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Postprocessing Approaches for the Improvement
of Cardiac Ultrasound B-Mode Images: A Review

Antonios Perperidis

Abstract—The improvement in the quality and diagnostic value
of ultrasound images has been an ongoing research theme for the
last three decades. Cardiac ultrasound suffers from a wide range
of artifacts such as acoustic noise, shadowing, and enhancement.
Most artifacts are a consequence of the interaction of the transmit-
ted ultrasound signals with anatomic structures of the examined
body. Structures such as bone, lungs (air), and fat have a direct
limiting effect on the quality of the acquired images. Furthermore,
physical phenomena such as speckle introduce a granular pattern
on the imaged tissue structures that can sometimes obscure fine
anatomic detail. Over the years, numerous studies have attempted
to address a range of artifacts in medical ultrasound, including
cardiac ultrasound B-mode images. This review provides exten-
sive coverage of such attempts identifying their limitations as well
as future research opportunities.

Index Terms—Cardiac ultrasound, compounding, contrast
enhancement, echocardiography, image enhancement, image fil-
tering, noise suppression, review.

I. INTRODUCTION

E CHOCARDIOGRAPHY provides a versatile, real-time
diagnostic tool with no adverse secondary effects, capa-

ble of acquiring images of high spatial and temporal resolution
at relatively low operational cost [1]. The wide range of avail-
able imaging techniques makes cardiac ultrasound a prevalent
tool for the qualitative and quantitative assessment of cardiac
morphology and function in both 2-D and 3-D. Cardiac ultra-
sound images can be acquired 1) through the thorax of the
patient, also known as transthoracic echocardiography (TTE),
or 2) from inside the esophagus of the patient (by utilizing
specialized acquisition probes), also known as transesophageal
echocardiography (TEE) [2]. TEE can generate high-quality
images. However, the extended acquisition time and person-
nel requirements along with patient discomfort currently limit
its clinical use, making TTE the common approach in clin-
ical examinations. However, transthoracic cardiac ultrasound
images are often incomplete (partial heart coverage) and suffer
from a range of artifacts as a consequence of the interaction of
the transmitted ultrasound signals with anatomic structures of
the examined body. Structures such as bone, lungs (air), and fat
have a direct limiting effect on the quality and diagnostic value
of the acquired cardiac images. Furthermore, transthoracic
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cardiac ultrasound images a constantly and rapidly moving
structure through the patient’s rib cage. The nature of such a
challenging acquisition enhances the manifestation of common
medical ultrasound artifacts (Fig. 1).

Cardiac ultrasound images suffer from acoustic noise due to
a range of acoustical phenomena (artifacts) such as reverbera-
tions, side-lobes, and grating-lobes [1], [2]. The extent of each
artifact on the imaged cardiac structures depends on both the
acquisition technology utilized as well as the echogenicity of
the patient. For example, modern phased-array transducers min-
imize the effect of grating-lobes by using an adequately small
pitch (less than half the wavelength of the transmitted signal)
between the elements of the array. On the other hand, the effect
of side-lobes, especially when transmitted in out-of-scan-plane
directions, is mostly related to the proximity of extra-cardiac
structures such as the lung and rib-cage bones. Furthermore,
many instruments, especially phased array transducers, suffer
from near-field clutter or ring-down effect [2]. Near-field clut-
ter manifests itself at the top part of the scan as a zone with a
high level of stationary noise that gradually declines to zero
for increasing scanning depth [2]. Finally, oblique incidence
angles of the transmitted ultrasound beam with respect to an
imaged structure may result in low contrast between the car-
diac tissue and chamber. A high-gain setting, possibly in an
attempt to compensate for the low tissue signal, may result
in additional amplifier noise mostly present in cardiac cham-
bers. While not an exhaustive list, the aforementioned artifacts
corrupt the imaged cardiac structures and from an imaging
perspective can be considered as noise.

Imaging of relatively small and rapidly moving structures
such as the cardiac valves introduces additional challenges.
Besides the limited delineation as a result of noise, the structure
may move into and out of the scan plane due to the cardiac and
respiratory motion. Furthermore, reverberations and shadowing
appear due to the interaction of the transmitted ultrasound with
high reflective and attenuating structures, such as the patient’s
rib cage and lungs that lie in the path of the ultrasound beam.
Such artifacts may appear momentarily or alter their position
and orientation throughout a scan due to small movements of
the transducer combined with the patient’s respiration motion,
obscuring the imaging of portions of the examined cardiac
structure [1], [2].

Speckle is a type of acoustic phenomenon responsible for the
granular appearance of ultrasound images. Speckle is a result of
constructive and destructive interference of echoes produced by
scattering of ultrasound at random, small-scale, tissue inhomo-
geneities. Speckle is a direct consequence of 1) the stochastic
nature of the reflectivity of scattering media, and 2) the coherent

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/



PERPERIDIS: POSTPROCESSING APPROACHES FOR IMPROVEMENT OF CARDIAC ULTRASOUND B-MODE IMAGES 471

Fig. 1. Examples of corrupted cardiac ultrasound data: near-field noise, clutter,
shadowing, speckle, and structures moving out of the scanning plane.

nature of the piezoelectric transducer. Several studies provide
detailed information on the origin of speckle and its statis-
tical properties [3]–[5]. The granular pattern of speckle can
sometimes be considered as an undesirable property since it
may obscure fine anatomic detail. In cardiac ultrasound images,
tissue speckle combined with high levels of chamber noise
can limit the delineation of cardiac structures. Furthermore,
the granular appearance of the images limits the application
of postformation processing techniques such as image regis-
tration and segmentation. Therefore, means for suppressing
noise and speckle can possibly improve the image quality and
diagnostic value of a cardiac ultrasound dataset. On the other
hand, speckle motion may be utilized in tissue velocity and
strain estimation methods such as speckle tracking echocar-
diography (STE) [6] and radio frequency (RF)-based strain
imaging [7]. Both techniques assess global and regional car-
diac function by tracking the movement of speckle patterns over
time. They provide a promising alternative to 1) tagged cardiac
MRI for assessing left ventricular deformation and torsion [8],
and 2) color Doppler for strain imaging, addressing problems

associated with angle dependence [7]. Detailed descriptions
on the principles of STE as well as current and future clini-
cal applications are provided in [6], [9]–[12]. Similarly, more
information on RF-based strain imaging is provided in [7],
[13]–[17]. Image processing methods that enhance the inten-
sity dynamic range (contrast) within speckle may improve the
accuracy and robustness of such existing techniques that tackle
speckle motion.

Over the last three decades, a number of advances in data
acquisition have substantially improved cardiac ultrasound
image quality. Nevertheless, a considerable portion of cur-
rent cardiac ultrasound images demonstrate low image quality
and limited diagnostic value. In 2008, a systematic study was
performed on routine patients going through the echocardiogra-
phy department of the Western General Hospital (Edinburgh).
The results of the study have been used for educational pur-
poses in the department and have not been published yet.
The study, performed using both older and the state-of-the-
art cardiac ultrasound systems, demonstrated that about 33%
of the datasets are of high (clear cardiac structures, enabling
reliable clinical measurements), 33% are of average (partially
corrupted cardiac structures, limiting the accuracy and preci-
sion of clinical measurements), and 33% are of low (highly
corrupted cardiac structures, limiting and many times prohibit-
ing clinical measurements) image quality and diagnostic value.
While the state-of-the art ultrasound system improved the qual-
ity of the acquired data, the findings were heavily dependent
on the echogenicity of the patients. Furthermore, a number of
postformation image processing techniques such as image reg-
istration, image segmentation, data classification, and texture
analysis have been introduced for cardiac data acquired using
modalities such as CT and MRI [18]–[20]. These techniques
enable the development of tools and protocols that enhance the
accuracy, robustness, and repeatability of the diagnostic pro-
cess. Over the last few years, similar postprocessing techniques
have been attempted on cardiac ultrasound images [21]–[24].
Recent advances in real-time 3-D echocardiography (RT3DE)
extend the potential application of such techniques [25], [26].
However, while postformation image processing techniques
may work on high quality images, high levels of noise, low con-
trast, speckle, and shadowing limit their effectiveness in a con-
siderable proportion of clinical cardiac ultrasound datasets. The
development of effective postprocessing methods that enhance
the quality and diagnostic value of cardiac ultrasound images is,
therefore, desirable. Postprocessing techniques do not require
hardware modifications and can be applied to both existing and
new data. This study attempts to provide a thorough review of
such image-enhancement postprocessing techniques for cardiac
ultrasound images.

II. SPECKLE AND NOISE SUPPRESSION TECHNIQUES

Noise and speckle suppression has been of active research
interest for more than 20 years. Ultrasound, and, to a greater
extent, cardiac ultrasound scans represent a very difficult and
demanding application area for noise suppression algorithms.
The main challenge lies in the fact that while cardiac ultrasound
images may suffer from high noise and low contrast levels,
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Fig. 2. Effect of a range of filtering techniques on a log-compressed frame from a clinical transthoracic parasternal long-axis echocardiographic video. Adaptive
local statistics filters: (a) Lee et al. [32], (b) Kuan et al. [34], and (c) Frost et al. [33], [35]. Anisotropic diffusion filters: (d) Perona and Malik diffusion (PAMD)
[58], (e) SRAD [59], (f) detail preserving anisotropic diffusion (DPAD) [60], (g) nonlinear coherent diffusion (NCD) [61], and (h) OSRAD [62]. Wavelet filters:
(i) Zong et al. [53], (j) generalized likelihood method (GML) [48], and (k) NMWD filter [63], integrating wavelet transforms with anisotropic diffusion. (l) Original,
unprocessed frame with the RV and mitral-valve regions highlighted (used in the original study for CNR estimation). The figure has been adapted with relevant
permission from [64].

they also contain a variety of spatial features that should be
preserved during processing. Such features include interfaces
between structures represented with a different grayscale level,
e.g., cardiac tissue/chamber boundaries, as well as relatively
small structures, e.g., rapidly moving cardiac valves. Over the
years, a number of approaches for suppressing speckle and
noise have been introduced. Such approaches can be broadly
categorized into image filtering and compounding techniques.
Their effectiveness on enhancing image quality varies greatly.

A. Filtering

A range of postprocessing filters have been developed for
suppressing speckle and noise in medical ultrasound images.
From a very early stage, it was identified [27], [28] that non-
adaptive filters, such as mean and median, were inadequate
for enhancing medical ultrasound images since they intro-
duced severe blurring on the edges of anatomic structures
and consequently loss of valuable diagnostic information. Due
to the limitations of commonly used nonadaptive filters, the
development of effective noise and speckle suppression filters
for medical ultrasound images evolved into a field of major
research interest. While a diverse range of noise suppression

filters have been developed over the years [29], [30], most fil-
ters can be broadly categorized as: 1) adaptive local statistics;
2) wavelet domain; or 3) anisotropic diffusion filters. Fig. 2
provides some representative examples from all the three afore-
mentioned filter categories on cardiac ultrasound data. A recent
study by Biradar et al. [31] provided quantitative comparison
of 48 denoising filters covering approaches beyond the scope
of the present study, including Fourier, nonlocal means, fuzzy,
total variation, and other hybrid filters. The study provides a
very good resource to a wider range of filtering/despeckling
approaches.

1) Adaptive Filters: Adaptive local statistics filters have
long been used for the suppression of noise and speckle in medi-
cal ultrasound images. Such filters utilize statistical information
derived from a region-of-interest (ROI) within the processed
image, and adapt the parameters of the filter applied to this ROI
accordingly. Adaptable parameters include weighting, size,
and shape of the filter, among others. Adaptive local statis-
tics filters were initially applied on synthetic aperture radar
(SAR) data that also suffered from high levels of noise and
speckle [32]–[35] [Fig. 2(a)–(c)]. Jin et al. [36] provided a
qualitative and quantitative assessment on the performance of
popular SAR filters on medical ultrasound images. Thereafter,
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a number of adaptive filters have been developed for suppress-
ing noise and speckle in medical ultrasound images [27], [28],
[37]–[39]. Massay et al. [40] in an early attempt to enhance
the quality of cardiac ultrasound images utilized the adaptive
filtering approach first introduced by Bamber and Daft [27].
The filter identified regions containing speckle based on a pri-
ori knowledge of speckle statistics. Regions resembling fully
developed speckle were then heavily smoothed by a low-pass
(local mean) filter. The approach suppressed speckle consider-
ably in both phantom and clinical cardiac ultrasound images.
However, while intended to preserve the underlying cardiac
structure, the filter degraded the diagnostic value of the clini-
cal cardiac images by increasing the perceived dimensions of
cardiac chambers. Nillesen et al. [25] examined the effect of
two adaptive filters and one nonadaptive filter on pediatric car-
diac ultrasound images. Both adaptive filters were based on
the approach by Bamber and Daft [27] using local mean and
mean-squares, respectively, to smooth regions recognized as
homogeneous. The nonadaptive filter utilized the local entropy
[41]–[43] (measure of information) within a sliding kernel to
smooth homogeneous regions while enhancing tissue/chamber
edges. All three filters were found to be valuable preprocess-
ing steps to automatic tissue/chamber segmentation, reducing
speckle and enhancing the detectability between cardiac tissue
and chambers. Both adaptive filters outperformed the non-
adaptive approach with the choice of adaptive filter be of no
importance.

2) Wavelet Filters: Recently, there has been an increased
interest in utilizing wavelet transforms as a tool for suppress-
ing noise within medical ultrasound images. Wavelet filters
attempt to remove noise while preserving the boundaries of
anatomic structures. Filters in the wavelet domain consist of
three main steps [44]. 1) The original image is decomposed
using a wavelet transform. 2) The wavelet coefficients are mod-
ified in order to generate the desired noise suppression. 3) The
enhanced image is reconstructed from the modified wavelet
coefficients using an inverse wavelet transform. Wavelets pro-
vide an attractive domain for noise suppression in medical
ultrasound images due to inherent properties such as: 1) sim-
plicity, multiscale decomposition that simplifies the statistics
of complex signals; 2) multiresolution, image features are ana-
lyzed at an appropriate resolution scale; and 3) edge detection,
large wavelet coefficients coincide with image edges [45]. A
range of noise and speckle suppression filters for medical
ultrasound images operating in the wavelet domain have been
investigated [44]–[51] [Fig. 2(j)]. In an early study, Kang et al.
[52] identified the potential of wavelet filters in enhancing
cardiac ultrasound images by suppressing noise while preserv-
ing cardiac tissue/chamber edges. The suggested approach was
based on the assumption that edges demonstrate large signal on
a sequence of wavelet scales as opposed to noise and speckle
that are manifested on a limited number of wavelet scales. The
direct multiplication of wavelet data at adjacent scales was,
therefore, used to distinguish “important” edges from noise
and consequently accomplish the desirable noise suppression.
The approach was validated on a very limited number (five)
of single-frame 2-D cardiac ultrasound images outperforming
the basic, nonadaptive Wiener filter in the enhancement of the

processed data. Zong et al. [53] introduced an algorithm that
suppressed noise using multiscale wavelet analysis [54] while
enhancing cardiac structures using adaptive gain nonlinear pro-
cessing [55]. A discreet dyadic wavelet transform (DWT) [56]
was employed throughout the multiscale wavelet analysis in
order to reduce undesirable artifacts, such as pseudo-Gibbs
phenomena. The algorithm was thoroughly evaluated both qual-
itatively and quantitatively using 60 clinical datasets and input
from 2 expert observers. Compared to nonadaptive, adaptive,
and wavelet denoising-only filters, Zong et al.’s [53] approach
suppressed noise while enhancing the edges between cardiac
tissues and chambers considerably [Fig. 2(i)]. The enhance-
ment of the cardiac ultrasound images improved the consistency
and reliability of manually defined borders by expert observers,
especially for data of low image quality. Hao et al. [57] com-
bined adaptive filtering with wavelet domain techniques for the
effective suppression of cardiac ultrasound speckle. More pre-
cisely, the adaptive weighted mean filter [28] was utilized to
generate an image containing the signal and an image con-
taining the noise of the original data. Both images were then
individually processed using wavelet filters. The final, noise-
reduced image was obtained by summing the two filtered
images. The algorithm was evaluated on cardiac images from a
pig outperforming the individual adaptive [28] and wavelet fil-
ters [46] in noise suppression and edge preservation. However,
the assessment was very limited with no results on human
cardiac images being presented.

3) Anisotropic Diffusion Filters: Similar to filters in the
wavelet domain, anisotropic diffusion filters aim toward the
suppression of noise while preserving boundaries between
anatomic structures. Diffusion is known as the process that
equilibrates concentration differences by distributing particles
from areas with high to areas with low concentration [65].
During diffusion, a set of filtered images are iteratively gen-
erated until a sufficient level of noise suppression is achieved.
The image diffusion, and consequently the noise suppression, is
controlled by a partial differential equation. Within the partial
differential equation, a diffusion coefficient is utilized in order
to identify edges within the image and encourage noise sup-
pression within homogeneous regions instead of across edges.
The diffusion coefficient can be a constant scalar value, a
process known as isotropic diffusion, or a tensor that is a
function of the differential structure of the evolving image,
a process known as anisotropic diffusion [65]. Anisotropic
diffusion is required in order to suppress noise while main-
taining edges within an image. This process has been referred
to as intra-structure smoothing as distinct from inter-structure
smoothing [66]. Anisotropic diffusion filters were introduced
by Perona and Malik [58] [Fig. 2(d)]. Over the last decade,
a wide range of such filters for the suppression of speckle
and noise in medical ultrasound images have been developed
[59], [60], [62], [67], [68] [Fig. 2(e), (f), and (h)]. A method
for noise reduction and feature enhancement of cardiac ultra-
sound images using anisotropic diffusion was presented by
Abd-Elmoniem et al. [61] [Fig. 2(g)]. For a robust and opti-
mal speckle suppression and anatomic feature enhancement,
the proposed model changed progressively from isotropic lin-
ear diffusion, through anisotropic diffusion to finally mean
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curvature motion according to the extent of speckle and image
anisotropy. Processing the raw scan lines along with a special
discretization scheme improved the processing requirements of
the technique, potentially enabling its real-time implementa-
tion on commercial systems. The noise suppression and feature
preservation properties of the algorithm were assessed using
phantom, cardiac, liver, and kidney images that exhibit a range
of structural information. When compared with adaptive [28]
and wavelet [53] filters, the proposed anisotropic diffusion
algorithm appeared to best smooth speckle while preserving
anatomic structures. However, the assessment was performed
on a limited number of datasets (1 of each type) and based
only on qualitative observations. Yue et al. [63] combined
wavelet transforms along with anisotropic diffusion for the
suppression of noise and enhancement of anatomic features
within cardiac ultrasound images [Fig. 2(k)]. More precisely,
the original image was decomposed into multiscale wavelet
coefficients, which then individually underwent anisotropic
diffusion. The idea was to benefit from the multiresolution
property of wavelets as well as the edge preservation prop-
erty of anisotropic diffusion, introducing a more effective,
integrated image-enhancement method. The evaluation of the
method, while very limited (1 clinical dataset), demonstrated
potential to outperform the individual wavelet [46] and diffu-
sion filters [59] in noise suppression and edge enhancement
of cardiac ultrasound images. More recently, Gu et al. [69]
employed the normalized modulus of the image’s wavelet coef-
ficients at different scales as a robust edge detector instead
of a gradient (differential) operator. The approach was quan-
titatively and qualitatively assessed using simulated and in
vivo cardiac ultrasound images, respectively. In both cases,
the proposed approach outperformed other popular despeck-
ling methods [30], [59], [63] in noise suppression and edge
preservation. However, similar to other diffusion filters [61],
[63] applied in cardiac ultrasound data, the assessment was of a
very limited extent (1 in vivo dataset). A more extensive assess-
ment is necessary for more solid conclusions with regards to the
performance of each filter to be made.

4) Comparing Filtering Techniques: A recent study by
Finn et al. [64] provided a thorough quantitative evaluation
and comparison among 15 popular noise and speckle sup-
pression filters on a range of simulated and clinical cardiac
ultrasound images. A range of early local statistics adaptive
filters [32]–[34], wavelet domain filters [48], [53], [63], and
anisotropic diffusion filters [58]–[60], [62], [65] were evalu-
ated. Fig. 2 provides a characteristic example of the effect of
these filters on clinical cardiac ultrasound data. Hundred clin-
ical cardiac ultrasound scans from forty patients were utilized
in order to assess the effect of each filtering algorithm on five
quantitative image quality metrics: 1) Pratt’s figure of merit
[70], measuring the displacement of edge pixels between the
original and each filtered image; 2) structural similarity [71],
assessing the preservation of structural information (cardiac
structure); 3) edge region mean square error (MSE), assess-
ing the average absolute difference between the extracted edges
in the original and filtered images; 4) contrast-to-noise ratio
(CNR), assessing the effect of each filtering method on the
contrast between cardiac chambers and tissue structures; and

5) signal-to-noise ratio (SNR), assessing the levels of noise and
speckle in the original and filtered images. The quantitative
metrics were chosen in order to assess the effect of filters on
noise suppression, contrast enhancement, and feature and edge
preservation. Moreover, the study was very comprehensive
making some valuable comparisons among popular noise sup-
pression filters. From the findings, anisotropic diffusion filters
performed better on simulated data. However, the results were
more diverse for clinical cardiac ultrasound images, the quality
of which was affected by a wider range of artifacts. The most
satisfactory noise suppression and feature preservation was
achieved by the oriented speckle reduction anisotropic diffusion
(OSRAD) filter developed by Krissian et al. [62] [Fig. 2(h)],
and the nonlinear multiscale wavelet diffusion (NMWD) filter
[63] [Fig. 2(k)], integrating wavelet transforms with anisotropic
diffusion. Both filters performed well in the quantitative assess-
ment as well as the visual inspection of the processed images.
Furthermore, both OSRAD and NMWD achieved some of the
highest increases in CNR between cardiac tissue and chambers
in both the simulated and the clinical data. A large variability in
the effects of the examined filters on the CNR between clinical
and simulated data was observed. On simulated data, more than
60% of examined filters demonstrate reduction (compared to a
reference image) in CNR, while on clinical images, all filters
demonstrated improvement in CNR. As a result, the findings
on the effect of the examined filters on CNR were inconclusive
demonstrating the scope for further research in cardiac tis-
sue/chamber contrast-enhancement approaches. Nevertheless,
in general, anisotropic diffusion filters followed by wavelet
filters performed the best in cardiac image enhancement. In
addition, while diffusion and wavelet filters tend to be more
computationally intensive than adaptive filters, diffusion filters
seem to provide the best tradeoff between performance and
computational requirements, potentially making them better
filtering candidates for clinical cardiac ultrasound images [31].

5) Limitations of Filtering Techniques: Postprocessing
image filters for noise and speckle suppression suffer from a
number of inherent limitations. Such limitations include the
sensitivity to the size and shape of the filter window and some-
times to a required threshold value. In most cases, such filter
parameters are determined empirically. Inappropriate choice
may result in ineffective filtering. Moreover, some filters focus
on speckle reduction making assumptions on the nature of the
noise adopting a multiplicative model [59], [60], [62], [68].
However, acoustic noise in cardiac ultrasound images orig-
inates from a range of acoustical phenomena. Furthermore,
the multiplicative model does not take into account the loga-
rithmic compression commonly applied to RF ultrasound data
to reduce its dynamic range for displaying. Other approaches
compensate for this logarithmic compression converting to an
additive noise model with a Gaussian, or Rayleigh probabil-
ity density function (pdf) [44], [45], [47], [49]. However, as
demonstrated by Kaplan and Ma [72], the log-compression of
a Rayleigh-distributed signal (multiplicative noise) results in a
Fisher–Tippett pdf. These assumptions of the noise model can,
therefore, be considered restrictive and sometimes erroneous.
Furthermore, while many filters claim to enhance contrast and
anatomic structure edges, what they actually do is contrast
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Fig. 3. Two-dimensional slices from two example datasets of (a) original unprocessed images, and compounded images using different compounding methods
such as (b) mean, (c) maximum, and (d) weighted mean based on a local feature coherence/consistency as described in [89]. The figure has been reproduced with
relevant permission from [89].

and edge preservation by withholding noise suppression along
tissue/chamber edges. Finally, postprocessing filtering tech-
niques do not address artifacts such as shadowing and rever-
berations that are commonly observed in cardiac ultrasound
images. The presence of such artifacts may result in loss of
clinically valuable information throughout the filtering process.
Consequently, there is still a lot of scope in the research and
development of alternative methods for enhancing the quality
and diagnostic value of cardiac ultrasound images.

B. Compounding

Compounding techniques involve the fusion of multiple inde-
pendent or partially decorrelated images of an anatomic struc-
ture obtained by varying one or more system parameters during
data acquisition. Compounding techniques have been used for
the suppression of speckle in medical ultrasound data for about
three decades. The success of compounding techniques depends
heavily on the statistical independence (decorrelation) among
the speckle patterns of the source data. Burckhardt [4] demon-
strated that if N independent ultrasound images are fused, then
the SNR of the compound image will be increased by a fac-
tor of

√
N . Over the years, a number of data fusion strategies

have been attempted including minimum, maximum, median,
root mean square (rms), and various forms of weighted aver-
aging. Fig. 3 provides examples of different intensity fusion
approaches in 3-D cardiac ultrasound data. Currently, intensity
averaging is the most commonly used image fusion strategy.

Spatial and frequency compounding are two commonly used
compounding approaches. Early studies reported the poten-
tial of spatial compounding in speckle and noise suppression
of medical ultrasound images [73]–[75]. Spatial compounding
involves the fusion of independent images whose speckle pat-
terns have been modified (decorrelated) by imaging the target
ROI from varying angles. The variation in the imaging angle
can be achieved by electronically steering the direction of the
transmitted ultrasound signals or by repositioning the ultra-
sound transducer along the scanning plane. Through electronic

signal steering, the acquisition of real-time compounded images
is feasible. However, electronic steering reduces the temporal
resolution of the acquired images. Repositioning the transducer
provides greater flexibility in the level of independence (decor-
relation) as well as the number of the independent views of the
imaged anatomic structure. However, reliable data alignment
is required for the effective compounding of images acquired
through transducer repositioning. Furthermore, the data acqui-
sition time requirements are increased. In order to be able to
achieve optimal spatial compounding, a number of studies have
attempted to determine the correlation of speckle patterns as
a function of aperture translation [4], [76], [77]. Frequency
compounding involves the averaging of images whose speckle
patterns have been modified (decorrelated) by a change in the
spectrum of the transmitted or received acoustical pulse [78]–
[81]. Frequency compounding has been reported to reduce
speckle contrast and enhance structure boundaries in medi-
cal ultrasound images. However, Trahey et al. [80] observed
that due to a resulting loss of resolution, frequency compound-
ing is counterproductive in improving image quantity. Trahey
et al. [82] combined frequency and spatial compounding in an
attempt to compensate for this loss of resolution, providing a
more effective noise and speckle suppression technique.

1) Spatial Compounding of 3-D Cardiac Ultrasound
Images: Spatial compounding addresses many of the artifacts
limiting the quality and diagnostic value of cardiac ultrasound
images, making it an inherently more suitable noise and speckle
suppression approach than postprocessing filters. However, the
constant rapid movement of the heart, the constant respiration
motion of the patient’s chest, and the limited acoustic win-
dows between the rib cage and lungs introduce a number of
limitations and challenges for spatial compounding methods. A
number of studies have attempted to address these challenges in
spatial compounding through transducer repositioning, enhanc-
ing cardiac ultrasound images. Soler et al. [83] performed
spatial compounding of two cardiac volumes acquired from
different apical acoustic windows. The 3-D volumes were spa-
tially aligned without the use of external positioning sensors.
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The registration approach was performed in two steps; an ini-
tial coarse alignment of two semiautomatically segmented left
ventricle (LV) volumes was followed by a refined rigid registra-
tion of the volumetric data. Grau and Noble [84] introduced a
method for compounding manually aligned apical and paraster-
nal views of 3-D cardiac images. The compounding was based
on image phase, and was implemented using the monogenic
signal [85]. Grau and Noble [84] argued that image phase pro-
vides contrast invariant information on local structure definition
and orientation. Considering the low contrast in many cardiac
ultrasound images, image phase may provide a robust infor-
mation resource. Yao and Penney [86] extended the previous
attempts by aligning and compounding up to 11 parasternal
and apical 3-D volumes. A combination of optical position
sensors and rigid registration was utilized for the accurate align-
ment of the volumes. Traditional approaches such as intensity
maximum and average, along with phase-based compounding,
were also investigated. Rajpoot et al. [87] developed the first
approach utilizing a fully automatic, multiresolution, voxel-
based rigid registration for the alignment of multiple apical 3-D
volumes. A novel wavelet-based spatial compounding method
was also introduced enabling the decomposition and relevant
fusion of the aligned volumes in low- and high-frequency com-
ponents. Yao et al. [88], [89] used a combination of optical
tracking followed by phased-based registration similar to [90]
to align the 3-D cardiac volumes. Weighted averaging based
on local feature coherence/consistency was employed for opti-
mized image feature preservation during spatial compounding
(Fig. 3). Gao et al. [91] performed a phantom-based feasibility
study on the real-time compounding of transesophageal car-
diac ultrasound volumes. An electromagnetic position sensor
was utilized for the spatial alignment of the images. Another
recent study investigated the effect of spatial compounding of
multiple 3-D volumes on fetal cardiac ultrasound data [92].
The effect of a range of compounding approaches was exam-
ined including intensity maximum, mean, median as well as
wavelet-based compounding. The physiology of a fetal heart,
small size, and high heart rate, along with the absence of
standard imaging windows in fetal cardiology, introduced addi-
tional challenges in effective spatial compounding. Szmigielski
et al. [93] performed a thorough qualitative and quantitative
assessment on the effect of spatial compounding of 3-D car-
diac ultrasound images using phantom as well as clinical data
from 32 participants. A rigid, fully automatic, voxel-based reg-
istration was utilized for the spatial alignment of the cardiac
volumes. Finally, most of the aforementioned studies aligned
and compounded frames from a single temporal phase of the
cardiac cycle, usually consisting of end-diastole (ED) and/or
end-systole (ES) frames. Mulder et al. [94], [95] compared
the alignment results of employing single or multiple frame-
pairs for the alignment of cardiac frame sequences. Linear
temporal characteristics were assumed between ED and ES car-
diac phases. Since, temporally corresponding frame pairs were
matched, rigid spatial registration using normalized cross corre-
lation (NXC) and mutual information (MI) was employed. The
proposed algorithm was applied for the alignment of the LV and
right ventricle (RV) volumes from 28 healthy volunteers, indi-
cating that multiframe registration using NXC yield improved

results when compared to single frame registration. However,
the assumption of linear temporal characteristics can be consid-
ered a bit restrictive leaving scope for the improvement on the
alignment and compounding of multiple 3-D volumes.

The aforementioned studies have identified the potential of
spatial compounding in improving the quality and diagnostic
value of 3-D cardiac ultrasound images. Substantial noise and
speckle reduction, field of view increase, reducing angle depen-
dencies, acoustic shadowing and reverberation compensation,
and enhancement of the presence of visually weak cardiac
structures are commonly identified benefits of spatial com-
pounding of cardiac volumes. The choice of spatial compound-
ing approach has a direct effect on the processed images. The
intensity averaging (mean or median) methods tend to gener-
ate a higher level of noise and speckle suppression. Techniques
like maximum intensity compounding enhance anatomic fea-
ture delineation [92]. More advanced approaches such as phase-
and wavelet-based compounding provide a tradeoff between
noise suppression and feature delineation [92]. Some tech-
niques like maximum intensity, deconvolution, phase-based,
and wavelet compounding have been identified to introduce a
modest tissue/chamber contrast increase [83], [86], [87].

Spatial compounding can introduce blurring across the
boundaries of the imaged anatomic structures [75], [76], [96].
Blurring across structure boundaries can arise from a wide
range of sources including: 1) uncertainties in transducer posi-
tion; 2) uncertainties in the velocity of moving tissue structures;
3) errors in the assumed mean speed of sound; 4) spatial
variations in the speed of sound; and 5) tissue movement
during the sequential data acquisition. The accurate spatio–
temporal alignment of the fused 3-D volumes is a key process
for effective spatial compounding. Accurate alignment of all
individual views of the imaged structure prior to spatial com-
pounding can limit and possibly eliminate blurring across
structure boundaries. Insufficient alignment may result in con-
siderable degradation of the diagnostic value of the processed
images. Most current approaches utilize fully automated, voxel-
based rigid spatial registration of the compounded volumes.
While nonrigid spatial registration could provide a more accu-
rate alignment, its potential is currently limited due to the
high levels of noise and low contrast of the aligned datasets.
Moreover, nonlinear image transformation may result in unde-
sired deformation of the cardiac physiology and is, therefore,
not advisable. Currently, no study has attempted to address
the temporal variability between consecutive cardiac cycles.
This constitutes a major limitation in existing studies, which
assume a regular cardiac cycle for the compounded volumes.
This assumption is very restrictive and may cause severe defor-
mation of cardiac structures affecting the diagnostic value of
the processed images. Overall, throughout the years, there has
been a substantial improvement in image alignment methods.
It is expected that future studies will address most current
limitations making the compounding of partially decorrelated
3-D volumes of the heart a very powerful image-enhancement
tool. Nonetheless, possible physical barriers to multiview 3-D
image acquisition due to extended acquisition and restricted
acoustic windows through the patient’s rib cage may limit its
applicability.
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2) Spatial Compounding of 2-D Cardiac Ultrasound
Images: The acquisition of independent cardiac views using
2-D ultrasound is more challenging than the corresponding 3-D
image acquisition. For effective spatial compounding 1) all
images need to be acquired over the same or a very similar
scan plane and 2) a substantial overlap between the individual
heart views is required. Consequently, acquiring 2-D images
suitable for effective spatial compounding through different
acoustic windows (in a manner similar to 3-D volumes) is very
ambitious and possibly not feasible with current acquisition
and tracking technology. A number of studies have attempted
to overcome this limitation by spatially compounding partially
decorrelated 2-D images of the heart acquired along the tempo-
ral domain through a single acoustic window. The studies can
be broadly categorized as: 1) compounding of temporally adja-
cent frames and 2) compounding frames corresponding to the
same cardiac phase acquired over consecutive cardiac cycles.
All of the proposed approaches can be extended to 4-D cardiac
ultrasound volumes.

An early study by Petrovic et al. [97] enhanced cardiac
ultrasound images by averaging the intensity levels from three
consecutive frames. Due to the constant motion of the heart,
the consecutive frames were partially decorrelated and conse-
quently spatial compounding reduced noise and speckle in the
processed images. However, averaging consecutive frames of
a constantly and rapidly moving structure, such as the heart,
introduced a considerable amount of blurring on the bound-
aries of cardiac tissue and chamber. Furthermore, averaging
three frames to generate a single frame substantially reduced
the temporal resolution of the processed dataset. A very similar
approach was used to enhance intravascular ultrasound images
by Li et al. [98]. Achmad et al. [99] attempted to address
both limitations of the compounding method introduced by
Petrovic et al. [97]. More precisely, for each frame in the
B-mode frame sequence, a moving window was defined con-
taining the preceding and the following frames (three frames).
Optical flow [100] was utilized to derive an intermediate frame
between the preceding and the following frame, which was
then compounded with the current frame. By performing spa-
tial compounding for each individual frame in the original
B-mode frame sequence utilizing a moving window, no loss
of temporal resolution was introduced. Moreover, by generat-
ing a partially decorrelated intermediate frame to compound
with each frame in the sequence, no severe tissue/chamber
boundary blurring was introduced. However, the noise sup-
pression introduced by averaging two frames was very limited.
Similar approaches have been adopted as a preprocessing step
to image segmentation by dos Reis et al. [101], [102]. Lin et al.
[103] extended further the compounding of temporally adjacent
frames by utilizing a hierarchical, motion-compensating tech-
nique to spatially align (warp) up to nine frames. Qualitative
and quantitative assessment demonstrated considerable noise
reduction and enhancement of anatomic structures. However,
the technique relied heavily on the accurate nonlinear regis-
tration of consecutive cardiac ultrasound frames. Currently, the
applicability of nonlinear image registration methods is limited
for a large proportion of cardiac ultrasound scans due to high
levels of noise and low contrast. Consequently, the applicability

Fig. 4. Original (left) and compound (right) parasternal long axis ED frames
of low image quality and diagnostic value. The images are generated
using the temporal compounding approach as described in [105] and [112].
Compounding suppresses tissue speckle and chamber noise substantially. Data
remain of low diagnostic value but some structures such as the IVS and
RV (top), and the IVS, RV, LVPW, and aortic valve (bottom) marginally
enhanced enabling their delineation. The figure has been reproduced with
relevant permission from [112].

of this noise reduction method is limited to cardiac ultrasound
images with low levels of noise.

Another set of studies attempted to utilize the repeated rhyth-
mic contractions of the heart in order to acquire multiple 2-D
images of the same cardiac phase over consecutive cardiac
cycles. The process has been referred to as temporal compound-
ing [104]. Minor random movements during a multicycle image
acquisition alter the scan plane resulting in the acquisition
of partially decorrelated views of the imaged cardiac struc-
ture. Spatially compounding such partially decorrelated frames
corresponding to the same cardiac phase acquired over con-
secutive cardiac cycles can, therefore, enhance the processed
images. Accurate and robust temporal and spatial alignments
of corresponding frames acquired over multiple cardiac cycles
are essential processes for effective temporal compounding.
Insufficient spatio–temporal alignment may result in severe
blurring of the imaged cardiac structure. Figs. 4 and 5 [105]
provide representative examples of the effect of temporal com-
pounding on cardiac ultrasound images over a range of image
qualities and diagnostic values.

van Ocken et al. [106] first identified the potential of fusing
information acquired over consecutive cardiac cycles in order
to enhance the quality of the ultrasound datasets [107]. Unser
et al. [108] performed averaging on a normalized time scale
of M-mode ultrasound data acquired over a number of con-
secutive cardiac cycles. The temporal alignment to a reference
cardiac cycle was performed using a dynamic programming
time-wrapping algorithm requiring no ECG information. The
compounding method enhanced the M-mode cardiac ultrasound
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Fig. 5. Original (left) and compound (right) parasternal long axis ED frames
of average (top) and high (bottom) image quality and diagnostic value. The
images are generated using the temporal compounding approach as described
in [105] and [112]. Compounding suppresses tissue speckle and chamber noise
substantially. Structures such as the IVS, RV, and aortic valve (top) and the
RV and aortic valve (bottom) are enhanced without any noticeable blurring
across cardiac tissue and cavities. The figure has been reproduced with relevant
permission from [112].

scans by suppressing noise with no apparent loss of tempo-
ral resolution. Vitale et al. [109] presented the first attempt
to use compounding of partially decorrelated B-mode images
acquired over consecutive cardiac cycles. In this early attempt,
the temporal alignment of corresponding frames was based
on information extracted from the ECG signal. More pre-
cisely, the ED frames from each cardiac cycle were identified
at the peaks of the QRS complex of the recorded ECG sig-
nal. Twenty two frames were then extracted using regular
temporal displacement between two consecutive ED frames.
Corresponding frames from consecutive cardiac cycles were
spatially compounded by intensity averaging. The study exam-
ined the effect of compounding an increasing number of frames
on noise and speckle. The results were promising with images
from ten cardiac cycles providing a good tradeoff between
noise suppression and processing resources. Similar approaches
have in recent studies been adopted and combined with com-
pounding of temporally adjacent frames as a preprocessing
step for more effective image segmentation of cardiac struc-
tures [110], [111]. However, these studies [109]–[111] suffered
from two major limitations. In the first instance, the studies
assumed that cardiac cycles are occurring in regular intervals.
Unfortunately, this is not the case in most clinical cardiac
ultrasound scans. Second, no spatial alignment was performed
on the temporally aligned frames prior to intensity averaging.
Spatial alignment can compensate for larger movements of the
heart during the multicycle image acquisition. Both limitations
can lead to severe blurring of the imaged cardiac structure

depreciating substantially the diagnostic value of the processed
images.

Olstad [113] extended the temporal compounding approach
by introducing a rigid spatial alignment to compensate for
larger cardiac movements during the multicycle image acquisi-
tion. Abiko et al. [104] presented a novel spatio–temporal align-
ment utilizing exclusively 1-D intensity information extracted
from the central scan line of each frame. While a crude heuris-
tic method for image alignment, the study demonstrated the
potential for an accurate temporal alignment without mak-
ing 1) any assumptions on the characteristics of the cardiac
cycle and 2) use of ECG information. However, the study uti-
lized very limited information from highly noisy images in
order to perform the very important task of spatio–temporal
image alignment prior to spatial compounding. Moreover, it
assumed no image rotation or translation along the long-axis
(only translation along the short-axis) over the multicycle
scan. This assumption is very restrictive and may result in
severe blurring of the imaged cardiac structures in the pro-
cessed images. Perperidis et al. [105], [112] attempted to
address this limitation by introducing a seven-stage nonlinear
temporal alignment along with a robust rigid spatial align-
ment using exclusively intensity information from within the
image sequences. Qualitative and quantitative results on the
quality and diagnostic value of the processed images were
very promising (Figs. 4 and 5). Giraldo-Guzman et al. [114]
combined temporal compounding with anisotropic diffusion
for enhanced speckle suppression. The approach compound
images from three cardiac cycles before applying an anisotropic
diffusion filter on them. The approach was tested on 20
cardiac ultrasound videos and compounding increased the
SNR improvement by a factor of 3 when compared to just
the anisotropic diffusion filter. Finally, in a feasibility study,
Perperidis et al. [115] extended their earlier approach by acquir-
ing and compounding adjacent (along the elevation plane),
partially decorrelated cardiac slices from a single acoustic
window. Therefore, decorrelated images could in principle be
acquired using real-time 4-D matrix transducer technology over
a single cardiac cycle, abolishing the requirement for a mul-
ticycle acquisition and an accurate spatio–temporal alignment
process.

All of above studies have established the benefits of spatially
compounding partially decorrelated images from consecutive
cardiac cycles. Similar to other spatial compounding tech-
niques, considerable noise suppression can be introduced along
with enhancement of visually weak cardiac structures (Figs. 4
and 5). The potential of the approach has also been recognized
by a number of studies [110], [111], [116], [117], even for
other imaging modalities such as CT [118]. However, while
the accurate and robust spatio–temporal image alignment is a
key process for effective compounding of data from consecutive
cardiac cycles, many current implementations fail to provide
a reliable and effective registration approach. As a result, it
is strongly believed that there are current research opportu-
nities on the development of such spatio–temporal alignment
algorithms as well as more advanced image compounding
techniques.
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III. OTHER CARDIAC ULTRASOUND

IMAGE-ENHANCEMENT TECHNIQUES

Cardiac ultrasound suffers from numerous artifacts besides
noise and speckle. Compounding can address some of these
artifacts including acoustic shadowing, reverberations, and
structures moving in and out of plane. However, there are arti-
facts that require more dedicated approaches, and while they
limit the quality and diagnostic value of the acquired images
considerably, there has not been substantial research interest in
order to address them.

A. Contrast Enhancement

Limited contrast between cardiac tissue and chambers con-
stitute a major limitation on cardiac ultrasound images (Figs. 4
and 5) making (when combined with noise) the delineation
of cardiac structures very challenging for both automatic and
manual, expert-driven approaches. Consequently, low contrast
levels limit the diagnostic value as well as the effectiveness
of postprocessing techniques such as image segmentation and
registration of cardiac ultrasound images. Contrast agents such
as microbubbles [119], [120] have been successfully used to
enhance the delineation between cardiac chambers and the
myocardium in cardiac ultrasound images [121]. However, due
to their invasive nature, the coverage of such techniques goes
beyond the scope of this paper. Noncontrast tissue harmonic
imaging (THI) has also been used in order to enhance the
contrast and delineation between cardiac tissue and chambers.
Harmonics are frequencies that occur at multiples of the fun-
damental or transmitted frequency [122]. Ward et al. [123],
[124] identified the nonlinear propagation properties of tissue
contributing to harmonic ultrasound images. Averkiou et al.
[125] presented some early in vivo harmonic images. Since
then, numerous studies have qualitatively and quantitatively
assessed the effect of THI, using second harmonic frequen-
cies, on cardiac ultrasound data [126]–[129]. The effect of
THI on specific techniques such as stress echocardiography
has also been investigated [130], [131]. Through these stud-
ies, it has been well established that THI can enhance the
quality of cardiac ultrasound images. However, there are still
a number of challenging cases where effective postprocessing
techniques are required for the contrast enhancement between
cardiac tissue and chambers.

Boukerroui et al. [132] introduced a novel contrast and
anatomic feature-enhancement approach based on a phase-
based feature detection algorithm. The algorithm utilized fea-
ture asymmetry [133], a 2-D extension of phase congruency
[134] providing a robust, brightness, and contrast-invariant
detection of asymmetric image features, such as step edges.
The sparse set of extracted features was then interpolated by
a fast sparse surface interpolation (FSI) algorithm. Finally,
a novel nonlinear processing method was developed recon-
structing an approximation to the intensity inhomogeneities
within the corrupted data which were subtracted from the orig-
inal images. The algorithm was applied in a set of B-mode
cardiac ultrasound image sequences. The results in contrast
and anatomic feature enhancement were promising. However,

Fig. 6. Example of a dataset with good image quality. (a) Original ED frame.
(b) ED frame after applying histogram equalization. (c) ED frame after apply-
ing ABTFs [117]. (d) Original ES frame. (e) ES frame after applying histogram
equalization. (f) ES frame after applying ABTF. ABTF results have better con-
trast when compared with both the original and the histogram equalized images.
The figure has been reproduced with relevant permission from [117].

Boukerroui et al. [132] identified that feature asymmetry was
not very effective for images with low SNR. This drawback of
feature asymmetry can impose a major limitation on the appli-
cability of the contrast-enhancement approach to substantial
proportion of clinical cardiac ultrasound images.

Zwirn and Akselrod [116], [117] introduced a very interest-
ing technique for the automatic adjustment of the gray-levels
used in cardiac ultrasound images aiming to enhance cardiac
tissue visualization and tracking (Figs. 6 and 7). The tech-
nique was referred to as adaptive brightness transfer function
(ABTF) and was based on the assumption that the gray-level
histogram of cardiac ultrasound images can be approximated
by the sum of three overlapping Gaussian distribution func-
tions. Each Gaussian represented a different cardiac structure,
with the low-intensity Gaussian representing cardiac chambers,
and the medium- and high-intensity Gaussians representing
low- and high-intensity cardiac tissue structures, respectively.
The intersection between these three Gaussians would then
act as thresholds defining the intensity range for each of the
three image segments. Each section of the histogram was
then processed individually using a number of techniques
including histogram equalization, specification, and scaling.
ABTF provided an extension to similar histogram analysis
approaches for the enhancement of low-contrast images [135],
[136]. The results from a qualitative and quantitative assess-
ment of the ABTF on suppressing noise in cardiac chambers
and enhancing contrast between cardiac tissue and chambers
were promising (Figs. 6 and 7). However, for highly noisy
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Fig. 7. Example of a dataset with average image quality. (a) Original ED frame.
(b) ED frame after applying histogram equalization. (c) ED frame after apply-
ing ABTFs [117]. (d) Original ES frame. (e) ES frame after applying histogram
equalization. (f) ES frame after applying ABTF. ABTF results have better con-
trast when compared with both the original and the histogram equalized images.
The figure has been reproduced with relevant permission from [117].

data, the histogram of acoustic noise in cardiac chambers may
overlap considerably with that of low-contrast tissue struc-
tures. Misclassification between cardiac tissue and chambers
can prevent the suppression of high-amplitude noise and the
delineation of low-contrast tissue. Nevertheless, morphological
operations can partially compensate for such misclassifications
while spatial compounding can suppress any remaining noise
in cardiac chambers. Furthermore, like all the histogram-shape-
based approaches, ABTF made a very strong assumption about
the shape of the gray-level histograms of the processed cardiac
ultrasound images. While some images may conform to it, such
an assumption may be restrictive for the representation of a
wide range of clinical datasets. Finally, ABTF assumed con-
stant illumination throughout the scanned structure, which in
many cardiac ultrasound scans is not accurate.

A few studies have introduced postprocessing techniques in
an attempt to enhance contrast in cardiac ultrasound images. A
number of postprocessing filters [30], [53], [63], [64], as well as
spatial compounding approaches [86], [87], [93], have claimed
to enhance the cardiac structure boundaries along with the con-
trast between cardiac tissue and chambers. Many of these noise
suppression methods actually performed contrast and boundary
preservation rather than enhancement. Specialized algorithms,
primarily focusing on the contrast enhancement of cardiac
ultrasound images, have also been developed [116], [117],
[132]. Their results have demonstrated potential in enhancing
the contrast and anatomic features in cardiac ultrasound images.
However, some of these studies [116], [117] make strong and

potentially limiting assumptions on the histogram shape of the
processed images, while others [132] have been identified to
be effective only on data with high SNR. With low contrast
between cardiac tissue and chambers being a well-recognized
limitation in echocardiography, there is research opportunity in
the advancement of the existing techniques developing a more
effective and robust contrast-enhancement approach making
fewer assumptions on the processed images.

B. Suppression of Stationary Noise

Side-lobes and reverberations between near-field structures
such as ribs and intercostal muscles introduce acoustic noise
(also referred to as clutter) in the cardiac ultrasound images
[137]. Cardiac motion is considerably faster than the motion of
such structures, which is predominantly introduced during the
patient’s respiration. Consequently, noise originating from such
slow-moving structures appears to remain stationary through-
out the multiframe acquisition. Stationary noise (clutter) is
an artifact present in most cardiac ultrasound scans corrupt-
ing cardiac structures and therefore limiting the applicability
of commonly used processing techniques as well as the diag-
nostic value of the images. Hozumi et al. [138] provided an
early technique for suppressing stationary noise by introduc-
ing a high-pass filter on cardiac ultrasound data acquired over
consecutive frames. More precisely, for each pixel within a ref-
erence image, the intensity variations over consecutive frames
were extracted as a 1-D signal. This signal was decomposed
into the tissue-generated component and a noise component
by utilizing a high-pass filter. The high-pass filter was imple-
mented by subtraction between the original noise-corrupted
signal and a moving-average signal representing the stationary
noise. The moving-average signal was generated by succes-
sively averaging a number of adjacent values of the original
signal and shifting the averaging range. While the results in the
study appeared promising, an implementation and evaluation
of the technique introduced by Hozumi et al. [138] demon-
strated a limited effect in noise suppression on clinical cardiac
ultrasound images.

Zwirn and Akselrod [139] provided a different approach
in order to address the stationary noise within cardiac ultra-
sound images. Unlike the approach by Hozumi et al. [138], no
high-pass filter was employed. Instead, two reference frames
were generated. The first reference frame contained the average
intensity level over the consecutive frames. For strong station-
ary noise, the mean intensity value should be relatively high.
The second reference image contained the MSE between each
consecutive frame and the average intensity frame. For station-
ary noise, the MSE should be relatively low. The corresponding
thresholds were derived utilizing the three Gaussians histogram
decomposition introduced in [116] and [117]. For the average
intensity frame, the threshold was set as the intersection of the
two high-intensity Gaussians. Any pixel with intensity higher
than the threshold could possibly be stationary noise. For the
MSE frame, the threshold was set as the intersection of the two
low-intensity Gaussians. Any pixel with intensity lower than the
threshold could possibly be stationary noise. Pixels that were
identified in both reference images as potential stationary noise
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Fig. 8. (a) B-mode and (b) SLSC images of the LV. The corresponding SLSC
image shows reduced clutter and more well-defined borders, especially in the
near field. The figure has been reproduced with relevant permission from [140].

were removed from the original frame sequence. The results
from the study were very promising. However, strong relatively
akinetic tissue segments, such as the pericardium, could be
falsely identified and removed as stationary noise.

In a more recent study, Lediju et al. [140]–[142] introduced
a novel image acquisition and formation method referred to as
short-lag spatial coherence (SLSC) imaging (Fig. 8). Instead of
the conventional B-mode imaging, SLSC data display differ-
ences in spatial coherence. More precisely, spatial coherence
was estimated by cross-correlating the time-delayed echoes
received by individual transducer elements and plotting them
as a function of element separation. The authors claimed that
spatial coherence of the myocardium demonstrates different
characteristics from that of cardiac chambers or clutter. This
difference in spatial coherence tends to be larger for smaller
element separations (shorter lags). Hence, they defined a met-
ric called SLSC estimating the integral of the spatial coherence
function over the first M lags (with M ≤ 30% of the aper-
ture size). An SLSC image was then formed by estimating the
SLSC using a correlation kernel of one wavelength for each
location (scan line and depth) across the imaging plane. The
technique was first introduced in [141] and tested using sim-
ulated, phantom (lesions), and in vivo human thyroid data. It
was then applied for the suppression of clutter noise in cardiac
ultrasound data in [140] and [142]. The technique was qual-
itatively and quantitatively assessed on in vivo data from 14
volunteers (6 healthy and 8 patients). For the qualitative assess-
ment of endocardial visualization, three experienced cardiology
fellows were requested to rank (from 1—low to 3—high) a
number of specific segments from mid-level sort axis and api-
cal four-chamber views of the LV. Furthermore, measures such
as contrast, CNR, and SNR were derived from the short axis
views. SLSC decreased the percentage of segments with poor
myocardial visualization as well as the images characterized
as of poor quality. Similarly, SLSC mostly improved the con-
trast, CNR, and SNR in comparison to the B-mode images.
SLSC was extended to combine the harmonic signals (instead
of just the fundamental) to form a new spatial coherence image.
The approach was referred to as harmonic spatial coherence
imaging (HSCI) [143]. HSCI demonstrated the potential to
moderately improve on the SLSC performance. However, the

results presented in the study did not indicate any substantial
improvement. Combining image formation approaches, such
as SLSC and HSCI, with postprocessing approaches such as
the one introduced by Zwirn and Akselrod, can potentially
maximize the clutter suppression in cardiac ultrasound images.

IV. SUMMARY AND CONCLUSION

A wide range of artifacts limit the quality and diagnostic
value of cardiac ultrasound images. Over the years, a number of
studies have attempted to enhance the quality of cardiac ultra-
sound images. The majority of these studies have focused on
the suppression of speckle and noise, a dominant limitation in
cardiac ultrasound images.

Most existing noise/speckle suppression techniques can be
broadly categorized into filtering and compounding techniques.
Filtering techniques can be further categorized into 1) adaptive;
2) wavelet; and 3) anisotropic diffusion filters. While wavelet
and anisotropic diffusion filters have demonstrated potential in
the suppression of noise/speckle in medical ultrasound images,
inherent properties limit their applicability in cardiac ultra-
sound images. Such limitations include the sensitivity to the
size and shape of the filter window and sometimes to a required
threshold value. Inappropriate choice may result in ineffective
filtering. Finally, they do not address commonly observed arti-
facts such as high levels of chamber noise, limited contrast,
shadowing, and reverberation. Consequently, there is still a lot
of scope in the research and development of alternative meth-
ods for enhancing the quality and diagnostic value of cardiac
ultrasound images.

Compounding techniques can be further categorized into
frequency and spatial compounding. Spatial compounding
approaches appear to be inherently more suitable for the
enhancement of cardiac ultrasound images than filtering,
demonstrating very strong potential in addressing a range of
artifacts including 1) noise and speckle; 2) acoustic shadow-
ing; 3) reverberations, 4) structures moving in and out of plane;
and 5) limited delineation of visually weak cardiac structures.
Large potential has been identified for spatial compounding
of 3-D volumes acquired from different acoustic windows as
well as 2-D images acquired from a single acoustic window
over consecutive cardiac cycles. Most current limitations on
both approaches can be resolved with the development of more
effective, accurate, and robust spatio–temporal alignment tech-
niques. As a result, there is a current research opportunity on
the development of such alignment algorithms.

Cardiac ultrasound suffers from a number of artifacts besides
noise and speckle. While such artifacts limit the image qual-
ity and diagnostic value of the acquired images considerably,
there has not been substantial research to address them. Spatial
compounding has been identified to address a wide range
of cardiac ultrasound artifacts. Nevertheless, the limited con-
trast between cardiac tissue and chambers is currently not
addressed by spatial compounding. Low tissue/chamber con-
trast constitutes a major limitation in cardiac ultrasound images.
Therefore, more dedicated contrast-enhancement approaches
are required. A number of studies have introduced postprocess-
ing techniques that claim to enhance contrast while suppressing
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noise in medical ultrasound images. However, most of these
methods actually performed contrast and boundary preserva-
tion, by withholding noise suppression along edges, rather than
enhancement. A very limited number of studies have attempted
to develop more focused tools for enhancing the contrast and
delineation between cardiac tissue and chambers. While a step
in the right direction, there is plenty of scope for the devel-
opment of more effective and robust contrast-enhancement
techniques.
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