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Increasing Axial Resolution of Ultrasonic Imaging
With a Joint Sparse Representation Model
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Abstract— The axial resolution of ultrasonic imaging is
confined by the temporal width of acoustic pulse generated by
the transducer, which has a limited bandwidth. Deconvolution
can eliminate this effect and, therefore, improve the resolution.
However, most ultrasonic imaging methods perform deconvo-
lution scan line by scan line, and therefore the information
embedded within the neighbor scan lines is unexplored, espe-
cially for those materials with layered structures such as blood
vessels. In this paper, a joint sparse representation model is
proposed to increase the axial resolution of ultrasonic imag-
ing. The proposed model combines the sparse deconvolution
along the axial direction with a sparsity-favoring constraint
along the lateral direction. Since the constraint explores the
information embedded within neighbor scan lines by connecting
nearby pixels in the ultrasound image, the axial resolution
of the image improves after deconvolution. The results on
simulated data showed that the proposed method can increase
resolution and discover layered structure. Moreover, the results
on real data showed that the proposed method can measure
carotid intima–media thickness automatically with good quality
(0.56 ± 0.03 versus 0.60 ± 0.06 mm manually).

Index Terms— Carotid intima–media thickness (IMT),
deconvolution, sparse representation modeling, ultrasonic
imaging.

I. INTRODUCTION

S INCE the discovery of piezoelectric effect by Jacques and
Pierre Curie, ultrasound has been widely used in many

fields. For example, in medical field, sonography is used to
examine the internal structure of human body for diagnosis [1].
In industrial applications, nondestructive testing (NDT) is used
to detect the potential flaws in materials [2]. The envelops of
sampled signals that are emitted and received by ultrasound
transducers are detected using the Hilbert transform. Such
B-mode images enable us to investigate the internal acoustic
structure of a sample.

However, relatively low resolution limits further application
of ultrasonic imaging. The axial (or longitudinal) resolution
is defined as a minimum distance that can be differentiated
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between two reflectors located in the path of an ultrasound
beam [3]. The axial resolution is equal to half of the pulse
length, which is the product of number of cycles in a pulse
and its wavelength. Since transducers and amplifiers have finite
bandwidth, the width of the ultrasound pulse generated by the
transducer is nonnegligible, and therefore the axial resolution
is bounded by this quantity, which is normally in the order of
a fraction of a millimeter.

Deconvolution can be used to eliminate the effect of finite
bandwidth of an ultrasonic imaging system, and the resolution
can be improved significantly [4]–[6]. Deconvolution is the
inverse operation of convolution, which models the received
signal as a convolutional product of two functions (or signals),
one being a reflectivity function and the other being a point
spread function (or convolution kernel). The reflectivity func-
tion models the acoustic property of test samples, while the
point spread function models the overall impulse response of
the imaging system.

In linear algebra, the convolution is formulated as the mul-
tiplication between a Toeplitz matrix formed from the point
spread function and a column vector representing the reflec-
tivity function, which is a sparse vector with spike trains.
As a result, the output of deconvolution is the solution of
a linear system. There are many regularization terms that
can be employed to restore the solution vector, such as the
Tukey loss function, Lorentzian loss function, Huber loss
function [7], �-(1/2) [8], and �-p(0 < p < 1) [9], [10].
Among them, the �-1 loss function yields a robust and sparse
solution [11], [12]. The �-1 loss function is also featured
for many interesting theoretical results and computational
advantages, such as the restricted isometry property [13], [14],
k-step solution property [15], least angle regression [16], and
homotopy algorithm [17]. As a result, the �-1 loss function
has been intensively studied for ultrasonic imaging [18]–[21].

Restricted by the computational power, most imaging meth-
ods deconvolve the data scan line by scan line separately,
and the information embedded within the neighbor scan lines
is unexplored. Thanks to the modern electronic industry,
computational power has improved greatly, which enables us
to process the combined data from all scan lines, thereby
improving the efficiency.

In this paper, an �-1 norm regularization term is introduced
into the basic sparse representation model, which can integrate
the information embedded within the neighbor scan lines. The
proposed term imposes that the supports of sparse represen-
tation vectors of two neighbor scan lines are similar, i.e., the
locations of nonzero elements are adjacent. By imposing such
a constraint, the temporal concurrency of reflected ultrasonic
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waveform can be captured, and hence the spatial adjacency of
scatters can be explored, which is a characteristic of layered
structure such as blood vessels. Since this term accumulates
the information of multiple scan lines, the detection of layered
structure could be improved. For example, the measurement
precision of intima–media thickness (IMT) could be improved.
Furthermore, the proposed joint sparse representation model
is extended to the complex number domain, and therefore the
deconvolution quality can be further improved.

This paper is organized as follows. In Section II, the
basic sparse representation model is stated (Section II-A),
and then the joint sparse representation model is proposed
(Section II-B), and finally it is extended to the complex number
domain (Section II-C). The optimization issues related to the
proposed model are tackled in Section II-D. The estimation
of point spread function is presented in Section III-A, and
then the results showing performance of the proposed method
using simulations (Section III-B) and real data (Section III-C)
including in vitro silica gel tube and in vivo common carotid
artery of a human subject are presented. This paper is con-
cluded in Section IV.

II. METHOD

A. Basic Sparse Representation Model

The methods presented in [4] and [5] model the received
signal of the i th (i = 1, 2, . . . , N) scan line yi (t) as
a linear convolutional product of the reflectivity signal
xi (t)(i = 1, 2, . . . , N) with a convolution kernel or point
spread function h(t), and contaminated with observation
noise ni (t), (i = 1, 2, . . . , N), where N is the number of
transducer array elements.

yi of length M is used to denote the sampled vector
of yi (t), or the so-called radiofrequency (RF) data, where
M is the number of temporal sampling points. Furthermore,
Y = [y1,y2, . . . ,yN ] is used to denote the RF data set of all
scan lines in a frame.

As a result, the convolution model from the linear algebra
is as follows:

yi = Hxi + ni (1)

where H is a Toeplitz matrix of size M×(M−K +1), which is
constructed from h(t); K is the support length of the sampled
vector of h(t); xi of length M − K + 1 is the sampled vector
of the i th reflectivity signal xi (t); and ni is a vector with
M independent identically distributed (i.i.d.) random variables.

The estimation of xi from yi is known as a deconvolution
problem. If h(t) is known in advance, then performing the
deconvolution is easy. However, in most practical cases, the
complete knowledge of h(t) will not be available, i.e., H is
an unknown matrix, and therefore both xi and H have to
be estimated together, which is called the blind deconvolution
problem [22]. One strategy is to estimate H and xi jointly [6],
and another strategy is to estimate them separately [4],
i.e., first H is estimated from Y , and then x is estimated
based on H [23]. In this paper, the second strategy is used,
and the estimation of H is presented in Section III-A.

Now we assume that H is known, based on (1) and the
assumption that ni follows a Gaussian distribution, the least
square solution of xi is H+yi , where H+ = (HT H)−1HT

is the MoorePenrose pseudoinverse of H and T denotes the
transpose operation. Since the condition number of Toeplitz
matrix H is very large, the least square solution is ill-posed,
yielding limited resolution in the deconvolved image [24], so
an �-1 norm regularization term is added as a remedy.

The �-1 norm regularized least square estimator of xi

is known as basis pursuit denoising (BPDN) [24], and is
expressed as

x̂i = arg min
xi

‖yi − Hxi‖2 + λx‖xi‖1 (2)

where ‖ · ‖ and ‖ · ‖1 denote the �-2 and �-1 norm, respec-
tively, and λx is a regularization parameter that controls the
tradeoff between the first and second terms, i.e., fitting fidelity
and sparsity, respectively. Large λx encourages x with high
sparsity level, i.e., more zero elements in x, and strong noise
suppression, and vice versa.

It should be noted that BPDN is equivalent to the famous
estimator LASSO [11], [25], [26], and therefore the numerical
tools that are designed for LASSO can be applied to BPDN.
Using BPDN repeatedly on each scan line yi , one can
restore a deconvolution image X̂ = [x̂1, x̂2, . . . , x̂N ] of
size (M − K + 1) × N (without zero padding), which
has higher resolution compared with image Y . Since the
�-2 and �-1 norms of a matrix can be decoupled column-
wise, N BPDN optimization problems can be encompassed in
a unified equivalent optimization form as follows:

X̂ = arg min
X

‖Y − HX‖2 + λx‖X‖1. (3)

B. Joint Sparse Representation Model

The above basic sparse deconvolution model does not
consider any neighborhood information, i.e., information
embedded within neighbor scan lines. Suppose that a layered
structure shows up horizontally in the observed region (for
example, refer to the top-left panel of Fig. 1), then the
echogenic waves should appear in neighbor RF data y j

and y j+1 simultaneously (i.e., with the same time delay).
Furthermore, spikes should appear at the same loci in the
corresponding deconvoluted signals x j and x j+1, i.e., i + 1th
locus of both x j and x j+1, yielding xi+1, j = xi+1, j+1. This
characteristic can be extracted as prior knowledge to improve
the quality of deconvolution in terms of axial resolution [27].
When the layered structure is not strictly horizontal but with
a slight rotation, then there is a time shift between the two
echogenic waves of neighbor RF data. This results in a slight
shift in the spikes of x j and x j+1. As a result, we no longer
have xi+1, j = xi+1, j+1 but xi, j = xi+1, j+1 or xi+1, j = xi, j+1,
depending on the slope of the layer (for example, refer to the
rest corner panels of Fig. 1).

We borrow the idea of total variation method [28], which
is frequently used in image processing community for robust
denoising by exploring the information from the neighbor-
hood. Here a similar regularization term is proposed to
regularize the solution X

P(X) =
∑

i=1:M−K , j=1:N−1

|xi, j + xi+1, j − xi, j+1− xi+1, j+1|.

(4)
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Fig. 1. Schematic of the proposed regularization term P(X) in (4). The central panel shows the imaging region with two layers. Corner panels are zoomed-in
view of four typical four-connected neighborhood on a layer, with regularization term xi, j + xi+1, j − xi, j+1 − xi+1, j+1 = 0. Black and white encode 0 and 1.

This term encourages the concurrence of echogenic waves of
neighbor scan lines. Suppose that there is a spike at locus
xi, j or xi+1, j , then this term expects a spike at locus xi, j+1
or xi+1, j+1 with the same amplitude. By checking the four
corner panels as shown in Fig. 1, one can see that (4) equals
to zero. Therefore, this term can be employed to detect the
layered structure with any slight slope. It should be noted
that the regularization term is equivalent to a 2 × 2 operator[

1 −1
1 −1

]
, which is different from a one-directional gradient

kernel [ 1 −1 ]. The former operator can capture all the four
corner panels of Fig. 1, while the latter can capture only the
top-left one.

By adding this regularization term into (3), the joint sparse
representation model in matrix form reads as follows:

X̂ = arg min
X

‖Y − HX‖2 + λx‖X‖1 + λp P(X) (5)

where λp is the second regularization parameter that can
control the tradeoff among fitting fidelity, overall sparsity, and
layered structure sparsity.

C. Joint Sparse Representation Model
in Complex Number Domain

Model (5) considers only the real number, i.e., elements
of Y and H take real values. As a result, the elements
of solution X̂ take real values, which contain only the
amplitude information of reflectivity function, and the phase
information is missing. The estimated time delay of wave-
form is discretized and takes only the value on the temporal
sampling grids.

To improve the estimation of time delay, the model is
extended to complex number domain, i.e., elements of X
are defined on complex number domain and become phasors.
Therefore, the RF data Y and convolution kernel matrix H
have to be extended to the complex number domain.

We employ the discrete Hilbert transform to compute ana-
lytic signals of both Y and H column by column. As a result,
the joint sparse representation model for complex number
domain is given as follows:
X̂ = arg min

X
‖H{Y } − H{H}X‖2 + λx‖X‖1 + λp P(X)

(6)

where H is the discrete Hilbert transform operator [29]. The
solution X is now defined in the complex number domain.

D. Optimization and Implementation Issue

It should be noted that one cannot find a linear operator
of X to formulate the second regularization term in (6), and
therefore, efficient linear optimization solvers cannot be used
to tackle the joint sparse representation model. However, if X
is reshaped as a vector x̃ by cascading the columns, a sparse
matrix operator P̃ of size (N − 1)(M − K ) × (M − K + 1)N
can be constructed such that ‖P̃ x̃‖1 = P(X). The elements
of P̃ are defined as

p̃i, j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1, i = (α − 1)(M − K ) + β

j = (α − 1)(M − K + 1) + β + {0, 1}
1, i = (α − 1)(M − K ) + β

j = α(M − K + 1) + β + {0, 1}
0, else

(α = 1, 2, . . . , N − 1; β = 1, 2, . . . , M− K ).

(7)

Finally, the joint sparse representation model is given as
follows:

ˆ̃x = arg min
x̃

‖ỹ − H̃x̃‖2 + λx‖x̃‖1 + λp‖P̃ x̃‖1 (8)
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where ỹ of length M N is the vectorized version of H{Y } by
cascading all the columns; H̃ of size M N ×(M−K +1)N is a
block diagonal matrix defined as H̃ = IN ⊗H{H}, where IN

of size N × N is an identity matrix; and ⊗ is the Kronecker
product operator.

It should be noted that both H̃ and P̃ are huge matrices, and
need large memory to store them. For example, if M = 1000,
N = 128, and K = 50, then the memory required to store
the full form of H̃ is 116 GB. The sparsity of matrices is
advantages, and therefore can be stored in sparse form.

It can be noted from (8) that all the three terms
are convex with respect to x̃, therefore the optimization
criterion is convex, and any standard numerical optimization
tools designed for convex programming can be used to solve
this problem. In this paper, we used the MATLAB package
CVX [30], [31], which is a modeling system for constructing
and solving disciplined convex programs.

III. RESULTS

In this section, first, SonixTOUCH is used to acquire
RF data sampled at 40 MHz, and the nominal central frequency
of probe is 5 MHz. Then the acquired RF data are used
to estimate the point spread function h(t) by fitting the
observed power spectrum with Gaussian functions. Further-
more, simulations were carried out based on the estimated
point spread function h(t) to demonstrate the performance
of the proposed method. The best setting for regularization
parameters λx and λp for real data processing, which includes
the data of a silica gel tube and a common carotid artery, is
determined based on simulations.

A. Estimation of Point Spread Function

The point spread function h(t) is estimated from the real
data with the following steps.

1) The power spectrum of each scan line is calculated using
a fast Fourier transform.

2) The mean spectrum of all the scan lines is calculated to
remove the measurement noise.

3) The observed spectrum, i.e., the mean spectrum is fitted
with a linear combination of Gaussian functions to
further remove the noise and distortion caused by the
nonlinear response of tissues. The least square error of
the fitting result and the observed spectrum is used to
measure the quality of curve fitting. Here, the three para-
meters to be estimated for each Gaussian function are the
amplitude, center location, and standard deviation. Three
Gaussian functions are used since biological tissues can
introduce both subharmonic and superharmonic. The
first, second, and third (according to the center location)
Gaussian components correspond to the subharmonic,
fundamental, and superharmonic components, respec-
tively. Since the optimization criterion is not convex with
respect to the parameters, local minima are inevitable.
As a result, the optimization is sensitive with respect
to the initial point. The central frequency is initialized
with 2.5, 5, and 7.5 MHz; the amplitude to be half, one,
and half of the maximum of the mean spectrum; and the
standard deviation to be 0.6 × 5 = 3 MHz.

Fig. 2. Estimation of point spread function h(t) from silica gel tube
data set. (a) Fitting result of the observed power spectrum with three Gaussian
functions. (b) Estimates of three component waveforms after normalization.

4) The second Gaussian component is transformed from
frequency domain to temporal domain, and retained the
central K = 50 points to cover the support of the point
spread function [50 � (40/5 MHz)].

5) The resultant waveform is normalized such that the
standard deviation is equal to one.

The fitting results are displayed in Fig. 2. The black dotted
curve in (a) is the observed spectrum, whereas the magenta
solid curve is the fitted spectrum, with three Gaussian func-
tions colored in blue, red, and green as the components.

It should be noted that the nominal pulse central frequency
of probe is 5 MHz, but the estimated central frequency of the
second component is 5.4 MHz, which improves the deconvo-
lution performance. It can be noted that the central frequency
of the first and third components is about 0.5 and 1.5 times
that of the second component, and therefore the corresponding
harmonics are of (1/2) and (3/2) order, respectively.

The three components are displayed in Fig. 2(b). In the
following studies, the second component (with K = 50) is
used as the point spread function in the deconvolution.

B. Simulation Studies

The aim of the simulation studies is twofold: 1) to test the
performance of the proposed method and 2) to search the best
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Fig. 3. Simulation study I. (a) Simulated noiseless signals 1 and 2; the former signal starts at 0.5 μs, and the latter is 0.005 μs delayed of the former.
(b) and (c) Deconvolution results with noise level σ = 0 and 0.3, corresponding to noiseless and noisy scenario, respectively.

Fig. 4. Simulation study II. (a) Ground true image with three tubes; the inside diameters from top to bottom are 9, 9, and 6 pixels. (b)–(d) B-mode images
of simulated RF data with noise level σ = 0.3, 1, and 2, respectively, corresponding to high, moderate, and low data quality scenario.

setting for regularization parameters λx and λp for real data
analysis. To make the setting applicable for real data analysis,
both ỹ and h̃ were normalized to have zero mean and unit
standard deviation before calling CVX in the simulation study.

1) Simulation I: The first simulation aims to compare the
deconvolution performance of the real number model with that
of the complex number model. First, two noiseless echogenic
signals were simulated, with starting point at 0.5 and 0.505 μs
[signals 1 and 2 in Fig. 3(a)]. Since the sampling frequency
is 40 MHz, the temporal span between two consecutive
RF sample points is 0.025 μs. Therefore, the former signal
aligns to the sampling grid strictly, but the latter has an inden-
tation of 0.2 (=0.005/0.025) unit of sampling interval. Then
signal 2 was deconvolved with both real number model and
complex number model. The deconvolution results are shown
in Fig. 3(b). The ideal deconvolution result should be a spike
at location 0.505 μs [the ground truth, blue circle in Fig. 3(b)],
but this location is not on the sampling grid. Using the
real number model, the ground truth spike splits into several
smaller spikes around (black crosses). As a comparison, the
result with complex number model (red pluses) approximates
the ground truth well. Fig. 3(c) shows the deconvolution results
with noise level σ = 0.3. It is shown that the results degenerate
with both models compared with the noiseless scenario, but

the result with complex number model is still superior to that
with real number counterpart.

2) Simulation II: In the second simulation, first, an
image X of 1 × 1 cm (532 × 34 pixels) is generated as
the ground truth [refer to Fig. 4(a)], which includes three
tubes with inside diameter 9, 9, and 6 pixels from top to
bottom. Since each pixel represents a sample point, and
40 MHz is used as the sampling frequency, the corresponding
inside diameters of the three tubes are 173.25, 173.25, and
115.5 μm, respectively. The width of the tube wall is 1 pixel.
The top tube is strictly straight and horizontally placed, while
the bottom two tubes are bent slightly. Considering tube width
and curvature, the recovery difficulty increases from the top
tube to the bottom one.

The estimated point spread function [component 2
in Fig. 2(b)] is used to simulate the sampled RF data.
To simulate the measurement noise and system error, a random
noise that obeys i.i.d. Gaussian distribution with zero mean is
added. The standard deviation σ takes three values: 0.3, 1,
and 2, which correspond to high, moderate, and low data
quality scenarios, respectively. The B-mode images of these
three scenarios are displayed in Fig. 4(b)–(d). It can be seen
from Fig. 4(b) that the top two tubes are hollow, while
the bottom one is solid. The three tubes are clearly visible,
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but there seems no difference among them in Fig. 4(c). When
the noise level is high, the three tubes are difficult to recognize
in Fig. 4(d). In summary, the low resolution of the images is
caused by the presence of noise and the width of the point
spread function.

To achieve the best performance of the proposed method,
the regularization parameters λx and λp have to be tuned to
their best setting. A 2-D grid search was used to tune the
regularization parameters, i.e., both log10 λx and log10 λp were
assigned values from −4 to −0.5 with a step length of 0.5
(totally eight values). The corresponding optimization problem
was solved for each combination of λx and λp , and the
recovery error was calculated. Ten Monte Carlo replicates were
generated, and the obtained recovery errors were averaged.
After the errors of all possible combinations (8 × 8 = 64)
were calculated, the setting of λx and λp that yields the lowest
recovery error ε was chosen as the best setting. The recovery
error is defined as the normalized root of least square error
ε = ((‖ ˆ̃x − x̃‖)/(‖x̃‖)).

The results of 2-D grid search for the high data quality
scenario are shown in Fig. 5(a), and it is found that the best
settings for λx and λp are 0.1 and 0.01, respectively. The
recovered image with the best setting is shown in Fig. 5(d).
It can be observed that the recovery is perfect. To compare
the obtained results with basic recovery method, the proposed
regularization term is disabled by setting the parameter λp to
zero, and the recovered image is shown in Fig. 5(g). It can be
seen from Fig. 5(g) that the recovered image after disabling
the parameter λp is clear, but the walls of the bottom tube
are not smooth. This is due to the presence of noise and
measurement error in the data, which leads to the wrong
detection of layer location, i.e., a few points ahead or behind
the true one, yielding nonsmoothness of the tube wall. The
proposed method utilizes the neighborhood information by the
additional regularization term to connect neighbor layer loci,
yields robust estimation of the layer location, and therefore
improves the image quality.

The results of moderate data quality scenario are shown
in Fig. 5(b), (e), and (h), which shows that the best setting for
λx and λp is 0.03 and 0.01, respectively. For the proposed joint
sparse method [Fig. 5(e)], the recovery result of the top two
tubes is good, but the bottom one has some false layers, which
is due to the fact that the inside diameter of the bottom tube
is much smaller than that of the top two. While for the basic
method, all three tubes have strong false layers [Fig. 5(h)].

For the low data quality scenario, the best setting of
λx and λp is 0.03. It is shown that the basic method can
hardly recover any of the three tubes [Fig. 5(i)], but the
proposed method can recover all three tubes [Fig. 5(f)], and
the two walls of the top tube are clearly detected.

From Fig. 5(a)–(c), it can be observed that when the data
quality is poor, the best setting of λx decreases, while that
of λp increases. This could be employed as the general rule
for regularization parameter selection.

C. Real Data Analysis

In the experiments, the SonixTOUCH system of Ultrasonix
was used to acquired RF data. The probe is a 38-mm linear

array with 128 elements. The maximum depth was set
to 40 mm. Pulse mode was used with a central frequency
of 5.4 MHz and duration period one cycle. The RF sampling
frequency is 40 MHz.

Two sets of real data were obtained and processed. The first
data set is in vitro, which was sampled on a silica gel tube, and
the second one is in vivo, which was sampled on a common
carotid artery of a human subject.

1) In Vitro Experiment: The tube is made of silica gel
with outer and inner diameters of 1.8 and 1 mm, respectively.
The tube was immersed in a tank with degassed water while
imaging. The lumen of the right end of the tube was filled
with water, while that of the left end was empty (with air).
The tube was inclined slightly to increase the recovery
difficulty. The experiment was conducted in normal indoor
temperature.

It was observed from the simulation studies that the best
setting of λx and λp is within 0.1 and 0.01, which can be used
in the real data analysis. However, the applicability depends on
the condition that the scale of the data should be comparable.
In the simulation, the scales of ỹ and h are normalized to
have zero mean and unit standard deviation. Thus, ỹ and h
were also normalized in the real data analysis as well.

For the silica gel tube data set, it was found that the best
parameter values to process this set are λx = λp = 0.11. The
results are presented in Fig. 6. The system b8 image, B-mode
image of the RF data with Hilbert transform, reconstructed
result of the basic sparse deconvolution, and that of the
proposed method are shown in Fig. 6(a)–(d), respectively.
Since there are four interfaces, i.e., two inside and two outside
interfaces, four layers are clearly detected as the top four layers
of the right end (with water inside). It should be noted that
the bottom layer is an artifact caused by reverberation, which
will be discussed in detail in Section IV.

Compared with the results without deconvolution
[Fig. 6(a) and (b)], Fig. 6(c) and (d) show that the
thickness of the layers decreased significantly, indicating that
the lateral resolution of the ultrasonic imaging is greatly
increased by deconvolution. Moreover, compared with basic
deconvolution method [as shown in Fig. 6(c)], Fig. 6(d) shows
the advantage of the proposed joint sparse representation
model, i.e., independent small dashes and dots in Fig. 6(c)
are either filtered out or connected together to form long
strings, which is due to the regularization term in (4).

Normalized autocorrelation function is commonly employed
to qualitatively study the resolution of an image [6], [32], [33].
For each scan line, the autocorrelation function is defined as
the inner product of the vector of the scan line and the axially
shifted version of the vector. The autocorrelation function is
then normalized by its �2-norm and averaged across all scan
lines within the region without water inside. Fig. 6(e) displays
the autocorrelation function of Fig. 6(a)–(d). It is shown
that for the autocorrelation functions of Fig. 6(c) and (d),
the peaks at shift distance zero are very sharp, indicating
superior resolution. It can be observed from the markers on
the red curve in Fig. 6(e) that the thickness of the tube
is 1.81 mm, which is consistent with the measurement by
vernier caliper (1.8 mm).
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Fig. 5. Left ((a), (d), and (g)), middle ((b), (e), and (h)), and right ((c), (f), and (i)) columns show the simulation results with high, moderate, and low data
quality scenario, respectively. The best settings of λx and λp are (0.1, 0.01), (0.03, 0.01), and (0.03, 0.03). The top ((a), (b), and (c)), middle ((d), (e), and
(f)), and bottom ((g), (h), and (i)) rows show the recovery error with respect to parameters λx and λp , the recovery result with the proposed joint sparse
representation model (with the best parameter setting), and the result with basic method (with λp = 0).

Besides the peak at shift distance zero with amplitude
one, there are three peaks at shift distances of 0.56, 1.81,
and 2.37 mm. The peak at a shift distance of 0.56 mm
corresponds to the inner production when the second layer
from the top is shifted and overlaps with the top one. Similarly,
peak at 1.81 mm corresponding to the second layer from
the bottom overlaps with the top one, and peak at 2.37 mm

corresponding to the bottom layer overlaps with the top one.
It should be noted that the peak corresponding to the middle
layer that overlaps with the top one is absent, but there are
two split plateaus at shift distances of 0.9 and 1.3 mm.

Since this data set has near-perfect layers, besides utilizing
the autocorrelation function, one can study the resolution
directly. During experiments, we selected the profile of the
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Fig. 6. Experimental results of the region of interest of the silica gel tube. (a)–(d) System b8 image, B-mode image of the RF data, reconstruction image
of the basic sparse deconvolution, and of the proposed method, respectively. (e) and (f) Autocorrelation function and normalized profile of the lateral view of
the above four images.

middle scan line (width = 19 mm), aligned the profiles of
other scan lines to this selected one, averaged all profiles,
and finally normalized the profiles such that the largest value
is equal to one. Fig. 6(f) shows the normalized profiles of
each image. It can be seen from the results that the images
processed by the proposed method has the best resolution,
followed by the deconvolution image, the B-mode RF image,
and the system b8 image. It is also shown that the thickness

of the top and bottom walls and the lumen diameter are 0.55,
0.44, and 0.81 mm, respectively. It should be noted that the
first four peaks correspond to the four interfaces of the tube,
the last one is an artifact caused by reverberation, and details
of which will be discussed in Section IV.

In summary, the results show that the proposed method can
discover layered structure with high axial resolution compared
with B-mode method and basic sparse representation method.
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Fig. 7. Zoomed-in view of the region of interest of the common carotid artery real data set. (a) System b8 image. (b) B-mode image of RF data.
(c) Reconstruction image with the proposed method. (d) Discovered layers of the artery. (e) Normalized profile of the lateral view of the above four images.

2) In Vivo Experiment: The IMT is a measurement of
thickness of two of the innermost layers of an artery wall,
i.e., the thickness of the tunica intima and tunica media [34].
The carotid IMT (cIMT) is usually employed to track the
changes of carotid artery and to predict and detect the presence
of plaques and atherosclerotic disease in early stage. The
average cIMT of a healthy individual is 0.4 mm by birth

and 0.8 mm by the age of 80 [35]. With the increase in
cIMT, the cardiovascular risk increases more rapidly over a
lifetime. Therefore, as a noninvasive and cost-efficient mea-
surement, cIMT is an important surrogate marker for cardio-
cerebrovascular studies.

The precise and automatic measurement of cIMT is chal-
lenging because of the low resolution of ultrasound imaging.
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In this experiment, the proposed joint sparse representation
model is employed to achieve accurate measurement of cIMT.
The common carotid artery data of a healthy individual
are sampled for this study, and the corresponding results
are depicted in Fig. 7. The SonixTOUCH system b8 image
and the B-mode image of the sampled RF data are shown
in Fig. 7(a) and (b), respectively. It can be seen that there are
two lines in both far (deeper) wall and near (shallower) wall,
corresponding to the lumen–intima interface and the media–
adventitia interface [34]. The latter is seen as the thin layers
at a depth of around 14 and 20 mm, which is much thinner
and weaker than the former.

This data set was processed the same way as the silica gel
tube data set mentioned previously, i.e., the same point spread
function was used and the signals were normalized following
the same procedure. Since the biological tissues have nonlinear
effects, and also the tunica intima signal is much weaker than
that of the other tissues, smaller regularization parameters
λx = 0.06 and λp = 0.01 were used. The reconstruction
image with the proposed method is shown in Fig. 7(c), which
consists of several small segments. To detect the layers of
cIMT, the eight-connected objects are labeled first (which are
encouraged by the proposed regularization term (4)), and then
these objects are sorted according to their length and preserved
the longest layers whose width is less than 10 pixels. The
filtered results are shown in Fig. 7(d), in which three were left.
The results from top to bottom correspond to the intima–lumen
interface of the near wall, the intima–lumen and adventitia–
media interface of the far wall. The measured cIMT from far
wall is 0.56 ± 0.03 mm. As a comparison, the cIMT from
the system b8 image was also measured manually. First, we
drew the profiles of intima and media layer [the two red lines
in Fig. 7(a)], and then five equally spaced thicknesses (the
five blue lines) were measured, yielding cIMT measurement
of 0.60 ± 0.06 mm. Fig. 7(e) shows the resolution profiles
of Fig. 7(a)–(d), and it is shown that the three layers have
sharp peaks in the profiles, indicating superior resolution of
the proposed method.

It is also worthy to note that in Fig. 7(d), two layers
are detected at the far wall, but only one layer is detected
at the near wall. This is because the strength of echogenic
wave is lost when the beam travels from more echogenic to
less echogenic layers at the adventitia–media interface of the
near wall. Previous studies recommended far wall rather than
near wall to increase the sensitivity and accuracy of cIMT
measurement [36], which is consistent with our observation.

3) Computational Burdens: The probe has 128 elements,
the maximal depth is 40 mm, and the RF sampling frequency
is 40 MHz, and therefore the acquired RF data set is 2080 by
128 matrices (2080 ≈ ((40 mm × 2)/(1540 m/s))×40 MHz).

We used MATLAB of MathWorks to implement the pro-
posed method, and ran codes on a desktop with Intel i7 proces-
sor and 32 GB memory. As discussed earlier in Section II-D,
since H̃ is a huge matrix, the processing of whole data
set led to error “out of memory.” Therefore, the image is
divided vertically into two parts (M = 1040) and each part
is processed separately. The processing of each part cost
approximately 6 min and 9 GB memory space.

Fig. 8. Demonstration of the echogenic waves of silica gel tube data set.
The first four echogenic waves are reflected by the four interfaces of the tube,
and the fifth is an artifact caused by reverberation (red lines).

IV. CONCLUSION

A joint sparse representation model to increase the axial res-
olution of ultrasonic imaging is presented in this paper. Both
simulation and real data studies supported the effectiveness of
the proposed method. The main contributions are twofold.

1) The proposed method has an additional regularization
term, which can integrate the information of echogenic
waves from neighbor scan lines. This feature enables the
combined processing of the RF data of all scan lines
of a frame, and hence improves the axial resolution
to a greater extent compared with the conventional
methods, which process the RF data scan line by scan
line separately.

2) From the application point of view, since the additional
regularization term encourages the connectivity of pix-
els along the lateral direction, the proposed method
is appropriate to discover layered structure. Some of
the potential examples are the measurement of IMT
in clinical medicine and the measurement of coating
thickness of printed circuit board in NDT.

It should be noted that in the silica gel tube experiment,
since there are four interfaces, i.e., two inside and two outside
interfaces, four layers should be in the ultrasound image.
However, as shown in Fig. 6, there are five layers. The top
four layers correspond to the four interfaces of the tube, while
the bottom one is caused by reverberation, and is highlighted
in red in Fig. 8. It can be observed from Fig. 8 that the wave
path difference between waves 1 and 2 is the same as the one
between waves 4 and 5 (about double the thickness of the
tube wall). This is in agreement with the fact that in Fig. 6(e)
and (f), the difference between the first two peaks [0.558 in
Fig. 6(e) and 0.55 in Fig. 6(f)] is the same as the difference
between the last two peaks [0.559 in Fig. 6(e) and 0.56 in
Fig. 6(f)].

The main limitation of this paper is that the estimated
point spread function used for deconvolution does not match
consistently with the RF signals. Consequently, there are side
lobes in the deconvolved images [see Fig. 6(e) and (f)].
To overcome this impairment, the advanced convolution kernel
should be considered. For example, in the current convolution
model, the convolution kernel is invariable. However, because
of attenuation and dispersion that cause distortion in spectrum,
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the waveform changes with respect to travel distance [21].
Therefore, a variable convolution kernel should be considered.

The selecting of regularization parameters that maximize
the performance is still an open question. In this paper, three
data points of regularization parameters (log10 λx , log10 λp)
from simulation were fitted with a linear regression model. The
three data points are (−1,−2), (−1.5,−2), and (−1.5,−1.5),
and the fitting is 2 log10 λx + log10 λp = −4.5. The reg-
ularization parameters for common carotid artery data set
(λx = 0.06, λp = 0.01) are on this line, but that of silica
gel tube data set (λx = λp = 0.11) is not. The reason is
that the best regularization parameter setting was estimated
through the simulation studies where the point spread function
perfectly matches the RF signals, and the noise was assumed
to be Gaussian. However, these conditions may not hold good
in the real data, and hence the best setting tends to yield false
layers formed by side lobes. For the common carotid artery
data set, these false layers can be filtered out by an extra
postprocessing [see Fig. 7(c) and (d)], while for the silica gel
tube data set, these false layers could be reduced by large
regularization parameters without any extra postprocessing.
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