW sets provide
better contrast at all depths (z = 20, 40, and 60 mm) than the
periodic PW set for all N > 13. They also show that the
aperiodic angle sets require approximately 2–6 times fewer
PWs than the periodic angle set for the same contrast. As an
example, to obtain a contrast of 30 dB at z = 40 mm,
the periodic PW set requires more than 377 PWs, whereas
81 PWs are enough when using the concentric or sunflower
sets.

In contrast, Fig. 16(d)–(f) shows that the spatial resolution
tends not to change with N when N > 100, except when the
concentric ring pattern is used at a shallow depth [Fig. 16(d)].
This result indicates again that the resolution depends on the
range of PWs in αβ-space and not on the number of PWs
or the type of PW pattern. The reason for the fluctuation
in Fig. 16(d)–(f) when N < 100 is that the effective angular

range slightly changes with N due to the low density of
seeds.

Only in Fig. 16(d) does the concentric ring pattern exhibit
a better resolution than the other patterns. At 20 mm,
Figs. 8 and 9 show that all the transmitted PWs are com-
pounded [i.e., S(xf) = T] for all direction sets. As discussed
earlier, the concentric ring has more seeds at the boundary
(r = r0) than the periodic or sunflower pattern, which gives it a
slightly larger effective range of PW directions compared with
the other patterns. Obviously, the difference in the effective
range between the concentric ring and other patterns decreases
as N increases because the interseed interval decreases with
increasing N . Consequently, the resolution of the concentric
ring becomes closer to that of other patterns with increasing
N , as shown in Fig. 16(d).

V. DISCUSSION

In this article, we proposed the aperiodic patterns of PW
angles to enhance the contrast and the volume rate of 3-D PWI.
Both the theoretical analysis and simulation results showed
that the grating lobe levels in the synthetic TX beam patterns
by the two aperiodic angle sets (concentric ring and sunflower
patterns) were smaller than those by the conventional periodic
angle set when the same number of PWs was used. Simulation
studies also demonstrated that the aperiodic patterns enhance
the contrast of 3-D PWI by approximately 3–6 dB over
all depths. This result implies that the aperiodic angle sets
can increase the volume rate by approximately 2–6 times
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Fig. 16. (a)–(c) Contrast and (d)–(f) lateral (lat.) and elevational (ele.) resolutions measured at (a) and (d) z = 20 mm, (b) and (e) z = 40 mm, and (c) and
(f) z = 60 mm on the center scanline as a function of the number of transmitted PWs (N) when using the periodic, concentric ring, and sunflower sets. Note
that the scales of the resolution axes of (d)–(f) are different.

compared to the periodic angle set at the same contrast and
spatial resolution.

A. Effect of Broadband and Array Sampling
on TX Beam Pattern

In Sections III-C and IV-A, the TX beam patterns were
investigated only for the cases where monochromatic (contin-
uous) waves are transmitted. To see the effect of broadband
excitation in the proposed method, the broadband TX beam
patterns for the same matrix array transducer that was used
in Section III-D were obtained. Specifically, PSF images of
a point target at (0, 0, 20 mm) were obtained by using all
the array elements for PW transmission and a single (center)
element for the reception. A one-cycle pulse with a center
frequency of 3 MHz was used for the PW transmission.

Fig. 17(a) shows the xy plane of broadband (pulsed-
wave) beam patterns of the periodic, concentric, and sun-
flower angle sets when the number of PWs (N) is 81,
149, and 253. Compared to the corresponding CW beam
patterns [Figs. 8(a)–(c) and 9], the grating lobes in the broad-
band beam patterns [Fig. 17(a)] are smudged, and the peak
amplitudes of the grating lobes are decreased by 13–28 dB.
Nevertheless, the broadband beam patterns were influenced
by the number and distribution of the PW angles in a similar
manner as in the CW beam patterns: 1) the distance between
the grating lobe and the main lobe increases with the number
of PWs (N) and 2) the periodic angle sets generated more
isolated and stronger grating lobes than those of the concentric
and sunflower sets. In Fig. 17(a), the peak magnitudes of the
grating lobes of the periodic sets were approximately 4, 7,

and 9 dB higher than those of the aperiodic sets (concentric
and sunflower) for N = 81, 149, and 253, respectively. When
the broadband beam patterns were observed in the xz plane
[Fig. 17(b)], the peak grating lobe magnitudes of the periodic
sets were approximately 7, 11, and 9 dB higher than those of
the aperiodic sets for N = 81, 149, and 253, respectively.

Finally, it is also worth noting that edge waves radiated from
the edges of a finite 2-D aperture could cause artifacts such
as contrast degradation and axial grating lobes. Such artifacts
can be reduced by employing tapered TX apertures, as sug-
gested in [30]. Throughout this article, however, the amplitude
apodization was not applied on the transmission to investigate
the beam patterns and point target images, as well as such
artifacts, for the periodic and two aperiodic PW angular
patterns.

B. Varieties of PW Direction Sets

Among the aperiodic sets, the concentric ring pattern exhib-
ited a slightly better image quality in the side region than
in the sunflower pattern. Because the performance in terms
of resolution and contrast differs between the aperiodic PW
sets, further studies should be performed to identify better or
optimal patterns for the 3-D PWSF. Furthermore, the pattern
could be optimized for the receive beam pattern.

In the process of synthetic focusing, we employed as many
PWs as possible for the best resolution and contrast at each
imaging point. Therefore, the range of active seeds in the αβ
plane was much larger for the imaging points in the center
region than for those in the side region as in Fig. 8, which
resulted in better resolution in the central region. If a uniform
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resolution over the scan volume is required, the same Ns could
be used for all imaging points. In addition, the image quality of
the side regions can be improved by concentrating seeds near
the boundary of r0 in the αβ plane, although this approach
may compromise the image quality in the center region.

We employed PW patterns with a circular boundary in this
article for the convenience of analysis of the synthetic TX
beam pattern. If a square boundary is employed, the image
quality in the corners will be improved, although it hap-
pens at the expense of the volume rate and computational
complexity.

C. Comparison With Scanline-Based Imaging Methods

As PWSF enables synthetic and dynamic focusing in trans-
mission, it is advantageous relative to other scanline-based
imaging methods in terms of the volume rate and spatial
resolution. Conventional focusing (CF) transmits a focused
beam for every scanline in a volume. Whereas 2-D US imaging
has a few hundred scanlines, 3-D US imaging demands
thousands of scanlines. When an imaging volume consists of
128×96 scanlines, the CF requires 1.1 s to scan the volume
with a depth of 70 mm.

To reduce the scanning time, many research groups have
researched MLT in which 2 or 4 simultaneous focused beams
are transmitted along M different scanlines. Although MLT
was proven to be feasible for 3-D echocardiography [18], [19],
a twofold or fourfold enhancement in the volume rate is not
enough for high-quality 3-D imaging that requires tens of
thousands of scanlines.

In addition, CF and MLT employ a focused TX beam with
a fixed focal depth. When using a fixed focused beam in
transmission, a large F-number is generally chosen to maintain
a constant resolution with depth, resulting in a loss in the
overall resolution.

To qualitatively compare the 3-D PWSF with the scanline-
based imaging methods (CF and MLT), volume images
of 45 point targets were acquired by using 3-D PWSF schemes
with three PW angle sets, CF, 4-MLT, and 16-MLT, as shown
in Fig. 18. In M-MLT, M scanlines are obtained at the
same time by transmitting M focused beams. The transverse
diagonal scheme proposed to reduce the crosstalk between TX
beams in [17] was applied to obtain the 4-MLT image. The
scheme was not able to be employed for 16-MLT because
of the large number of TX beams; thus, the normal MLT
scheme was used for 16-MLT. For CF and MLT, the F-number
was 3 and the focal depth was 40 mm in transmission. For
all the methods, the same dynamic receive focusing was
applied.

On the top of each subfigure of Fig. 18, the number
of transmissions for each method is presented. The PWSF
images exhibit high-resolution point targets because of the
dynamic focusing in transmission, whereas CF and MLT
provide low-resolution images due to the fixed focusing.
Compared to the 16-MLT image [Fig. 18(c)], the concentric
and sunflower PWSF images [Fig. 18(e) and (f)] have a better
overall resolution, fewer artifacts, and a more than twofold
higher volume rate.

D. Computational Complexity and Implementation

By using the proposed aperiodic PW sets, the computational
expense for beamforming as well as the required number of
PWs can be reduced. However, the 3-D PWSF scheme still
requires much more computation than CF and MLT for the
reconstruction of a given volume. Whereas CF requires one
beamforming process per imaging point, PWSF needs dozens
or hundreds of beamformations for each imaging point to
synthesize multiple PWs. As the number of beamformations in
PWSF varies with the imaging point, we calculated the average
number of beamformations per point, N̄s ; 1 < N̄s < N . The
total number of beamforming processes for reconstructing a
volume in PWSF, Ns,tot, can be expressed as follows:

Ns,tot =
Nimg∑
j=1

Ns ( j) (19)

where Nimg is the total number of imaging points within the
volume and Ns( j) is the number of synthesized PWs (i.e.,
the number of beamformations) for the j th imaging point.
The average number of beamforming processes per point is
obtained by N̄s = Ns,tot/Nimg. Whereas CF requires one
beamformation per point, PWSF demands N̄s beamforma-
tions per point. That is, PWSF requires an N̄s times higher
computational cost than CF for the reconstruction of the
same volume. N̄s is obviously proportional to the number
of transmitted PWs (N). For the experimental setup used
in Fig. 18, N̄s was approximately 0.34N , which means that
when N = 313, PWSF demands 107 times more computation
than CF. In addition, it requires a much higher computation
rate than CF considering its higher volume rate for real-time
implementation.

Reducing the computational complexity for real-time 3-D
PWSF is of crucial importance. The proposed aperiodic sets
are also attractive in terms of the computational cost because
they provide similar resolution and contrast using a smaller
number of PWs compared to the periodic PW set. Moreover,
N̄s can be further lowered by reducing Ns( j) in (19) for
imaging points in the center image area to achieve a uni-
form resolution. In addition, the base-band beamformer with
phase rotation can be employed for computational complexity
reduction because it utilizes a lower sampling rate than the RF
beamformer [40], [41]. The Fourier-domain beamformer can
also be used to reduce the complexity of PWSF [42], [43].
Nevertheless, 3-D PWSF would still demand large amounts
of computational power. The most practical approach for
meeting this requirement is to utilize parallel processors, such
as multicore DSPs [44] or GPUs [45].

In this article, we used a base-band beamformer and
utilized GPUs via the CUDA platform. Approximately
8.6 min were required to reconstruct a volume with a depth
of 70 mm on a personal computer equipped with a GeForce
1080 GTX (NVIDIA Corporation, Santa Clara, CA, USA),
Intel Core i7-4790 (Intel Corporation, Santa Clara, CA, USA),
and 32-GB RAM. Three-dimensional PWSF at this processing
speed can only be used in offline reconstruction environments,
such as CT or MR imaging. Hence, the fast implementation
of 3-D PWSF represents an important research topic, and
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Fig. 17. (a) The xy planes and (b) xz planes of 3-D broadband TX beam patterns when using PW angles of periodic, concentric ring, and sunflower patterns
(from top to bottom rows). On the top of each column, the number of PWs used is presented.

Fig. 18. 3-D PSF images of 45-point targets reconstructed using (a) CF, (b) 4-MLT, (c) 16-MLT and 3-D PWSF with the (d) periodic, (e) concentric
ring, and (f) sunflower PW direction sets. NTX is the number of transmissions. On top of each subfigure, the number of transmissions for each method is
presented.

real-time reconstruction may be possible in the near future
as the performance of parallel processing devices continues to
increase at a high growth rate.

E. Effect of Motion

The motion artifact problem must be considered in 3-D
PWSF because dozens or sometimes even hundreds of PWs
must be coherently compounded. Therefore, we need to assess
the effect of motion and reduce the motion artifacts in 3-D
PWSF. A decrease in the required number of PWs using
the proposed method will be helpful for reducing the motion

artifacts in 3-D PWI since the incoherence caused by the
motion would decrease as the number of synthetic PWs
decreases. In addition, some motion compensation techniques
that have been proposed for 2-D synthetic focusing can be
applied to 3-D PWSF. For instance, B. Denarie et al. [27]
suggested a polarity-alternating TX sequence to mitigate the
lateral shift effect due to the radial motion in 2-D PWI. Further
investigation into the optimization of the TX sequence (the
order of transmission of PWs) for 3-D PWI will enable the
reduction of motion artifacts. Similarly, other motion correc-
tion algorithms developed for diverging wave or synthetic
aperture imaging can also be applied to 3-D PWSF [46]–[49].
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F. Signal-to-Noise Ratio

Although the proposed aperiodic PW sets enhance the
volume rate compared with the periodic PW set without
sacrificing resolution and contrast, this method cannot prevent
a decrease in the signal-to-noise ratio (SNR) when using
a small number of PWs. However, various SNR enhance-
ment techniques can be utilized along with the proposed
method. For example, we can employ the coded excita-
tion techniques to transmit PWs encoded by the chirp or
Barker code [50], [51]. Multiplane-wave imaging based on the
Hadamard matrix [52]–[54] can also be utilized to improve the
SNR of 3-D PWSF imaging with an aperiodic PW set. Such
multiplane imaging methods will also be helpful to reduce
the large number of transmissions in the proposed 3-D PWSF
method.

VI. CONCLUSION

A 3-D PWSF method has been suggested to achieve a high
contrast and a high volume rate. In this method, an aperiodic
PW angle set is employed instead of a periodic angle set to
reduce the grating lobe level in 3-D PWI. We proposed two
patterns as the aperiodic PW angle set: concentric ring and
sunflower patterns. In the TX beam patterns, the grating lobe
levels are reduced by 11.4 dB at a depth of 20 mm and by at
least 7.2 dB at a depth of 50 mm when using the proposed
pattern. Simulation studies show that the use of aperiodic
patterns enhances the contrast of 3-D PWI by approximately
3–6 dB over all depths. In addition, for the same contrast
and spatial resolution, the aperiodic sets require approximately
2–6 times fewer PWs than the periodic set.

APPENDIX A

The ultrasonic 2-D beam pattern on the xy plane is expressed
by the 2-D Fourier transform of ps(α, β), which is the
distribution of compounded PW angles, as presented in (6).
Applying the polar coordinate transformations (see Fig. 2) to
the Fourier transform in (6), the beam pattern can be rewritten
as follows:

�(ρ, θρ) =
∫ ∞

0

∫ 2π

0
ps(r, θr )e

− j kρr cos(θr −θρ)rdr dθr (A1)

because αx + βy = ρr cos(θr − θρ). The Fourier transform of
a circularly symmetric function is itself circularly symmet-
ric and becomes a particular form that is referred to as a
Fourier–Bessel transform [55]. Since ps in (7) is circularly
symmetric, (A1) can be expressed by

�(ρ) = 2π

∫ ∞

0
r ps(r)J0(kρr)dr (A2)

where J0 is a Bessel function of the first kind, of zero order,
which is

J0(kρr) = 1

2π

∫ 2π

0
e− j kρr cos(θr −θρ)dθr . (A3)

Substituting (7) into (A2) and replacing kρr with r ′, the beam
pattern can be written as follows:

�(ρ) = 2π

∫ r0

0
r J0(kρr)dr

= 2π

k2ρ2

∫ kρr0

0
r ′ J0(r

′)dr ′

= 2πr0

kρ
J1(kρr0) (A4)

where J1 is a Bessel function of the first kind, of order 1.
Since the jinc function is defined as

jinc(a) = 2J1(πa)

πa
(A5)

the beam pattern synthesized by using PWs with a range of
r < r0 is

�(ρ) = πr2
0 jinc(2r0ρ/λ). (A6)

APPENDIX B

Assume that there are P− 1 concentric rings with a constant
radial increment of dr and seeds are distributed on each pth
ring (p = 1, 2, . . . , P − 1) with a constant arc length interval
of dc[p], as in Fig. 5(a). Note that dc[p] = dθ[p]dr p, where
dθ[p] and dr p are the angle intervals between two adjacent
seeds and the radius of the pth concentric ring, respectively.
The total number of seeds including a seed at the origin is
then

N =
P−1∑
p=0

Q[p] = 1 +
P−1∑
p=1

2πdr p

dc[p] (B1)

where Q[p] is the number of seeds in the pth ring and Q[0]
represents the seed at the origin (Q[0] = 1). To achieve the
highest uniformity of the seed distribution, the arc length
interval dc[p] for all p should be close to the radial interval dr.
Assuming that dc[p] = dr, the total number of seeds in (B1)
can then be expressed as follows:

N ≈ 1 +
P−1∑
p=1

2πp = π P2 − π P + 1. (B2)

Using the quadratic formula, the number of concentric rings
for the uniform distribution of seeds is obtained as follows:

P = round

(
1 + √

1 + 4(N−1)/π

2

)
. (B3)

Once P is determined, dr is given by

dr = r0/(P−1) (B4)

where r0 is the range of PW angles and the radius of the
largest ring.

Now, let us consider a more realistic case in which dc[p] =
d ′

c 
= dr. Then, (B1) becomes

N ≈ 1 +
P−1∑
p=1

2πdr p

d ′
c

= 2πdr

d ′
c

P(P − 1)

2
+ 1. (B5)
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From (B5), d ′
c = πdr P(P − 1)/(N − 1), and the number of

seeds on the pth ring is expressed as follows:
Q[p] = round

(
2πdr p/d ′

c

)
. (B6)

Finally, the angular interval dθ [p] and the arc length interval
dc[p] between two adjacent seeds on the pth ring are

dθ [p] = 2π/Q[p] (B7)

and

dc[p] = 2πdr p/Q[p]. (B8)
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