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Abstract— Temporal-enhanced ultrasound (TeUS) is a novel
noninvasive imaging paradigm that captures information from
a temporal sequence of backscattered US radio frequency data
obtained from a fixed tissue location. This technology has been
shown to be effective for classification of various in vivo and ex
vivo tissue types including prostate cancer from benign tissue.
Our previous studies have indicated two primary phenomena
that influence TeUS: 1) changes in tissue temperature due
to acoustic absorption and 2) micro vibrations of tissue due
to physiological vibration. In this paper, first, a theoretical
formulation for TeUS is presented. Next, a series of simulations
are carried out to investigate micro vibration as a source of tissue
characterizing information in TeUS. The simulations include
finite element modeling of micro vibration in synthetic phantoms,
followed by US image generation during TeUS imaging. The
simulations are performed on two media, a sparse array of
scatterers and a medium with pathology mimicking scatterers
that match nuclei distribution extracted from a prostate digital
pathology data set. Statistical analysis of the simulated TeUS
data shows its ability to accurately classify tissue types. Our
experiments suggest that TeUS can capture the microstructural
differences, including scatterer density, in tissues as they react
to micro vibrations.
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I. INTRODUCTION

IN THE past three decades, ultrasound (US) imaging has
been increasingly used for tissue characterization and non-

invasive detection of disease. Methods based on the analysis
of US B-mode, radio frequency (RF), and Doppler data have
been shown to correlate with tissue pathology [1]–[7]. These
methods primarily rely on envelope statistics in B-mode data,
the analysis of the power spectrum of RF data [8]–[10], or the
shift in frequency spectrum of the backscattered RF data to
estimate tissue types [4]. Viscoelastic properties of the tissue
have also been estimated from RF data by compressing the
tissue using acoustic radiation force or external mechanical
stimuli, in elastography [11]–[16].

Our group has recently proposed a tissue characterization
paradigm, referred to as temporal-enhanced US (TeUS), that
utilizes machine learning approaches to extract information
from a temporal sequence of RF data obtained from a sta-
tionary tissue location. TeUS data is captured following the
sonication of the tissue over a short period of time while
the probe is held stationary [17]–[19] (Fig. 1). This data,
consisting of a sequence of RF US frames, has been shown to
carry tissue characterizing information [17], [20]. By training
a classifier on TeUS data obtained from tissue types of known
properties, we characterize an unknown tissue type based
on its TeUS data signature. The key differentiation between
TeUS and prior work in tissue characterization is that the
TeUS-based approach is performed on a sequence of RF
data (acquired in a few seconds) without external mechanical
excitation. This approach was effectively applied to detect
prostate cancer [20]–[23], various animal tissue types [24],
and ablated tissue [25].

TeUS has been successfully used for characterization of
prostate cancer in ex vivo [20], [24] and in vivo [21]–[23],
[26], [27] studies. The reported area under receiver operating
characteristic curve (AUC) in these studies are between
0.76 and 0.93. A comparison of TeUS with the analysis
of power spectrum of RF data for tissue characterization
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Fig. 1. TeUS data are generated from fixed tissue locations over a sequence of
RF data frames. The time scale is a function of the frame rate. In our previous
clinical data collections with a frame rate of 20 frames/s, the corresponding
time for the caption of 100 frames is 5 s. Sample zero-mean time series of
backscattered echo intensity (y-axis) from one fixed tissue location is shown
(bottom), over a sequence of frames (x-axis).

showed that TeUS and RF spectral analysis complement each
other [20], [22], with TeUS showing higher overall AUC.
TeUS has also been used to distinguish various cancer grades
in the preliminary whole-mount studies [28]. Our group
has also proposed a cancer grading approach for transrectal
ultrasound-guided prostate biopsy based on the analysis of
in vivo TeUS data [29], [30]. The work in [29] demonstrated
promising results to classify lower and higher grade prostate
cancer with limited cancerous training samples, using TeUS.

To optimize TeUS for clinical translation, we aim to inves-
tigate the physical processes that govern US-tissue interaction
during the acquisition of TeUS data [24]. Our efforts have
focused on examining the two phenomena: 1) temporal accu-
mulation of US-induced thermal effects as a result of acoustic
absorption and 2) displacement due to micro vibrations in the
tissue induced by physiological sources. We previously inves-
tigated changes in tissue temperature during TeUS data acqui-
sition, using a numerical model [31]. The results demonstrated
that changes in tissue temperature, which affect the speed
of sound, can be used for tissue characterization. However,
even with exaggerated image settings of high frame rate and
acoustic power that do not match clinical imaging conditions,
classification results were substantially below those achieved
in our ex vivo and in vivo studies [31].

In this paper, we investigate the second phenomenon related
to tissue micro vibrations as the main source of the tissue
typing capabilities of TeUS with clinical image settings.
Possible sources of tissue micro vibration include external,

low-amplitude environmental vibrations, and internal physio-
logical motion such as pulsation due to heartbeat [32], [33].
We build an extensive framework to simulate the interaction
of TeUS with tissue and correlate micro vibrations induced in
tissue microanatomy with the tissue characterization capability
of TeUS.

To simulate US backscattering in tissue, abstractions are
made about the mechanical and morphological properties
of cells. Hunt et al. [34] provided a model in which the
cell nuclei are simulated by point scatterers. More recently,
Vlad et al. [35] investigated the three different cell types,
scanned at frequencies of 10–30 MHz, and concluded that
changes in US backscatter were directly related to morpho-
logical and nuclear changes in cells and those associated with
cell death. Other studies also point to the important role of
the cell’s nucleus and its configuration in the formation of US
backscatter, in addition to cellular morphology [36], [37].

Hunt et al. [38] studied the correlation between the spatial
distribution of scattering points, which represent cell nuclei
and US backscattering intensity. Baddour et al. [39] suc-
cessfully measured US backscattering from individual cells
in vitro. Their study proposed a model to describe the acoustic
scattering of an individual cell, where the nucleolus (a body
within the nucleus) was represented as a spherical scatterer
with uniform mechanical properties. Previous literature have
also suggested that the nuclei of cells are the prominent
scattering sources of US [34], [40], [41]. Other studies have
focused on modeling groups of cells. Specifically, they have
demonstrated that subtle changes in morphological and spatial
arrangement of nuclei can affect US backscattering dramat-
ically [34], [42]–[44]. Oelze et al. [37] have indicated that
acoustic estimation of the effective scattering sources of US
is correlated to the size of cellular structures seen in matching
light microscopic images of the tissue. Saha and Kolios [45]
simulated a 2-D model to represent the effects of spatial
organization and distribution of nuclei in cell aggregates on US
backscatter. In their work, the nuclei were considered as weak
scatterters. More recently, ultrasonic backscatter coefficient
(BSC) measurements were performed on biophantoms with
different cell concentrations [46]. The findings showed that
in two of the phantoms where most of the cell volume was
occupied by the cytoplasm, the whole cell played a major role
in the BSC behavior. Han and O’Brien [47] suggested that
a structure function was required for accurately modeling the
acoustic scattering in dense medium. In their work, the centers
of the nuclei were used to represent the location of scatterers.

In this paper, we present a scattering model to investigate the
physiological processes that contribute to tissue characterizing
capabilities of TeUS. Our model is based on the findings
of previous studies [34], [39]–[41], where cellular structures,
particularly nuclei, are hypothesized to be a main scattering
source of US. Specifically, we expand on the previous work
of [38] in the context of TeUS. We combine finite element
modeling (FEM) and US simulation using Field II [48] to
model the effect of micro vibration of nuclei, as a result
of external or physiological vibration, on the backscattered
TeUS data. The results of our study suggest that the micro-
motions are the main source of the tissue characterization
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capabilities of TeUS. Using digital pathology data from the
prostate of 10 patients, and the identified nuclei in these
slides, we demonstrate that the TeUS analysis of simulated
backscattered signals can effectively separate cancer and
benign tissues. Furthermore, we analyze the effect of various
parameters of simulation such as the US vibration, frequency,
the distribution of nuclei and the elasticity of the medium on
TeUS tissue characterization. Finally, we compare the perfor-
mance of TeUS in simulated data with the analysis of the spec-
trum of a single RF frame similar to [49]. The remainder of
this paper is organized as follows. Section II briefly overviews
the theoretical background for US image formation in the con-
text of TeUS data. Section III details the FEM and US simula-
tions by providing the numerical formulations. The results of
the simulations and tissue classification using TeUS are shown
in Section IV. Results from the sensitivity analysis of the simu-
lation parameters are also reported here. Finally, the discussion
and summary of this paper are presented in Section V.

II. THEORETICAL BACKGROUND

The characteristic model for the formulation of RF backscat-
tered US signal can be expressed as [51], [52]

I (x) = P(x) ∗ S(x) + n (1)

where P(x), US point spread function at an arbitrary point x ,
is convolved with S(x), the tissue scattering function at the
same point, to generate I (x), the backscattered RF data at
point (x). In this equation, n represents the random noise.

If we assume that [S(x)] varies locally as a function of time,
a simple model of this effect at point x0 can be expressed as
S(x0 + f (t)), where f (t) is a time-varying function and t is
the “slow time” (i.e., frame number). For relatively small f (t),
the first-order approximation of Taylor expansion of S can be
written as

S(x0 + f (t)) = S(x0) + ∂S(x)

∂x

∣
∣
∣
∣
x=x0

f (t) (2)

where (∂S/∂x)(x0) is the local change in the scattering
function about point x0. As stated in Section I, we previ-
ously investigated a scenario where variations in f (t) were
primarily due to induced thermal effects as a result of acoustic
absorption [31]. In this paper, we investigate an alternative
hypothesis, where variations in f (t) are a result of tissue
micro vibrations due to physiological vibration. Let f (t) be a
sinusoidal function of the form

f (t) = a(x0) sin(ωt) (3)

where a(x0) is the amplitude of the micro vibration at point x0,
and ω is the frequency of vibration. In a fully elastic tissue,
a(x0) is inversely proportional to E(ω), the local elasticity,
which is frequency dependent. In a viscoelastic medium, a(x0)
is inversely proportional to a function of E(ω) and μ(ω),
where μ(ω) is the local viscosity, which is also frequency
dependent [52]. Equation (2) can be rewritten as

S(x0 + a(x0) sin(ωt)) = S(x0) + a(x0)
∂S(x)

∂x

∣
∣
∣
∣
x=x0

sin(ωt).

(4)

Combining (1) and (4), we have

I (x0, t) = (P(x) ∗ S(x))

∣
∣
∣
∣
x=x0

+ a(x0)(P(x) ∗ ∂S(x)

∂x
)

∣
∣
∣
∣
x=x0× sin(ωt) + n. (5)

The first term of (5) corresponds to the time-invariant
component of the RF signal received from point x0. This
component depends only on the spatial variations of the
backscattering function across the propagation medium. It can
be characterized using the conventional analysis of the RF
spectrum and B-mode texture. The second term corresponds
to the time-varying components of I (x0, t) affected by local
variations in the backscattering function, in slow time. Such
local variations represent changes in tissue structure, such as
changes in nuclear configuration.

Two important observations can be made about the second
term of this equation: 1) in media with the same mechanical
properties E and μ, the spectral analysis of TeUS captures
(P(x)∗(∂S(x)/∂x))|x=x0 , which is related to spatial variations
in the scattering function. This property can be of benefit to
characterize, e.g., tissue at early stage cancer, where changes
in nuclei configuration could dominate changes in tissue
property and 2) where there are changes in mechanical prop-
erties, a(x0), and the scattering function, S, or the vibration
frequency, ω, TeUS captures a combined effect for tissue
characterization.

In the remainder of this paper, through a series of sim-
ulations, we demonstrate that local changes in tissue prop-
erties, captured by a(x0) (P(x) ∗ (∂S(x)/∂x))|x=x0 using,
e.g., Fourier transform of TeUS, are effective features for
tissue characterization. Our simulations include media with
synthetic array of scatterers of varying distances and pathology
mimicking simulations based on whole-mount prostate digital
histopathology data. These simulations confirm our observa-
tions from (5) that as a result of micro vibration in the medium,
TeUS can differentiate tissue types with subtle variations in the
arrangement of scatterers.

III. MATERIALS AND METHODS

Our simulation approach consists of three main components:
1) mechanical modeling to compute scatterers micromotion;
2) US image formation to construct TeUS data reflected from
scatterers following the mechanical modeling; and 3) feature
extraction for tissue characterization.

US data frames acquired in the TeUS procedure quantify
the temporal variations of the backscattered US signal from a
stationary tissue. Specifically, if the source of these temporal
variations is a sinusoidal physiological excitation, such as the
heartbeat, the frequency analysis of the TeUS data should
demonstrate a peak at the excitation frequency. In this paper,
we use the amplitude of the power spectrum of TeUS data at
the excitation frequency as a tissue characterization feature to
differentiate tissue types.

The simulations are performed on two scattering media; the
first is a medium with a synthetic, sparse array of scatterers and
the second is a medium with pathology mimicking scatterers
that match nuclei distribution extracted from a prostate digital
pathology data set. The former data is used to establish a
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basis for TeUS as a tissue characterization approach that can
accurately capture subtle changes in a scattering medium. The
latter data is used to mimic the prostate tissue behavior in
response to induced micro vibrations, under controlled tissue
mechanical properties. The simulation of the array of scatterers
considers an ensemble array of point scatterers embedded in
a 5 × 5 × 5-cm3 homogeneous phantom. The dimensions of
this phantom are set so that it is beyond the US imaging depth
we have used, and is consistent with our simulations based on
histopathology slices to encapsulate the size of a large prostate.
This is to ensure that we cover the whole imaging depth in
each simulation, while physical boundaries of phantoms do
not affect the simulated images. The phantom size is kept
consistent across all simulations.

Spectral analysis of TeUS is then used to derive features
for tissue characterization. The block diagram of the overall
methodology is demonstrated in Fig. 2.

A. Simulation Design—Synthetic Array of Scatterers

In an attempt to simplify the recognition of the effect
of the structural organization of scatterers on TeUS data,
we perform simulations using an array of point scatterers. The
objective is to demonstrate that subtle changes in scatterer
distances at subacoustic wavelength scale can be detected by
TeUS. Following the approach of Hunt et al. [38], where they
introduce constrained changes to the arrangement of point
scatterers, we design media with different scatterer distances
and keep all mechanical parameters such as elasticity and
viscosity constant. A low-amplitude, low-frequency external
force is applied to media to mimic physiological motion
resulting in micro vibrations of the tissue.

1) Mechanical Modeling: This simulation considers an
ensemble array of point scatterers embedded in a 5×5×5-cm3

homogeneous phantom. An FEM is generated in COMSOL
Multiphysics 5.2 (COMSOL Inc., Burlington, MA, USA)
for this purpose. As mentioned above, to simulate scatterer
micromotion, a mechanical vibration with a low-amplitude
and low-frequency signal is used. We employ a sinusoidal
signal that vibrates the inferior surface of the phantom at 2 Hz
with a peak amplitude of 10 μm. The boundary conditions are
defined such that the lateral boundaries are considered as fixed
boundaries. We used a model with constrained randomization
of scatterers, where we designed a synthetic linear array of
point scatterer pairs that are embedded in the FEM. Scatterers
are separated in depth such that each scatterer pair is placed
1 mm away from the next pair. The two scatterers in each pair
are separated by a distance Ds in axial direction, which has
a value smaller than the acoustic wavelength (�). There are
80 scatterers in total representing 4 cm of depth. Considering
the x, y, z positions, representing the axial, lateral, and eleva-
tion coordinates, respectively, of the first scatterer in the array
as X1, the second scatterer from the first pair is located at

Xi = X1 + [Ds 0 0]T , i = 2. (6)

The positions of the subsequent scatterers for i ∈ [3 80] in
the following pairs ( p) for p ∈ [2 40] can be expressed as

Xi =
{

Xi−2 + [Dg 0 0]T , i = odd
Xi−1 + [Ds 0 0]T , i = even

(7)

where Xi determines the i th scatterer’s x, y, z coordinates. Ds

defines the distance that separates the two scatterers within
each pair. In the simulations, the value of Ds is separately
set to 5, 10, 20, and 40 μm and Dg = 1 mm is the fixed
distance between adjacent pairs. The 1-mm distance between
the scatterer pairs (Dg) is chosen to represent a spacing of
approximately five times the US wavelength (233 μm). This
will ensure that for the range of micro vibrations applied to
the medium, the responses of all pairs are distinct from each
other. This feature of our design allowed us to get insight into
the phenomenon, not to model actual tissue structures.

Dg is fixed as 1 mm and Ds is set to 5, 10, 20, and 40 μm
to simulate four different media with scattering pairs with
distances well below the wavelength.

Mechanical simulations are then run with a time step
of 5 ms, which corresponds to a sampling frequency
of 200 frames/s. This sampling frequency is sufficient to cap-
ture physiological sources of vibration, such as the heartbeat.
The simulation is run for 512 time steps, which is equivalent
to 2.5 s. Fig. 3(a) illustrates the mechanical simulation setup.

2) Ultrasound Image Formation: US images are simulated
using Field II [48]. The background sound speed is set to
1540 m/s, which is close to the speed of sound in soft
tissue [53]. The center frequency of the probe is configured to
be 6.6 MHz. Moreover, the number of active elements in the
transmit and receive apertures are set to 40. Each element is
set to have width of 279.8 μm, pitch of 304.8 μm, and height
of 4 mm. The focal point is set to 2 cm. The computed US
signals are recorded with a sampling frequency of 80 MHz.

To model the conventional US imaging of the FEM phan-
tom, Field II is employed to synthesize US RF signals and
generate a B-mode image of the phantom before applying
the external vibration source, i.e., when the scatterers are
located at their initial positions. Field II is also used to
synthesize TeUS data by performing a sequence of 512 US
simulations, such that each simulation corresponds to the
spatial arrangement of the scatterers in the phantom generated
during one of the time steps of the FEM model described
in Section III-A-1. TeUS data for a given scatterer pair is
generated by recording the RF signal that corresponds to the
resolution cell including the pair, for all 512 US simulations.
In this paper, the TeUs data that correspond to a 10-mm region
centered on the focal point, containing nine scatterer pairs,
are considered, as illustrated in Fig. 3(b). The nine middle
scatterer pairs are chosen to represent a 10-mm region of
interest (ROI) around the focal zone.

3) Feature Extraction: The methodology we employ for
classification of media with different scatterer pair distances is
based on the spectral analysis of TeUS data. To generate the
TeUS power spectrum, we apply discrete Fourier transform
(DFT) on the time series signal. The square of the second norm
of the DFT is the power spectrum of the signal. The power
spectrum is then averaged over the nine middle scatterer pairs
for each scenario (Ds = 5, 10, 20, and 40 μm), while the mean
values are removed. The nine middle scatterer pairs are chosen
to consider the 10-mm ROI around the focal zone (2 cm). The
average power spectrum amplitude of peaks at the vibration
frequency is taken as the feature used for classification.
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Fig. 2. Overall methodology: scatterer generation, US simulation, and feature extraction for tissue characterization. The temporal micro pulsations that
vibrate the tissue are mechanically simulated in COMSOL Multiphysics. The resulting displaced scatterers are fed into the US simulation software Field II
to generate TeUS data. Spectral analysis is used for feature extraction and tissue classification.

Fig. 3. Synthetic data structure, mechanical modeling, and TeUS simulations setup. (a) Mechanical modeling: pairs of scatterers are separated 1 mm apart
from each other with interpair distances of 5, 10, 20, and 40 μm for various simulations. Sinusoidal micro vibrations are pulsating the inferior surface of the
phantom to induce scatterer micromotion. The simulated transducer is placed on the top surface to generate US RF data. (b) RF response of each scatterer
pair around the focal zone (10-mm region) are recorded as a function of time to generate TeUS data.

B. Simulation Design—Pathology Mimicking Scatterers

The second simulation setup uses pathology data from
whole-mount prostate cross sections. In this simulation,
we consider nuclei as a main source of scattering. We extract
the positions of nuclei from a digital pathology data set, where
the locations of cancerous cells are marked by an expert
pathologist [54]. We divide the digitized slides to blocks of
2 × 2 mm2, with a resolution of 0.5 μm/pixel.

1) Mechanical Modeling: Here, a single scattering point
is considered at each nucleus location segmented from the
pathology slides. A 2-D model based on the coordinates of
these nuclei in slices parallel to the xz plane is generated
for different benign and cancer regions. Fig. 4 illustrates the
ROI selection process on a sample pathology slide used to
determine the location of scatterers.

The computational model entails a 5 × 5 × 5-cm3 homoge-
neous linear viscoelastic phantom in which the elasticity is set
to 25 kPa [52]. Viscosity is included in the simulations using
Kelvin–Voigt model [55], to represent the absorption proper-
ties of the prostate tissue, and is set to 2.15 Pa.s [56]. To mimic

the prostate tissue, we consider a near-incompressible material
where the Poisson ratio is ν = 0.49 [57]. The elasticity and
viscosity values are considered as a part of the process to
mechanically model the tissue in the FEM simulations. These
parameters do not directly affect the modeling of US propaga-
tion in Field II simulations. We use the same external vibration
source as in the synthetic array of scatterers (Section III-A1).
The numerical calculations are performed for 2.5 s.

2) Ultrasound Image Formation: Using Field II, the first
US image frame is generated based on the initial positions of
scatterers. The settings for the sampling frequency, the probe
frequency, and the focal point are same as those of the
synthetic array of scatterers, set to 80 and 6.6 MHz and 2 cm,
respectively. Fig. 5(a) and (b) illustrates a sample whole-mount
histopathology slide and the corresponding Field II generated
B-mode image, respectively.

We then generate the TeUS data using Field II for each of
the ROIs. In all simulations, the location of scatterers is the
same in the FEM simulation. Moreover, the ROI containing
the scatterers is placed at the focal point for all Field II
simulations.
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Fig. 4. ROI selection and nuclei-based scatterer generation process. (a) Sample of histopathology slide [54], where the red boundary depicts the cancer area.
(b) Digitized slide overlaid on the histopathology slide, where green and red areas represent the benign and cancer regions, respectively. The selected ROIs
are shown by black squares. (c) Extracted nuclei positions in the selected ROIs; a cancer region (left) and a benign region (right). (d) Extracted positions of
nuclei from each ROI is embedded in an FEM model.

Fig. 5. (a) Sample whole-mount histopathology slide of the prostate. Different regions of cancer and benign tissues are shown in the pathology slide.
(b) Corresponding simulated B-mode US image.

The simulated TeUS, containing the RF time series vector
is stored as a set, denoted as RFT

L , in which L is an m × n
matrix, where m = 229 is the number of RF samples recorded
in each RF scan line and n = 18 is the number of scan lines.
T , the length of the TeUS data, is 512 frames. Therefore,
each B-mode image is composed of 18 scan lines in the
lateral direction and 229 samples in the axial direction. The
2 × 2 mm2 regions in the synthesized B-mode images are
subdivided into four ROIs. The ROI sizes are 1 × 1 mm2.
In total, we simulated 168 benign and cancer ROIs including
56 benign and 128 cancer ROIs form 14 histopathology slides
of 10 patients.

3) TeUS Feature Extraction: To generate the TeUS power
spectrum, we apply DFT on the time series signal. The square
of the second norm of the DFT is the power spectrum of
the signal. The power spectrum is then averaged over each
ROI while the mean values are removed. The amplitude of
spectrum peaks at the vibration frequency and its harmonics
are identified. The power spectrum amplitudes of the peaks

recorded at the vibration frequency are used as a feature to
separate tissue types (F1).

4) Features of Single RF Frame: Feleppa et al. [49] have
shown that spectral features of a calibrated RF signal can be
used for detection of cancer and benign tissues in the prostate.
We compare differentiation of tissue using features of TeUS
data with that of the spectral features of a single US RF frame.
For this purpose, we simulate the calibration method in [49],
which includes acquiring RF data reflected by a flat reflector
embedded in water background.

The flat reflector is simulated by a dense linear distribu-
tion of 50 000 point scatterers positioned uniformly across a
continuous flat surface. The reflector is axially located at the
focus and laterally extends across the entire medium.

The calibration RF signals received from the medium is used
to calculate the single US RF frame features, by subtracting its
power spectrum from the average power spectrum of RF data
in each ROI. In particular, a line is fit to the spectrum of the
calibrated RF signal. The fit line is then used to extract three
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spectral features, namely, the zero-frequency intercept (LFI),
average slope (LFS), and midband value (LFM) [20].

IV. RESULTS

A. Synthetic Array of Scatterers

A sample B-mode image simulated from the synthetic array
of scatterers is shown in Fig. 3(b). Fig. 6(a) depicts the power
spectrum amplitude of the TeUS for scatterer pairs with differ-
ent subpair distances (Ds) from 5 to 40 μm. Noticeable ampli-
tude differences between the spectra are observed at 2 Hz,
which are the first observed peak in the spectrum, matching
the vibration frequency. For classification purpose, we consider
the power spectrum peak amplitude at the vibration frequency
as classification feature F1. This feature represents the second
term of (5) and is a function of (P(x) ∗ (∂S(x)/∂x)|x=x0 .

To compare, we also compute a feature representing the
derivative of the first term of (5) by analyzing a single RF
US data. We use the following property of convolution in
this computation to relate this feature to F1 computed from
the second term of (5):

P(x) ∗ ∂S(x)

∂x
= ∂(P(x) ∗ S(x))

∂x
(8)

and calculate the root mean square (rms) of gradient of
the RF image as this feature (Fg). Fig. 6(b) illustrates the
comparison between the normalized values of this feature
against normalized F1. Although the two features demonstrate
a similar trend with respect to Ds , the steeper slope of F1 leads
to a more sensitive feature for classification.

B. Pathology Mimicking Scatterers

Fig. 7(a) depicts the distribution of feature F1 extracted from
the power spectrum of TeUS, compared across benign and
cancer ROIs at 2-Hz vibration frequency. The distributions are
statistically significantly different between benign and cancer
ROIs (p = 4.46e − 20 using a paired t-test).

Similar to the synthetic array of scatterers, we compare F1
to the rms of gradient of the first RF image in benign and
cancer ROIs (Fg). Fig. 7(b) represents the distribution of Fg

in the first frame. Although the difference between benign and
cancer ROIs are still statistically significant (p = 1.8e − 12),
the distribution of F1 shows a more profound sensitivity for
tissue classification with a much smaller p-value.

C. Features of Single Ultrasound RF Frame

The distribution of the three features extracted from a
single RF frame are shown in Fig. 8, where each feature is
normalized between 0 and 1. The distributions of LFI and
LFM features are statistically significantly different between
benign and cancer ROIs (p < 0.01 for LFI and p < 0.01
for LFM using a paired t-test). However, the distribution of
LFS fails to show statistically significant difference between
the two tissue types ( p = 0.25). These results agree with
Feleppa’s derivations [1], [8]. LFI and LFM are both dependent
on scatterer concentration, which differs between benign and
cancer tissue types. On the other hand, LFS is dependent on
the scatterer radius, which in our simplified simulation model
is considered consistent among all tissue types.

D. Sensitivity Analysis

We study the effect of two simulation parameters on tissue
classification. These are the vibration frequency of the external
vibration source and the elasticity of the medium in pathology
mimicking simulations.

1) Effect of Vibration Frequency: The pathology mimicking
simulation in Section III-B is replicated for the 1-, 10-,
and 20-Hz vibration frequencies to evaluate the classification
characteristics of TeUS in a wider range of frequencies.
This setting covers near the heartbeat frequencies (1.6 Hz
on average) plus additional simulations at higher frequen-
cies (10 and 20 Hz), while all other parameters including
the mechanical vibration amplitude, medium elasticity, and
viscosity are identical to the previous pathology mimicking
simulations.

Fig. 9 depicts the distribution of features extracted from
TeUS, compared across benign and cancer ROIs at three vibra-
tion frequencies of 1, 10, and 20 Hz (Peak-1). In Fig. 9(a)–(c),
the distributions are statistically significantly different between
benign and cancer ROIs (all p < 0.001 using a paired t-test).

2) Effect of the Elasticity of the Medium: We have repeated
the pathology mimicking simulations using media with three
elasticity values of 5, 15, and 25 kPa. The chosen elasticities
represent the three different sample stiffness values of the
tissues in the range of elasticities defined in [52] for benign and
cancerous tissues. In these simulations, the elasticity values
were intentionally chosen the same for benign and cancer
tissues to eliminate the effect of elasticity difference. Such a
simulation design enables us to evaluate the accuracy of TeUS
for tissue classification irrespective of elasticity.

The frequency of the external vibration is set to 20 Hz
and all other media and simulation parameters are maintained
the same as in the previous simulations. Fig. 10 depicts the
distribution of feature F1 extracted from TeUS, compared
across benign and cancer ROIs at the vibration frequency. The
benign and cancer ROIs are statistically separable regardless
of the elasticity of the media (p < 0.001 in a two tailed t-test).
Moreover, as presented in (5), the amplitudes of the average
power spectrum peaks are approximately (given the viscosity
of the medium) inversely proportional to E as the elasticity
of the medium increases from 5 to 25 kPa.

V. DISCUSSION AND CONCLUSION

In this paper, we studied the physical processes underlying
the interaction of a temporal sequence of US RF frames with
tissue. In particular, we investigated tissue micro vibrations
as the dominant source of the tissue typing capabilities of
TeUS at clinical imaging settings. To achieve this goal, we first
presented theoretical derivations that relate changes in tissue
properties to information derived from TeUS using spectral
analysis. Next, we verified the theoretical derivations by
performing simulations of the interaction of tissue with US,
analyzed over a sequence of image frames. We used a simpli-
fied mechanical model of micro vibrations of tissue mimicking
phantoms with embedded scatterers by representing cell nuclei
as point scatterers.



BAYAT et al.: INVESTIGATION OF PHYSICAL PHENOMENA UNDERLYING TeUS 407

Fig. 6. (a) Spectral analysis of the synthetic array of scatterers. The amplitude of power spectrum at 2-Hz vibration frequency, computed in a 10-mm ROI
centered at the focal point, is plotted versus Ds (not normalized). (b) Comparison between the normalized values of F1 (normalized to the maximum value
of F1; purple dashed line) and Fg (blue dashed line) versus subpair distances (Ds ) for synthetic array of scatterers.

Fig. 7. (a) Distribution of the power spectrum peaks in the frequency spectrum of simulated TeUS data at the vibration frequency for the pathology mimicking
data set. Median and standard deviations of the amplitudes of the peak (F1) at 2 Hz for vibration frequency of 2 Hz. (b) Distribution of Fg in the first RF
image frame.

In this paper, we considered the effect of introducing
physical vibrations to the scatterers. The source of micro
vibration was assumed to be a sinusoidal motion. In reality,
such an assumption implies a periodic vibration with constant
amplitude and frequency. Despite the fact that physiological
processes can be better described using more complex func-
tions with varying frequencies and amplitudes, the findings of
our model can provide insight into the physiological processes
that contribute to the tissue characterization capabilities of
TeUS. Our future directions include the use of more complex
functions, derived from our observations from in vivo data,
to better describe the physiological vibrations that occur in
tissue.

When an array of scatterers was embedded in a medium in
pairs, at regular spacing between each pair, we observed that
TeUS signatures were associated with the distances between

the pairs (e.g., 5 and 10 μm). Results showed that TeUS is
sensitive to scatterer arrangements and is able to differentiate
between the pairs of various distances, even though these
distances are substantially below the US wavelength. We
estimated the second term of (5) from the spectral analysis of
TeUS and analysis of the first backscattered RF image using
gradient calculations. Results demonstrated that although the
two approaches show a similar trend versus Ds , the TeUS-
based analysis is much more sensitive to changes in the
scattering function.

In the pathology mimicking simulation, we placed scatterers
in phantoms according to distributions of nuclei in cancer and
benign tissues. While in this paper, we modeled the nuclei as
a major scattering source, other parts of the cell might also
contribute to US scattering [37]. An extension of this paper
may include a more elaborate US simulation framework that
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Fig. 8. Distribution of the three features extracted from a single RF frame among benign and cancer regions. (a) Intercept extrapolated to zero frequency
(LFI). (b) Slope of regression line fit to the spectrum (LFS). (c) Midband value (LFM).

Fig. 9. Distribution of the peaks in the frequency spectrum of simulated TeUS data for the pathology mimicking data set. Median and standard deviations
of the amplitudes of the peak (F1) at (a) 1 Hz for excitation vibration frequency of 1 Hz, (b) 10 Hz and for vibration frequency of 10 Hz, and (c) 20 Hz and
for excitation vibration frequency of 20 Hz.

considers other sources of scattering in tissue. We anticipate
that the findings of this paper remain unchanged, irrespective
of the dominant scattering source.

In our simulations, we showed statistically significant differ-
ences in the TeUS signatures of different tissue types. This is
likely due to the changes in the backscattered US data that are
dependent on tissue microstructure and that can be revealed
as a result of micro vibration. We were able to differentiate
tissue types at various mechanical vibration frequencies from
1 to 20 Hz. Similar to the synthetic array of scatterers, TeUS-
based analysis also showed significantly higher sensitivity to
separate benign and cancer ROIs compared with the analysis of
the first backscattered RF image, when estimating the second
term of (5) using gradient calculations.

In our previous in vivo experiments [21], [23], [58],
we observed that low-frequency components (1–2 Hz) of TeUS
provide the most discriminating features for distinguishing
among Gleason patterns 3, 4, and benign tissue samples.
Specifically for the prostate, this frequency range can be
related to the pulsation of the vessels surrounding the tissue,
which is at the heartbeat frequency. Therefore, the simulation
frequencies are selected to represent relatively realistic sce-
narios. The 1 and 2 Hz are picked as near-heart rate ranges.
We also used 10 and 20 Hz to demonstrate that our derivations
can be generalized to other frequency ranges.

The findings of our simulations suggest that TeUS can take
advantage of tissue micro vibration induced by physiological
sources, such as the heartbeat or other internal and external
vibrations, for tissue characterization. The timescale of data
acquisition for TeUS analysis is approximately 2–5 s. There-
fore, bulk tissue motion (e.g., bowel movement) that occur
over timescales, that are too long (tens of seconds to minutes)
to affect the TeUS measurements, is not considered as possible
driving forces for the micro motion of scatterers. Rather as
observed in our previous studies [33], the near the heartbeat
frequencies are considered as the micro vibration driving force.

Our findings expand on Hunt’s experiments [38], where
they indicated that the characteristics of US backscattered
signals are related to the spatial distribution of the scatterers.
Therefore, a very small change in the arrangement of scatterers
results in substantial variations in the US backscattered signal.
As illustrated in Fig. 4, the number and distribution of nuclei in
ROIs obtained from benign and cancer tissues are different;
the average number of simulated scatterers representing the
cell nuclei is 3500 and 12 000 in a 2 mm × 2 mm ROI,
respectively. Similar to Hunt et al., our simulations suggest
that these differences in scatterer arrangements are detected
by TeUS.

We also compared the classification of simulated tissue
using TeUS data with that of a single US frame based on
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Fig. 10. Distribution of average peak values in the power spectrum at 20 Hz
in benign and cancer tissues at elasticities of 5, 15, and 25 kPa.

the approach established by Feleppa et al. [49]. Fig. 8(a)
shows that the spectral intercept increases as the number of
nuclei increases from benign to cancer tissue. A previously
established, a theory by Feleppa et al. [59] recognizes scatterer
number densities as a main contributor to the tissue character-
ization capability of US spectral analysis, when the acoustic
impedance of scatterers in both benign and cancer tissues
are identical. Conversely, the differences between spectral
slope (LFS) in benign and cancer tissues were not statistically
significant (p = 0.25). These results are expected as spectral
slope is dependent on scatterer size, which was identical in
the two tissues in our simulations [49]. In the context of the
simulations performed in the paper, while features suggested
by Feleppa et al. were partially able to classify the simulated
benign and cancer tissues (based on p-values computed in
the statistical analysis), features driven from TeUS are more
sensitive to the scatterer number and arrangement, and can
lead to a more robust classifications of tissue where such
differences are present. Considering the limitations of the
current simulations, further studies that incorporate the size of
the nucleus in addition to its spatial arrangement are required
to compare the tissue classification capabilities of TeUS versus
spectral analysis of a single RF image.

To study the role of elasticity of the medium in tissue
characterization properties of TeUS, we simulated the pathol-
ogy mimicking phantoms with three elasticities of 5, 15,
and 25 kPa. As illustrated in Fig. 10, using TeUS, we can
accurately separate benign and cancer tissues irrespective of
their corresponding elasticities. In addition, the amplitude of
the power spectrum follows our theoretical derivation and is
approximately (given the viscosity of the medium) inversely
proportional to E . These results also demonstrate that if in
conjunction with TeUS imaging, an elastography technique is
used to measure the absolute elasticity of tissue, TeUS data
can be calibrated to develop an elasticity independent tissue
characterization approach.

Our simulations in this paper are restricted to point scat-
terers. Further studies are required to incorporate more exten-
sive representation of tissue microanatomical structure, which
includes considering the effect of scatterer size, specifically

in cancerous tissue with higher Gleason score, on the back
scatterered RF signal [1], [60]. The capability of TeUS for
tissue classification is, however, expected to be unaffected
since nuclei are considered to be a dominant scattering source
to US propagating waves at many imaging frequencies. Fur-
thermore, the mechanical and US simulations presented in
this paper do not consider the structural inhomogeneity of the
tissue, which also needs to be included in the future work.
Other potential simulations may embrace various mechanical
pulsation sources in the medium to mimic capillaries and
major vessels surrounding the tissue of interest.
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