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Modeling of Elastic Wave Scattering
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Abstract—Defects which possess rough surfaces greatly af-
fect ultrasonic wave scattering behavior, usually reducing the 
magnitude of reflected signals. Understanding and accurate-
ly predicting the influence of roughness on signal amplitudes 
is crucial, especially in nondestructive evaluation (NDE) for 
the inspection of safety-critical components. An extension of 
Kirchhoff theory has formed the basis for many practical appli-
cations; however, it is widely recognized that these predictions 
are pessimistic because of analytical approximations. A numer-
ical full-field modeling approach does not fall victim to such 
limitations. Here, a finite element (FE) modeling approach is 
used to develop a realistic methodology for the prediction of 
expected backscattering from rough defects. The ultrasonic 
backscatter from multiple rough surfaces defined by the same 
statistical class is calculated for normal and oblique incidence. 
Results from FE models are compared with Kirchhoff theory 
predictions and experimental measurements to establish confi-
dence in the new approach. At lower levels of roughness, excel-
lent agreement is observed between Kirchhoff theory, FE, and 
experimental data, whereas at higher values, the pessimism 
of Kirchhoff theory is confirmed. An important distinction is 
made between the total, coherent, and diffuse signals and it is 
observed, significantly, that the total signal amplitude is rep-
resentative of the information obtained during an inspection. 
This analysis provides a robust basis for a less sensitive, yet 
safe, threshold for inspection of rough defects.

I. Introduction

Defects which possess rough surfaces can greatly af-
fect ultrasonic wave scattering behavior and, in par-

ticular, significantly reduce the signal amplitude compared 
with that of a smooth defect. In nondestructive evaluation 
(NDE), it is essential that there is a reliable method of 
defect detection and characterization for the inspection of 
safety-critical components. Therefore, understanding and 
accurately predicting the influence of roughness on signal 
amplitudes is crucial.

A variety of analytical techniques have been developed 
to understand the effects of roughness on ultrasound such 

as the perturbation approach [1], [2], the Rayleigh method 
[3], [4], and Kirchhoff theory. Kirchhoff theory is perhaps 
the most robust analytical technique and has been the tool 
of choice for modeling elastodynamic scattering problems 
for both simple geometrical scatterers [5]–[8] and complex 
geometrical scatterers [9]–[13]. However, it has been wide-
ly recognized that these approaches are very conservative, 
often overestimating signal attenuation, especially for high 
levels of roughness. In a practical situation, these results 
can lead to problems with overly sensitive inspections and 
consequent false-call problems. These conservative model 
predictions arise from the assumptions made when using 
analytical approaches, preventing them from providing 
accurate solutions to the complex defect geometry. This 
point is discussed by Zhang et al. [14], for considering the 
effects of roughness on sizing rough defects when using 
ultrasonic arrays.

A numerical method, such as a finite element (FE) 
model, does not have the same limitations as an analytical 
technique. FE modeling offers the potential to calculate a 
full and accurate elastic wave solution for the scattering 
from rough surfaces, with the only limitation being com-
putational resources that can be allocated to solving the 
problem. The consideration of numerical methods has be-
come increasingly viable through the development of ab-
sorbing boundary techniques [15]–[20] and domain-linking 
algorithms [21]–[23], allowing the spatial domain to only 
consider the area immediately surrounding the defect. The 
FE method has been successfully used to model the re-
sponse from simple geometric defects such as side-drilled 
holes (SDH) and smooth cracks [24], [25], and based on 
the success of these methods, extensions have been made 
to complex defect geometries [13].

In this paper, results are presented for more complex 
defect geometries and rough surfaces. FE models are used 
to calculate the elastic scattering from multiple realiza-
tions of defects within a statistical class of roughness for 
normal and oblique incidence. Results from FE models are 
compared with Kirchhoff theory predictions and experi-
mental measurements to establish confidence in the new 
approach. An important distinction is made between the 
total, coherent, and diffuse signals and how they relate to 
scattering responses observed in ultrasonic NDE inspec-
tions. This will provide a much more accurate prediction 
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for the attenuation resulting from defect roughness, aiding 
in establishing accurate thresholds for inspecting safety-
critical components.

II. Rough Surfaces and Scattering Signals

The nature of a rough surface implies that no two are 
ever the same. It is therefore necessary to characterize 
defects by a set of common surface statistical parameters 
such that any rough defect can be assigned to a statisti-
cal class. It has been noted from experimental measure-
ments that the variation in height of the rough surface 
follows a distribution that is close to Gaussian [26], [27], 
where the rms height of the defect surface, σ, represents 
the variation in height of the defect from its mean plane. 
An approach making use of this observation and the re-
sulting statistical characteristics has been widely adopted 
in previous studies and will be used here. The following 
paragraphs summarize the methodology.

The surface profile is two-dimensional; here the varia-
tion in height is defined to be in the y-axis, the defined 
rough surface profile runs along the x-axis, with any varia-
tions always remaining perpendicular to the z-axis (physi-
cally appearing corrugated or rutted). The function defin-
ing the surface is given by

	 y h x= ( ),	 (1)

where h is the height deviation from the plane y = 0, the 
mean plane passing through the rough surface defined by

	 〈 〉h = 0.	 (2)

Assuming Gaussian surface statistics, the surface can 
therefore be characterized by
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where p(h) is the probability of the surface being at height 
between h and h + dh for a given surface rms, σ. Because 
the FE model used to represent the surface will be spatial-
ly discretized, the rough surface must be represented by 
discrete spatial values. Rather than the continuous func-
tion given by (3), a discretized equivalent must be used 
which gives the probability density function for the height 
of a single discrete point on the surface, yi:
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The subscript i represents incremental changes along the x-
axis, separated by an element width [12]. A second param-
eter is required to describe the characteristics of the rough-
ness in the direction along the profile (x) of the surface. 
This is the correlation length and can be characterized by 
use of a correlation function, described by Ogilvy [4]:
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The distance over which the correlation function, C(R), 
falls by 1/e is called the correlation length, λ0. By defin-
ing surfaces in this manner, the statistical nature of the 
surface can be directly related to the scattering behavior.

For an infinite crack, the scattered ultrasonic wave can 
be defined by two components, termed the coherent and 
diffuse fields [10]. The coherent field is the same and in 
constant phase for all rough surfaces from the same statis-
tical class and is located in the specularly reflected direc-
tion. The diffuse field is the random component of the ul-
trasonic signal which is introduced by the correspondingly 
random nature of the rough surface and contributes to the 
field in all scattering directions; this remains incoherent 
with respect to scattering signals from multiple realiza-
tions of surfaces within the same statistical class. These 
concepts are illustrated in Fig. 1.

When making measurements of waves scattered from 
rough defects, it is first necessary to make the assump-
tion that the response from an infinite crack can be ap-
proximated to the response from a large crack, whereby 
the extent of the defect surface is greater than the beam 
width. By considering this assumption, the total signal re-
ceived at any scattering angle, for a specific rough surface, 
is therefore comprised of a component from the coherent 
signal (which is common to all rough surfaces with the 
same surface statistics and lies in the specular direction) 
and a component of the diffuse field (specific to surface 
under consideration and having a component in all scat-
tering directions).

An important distinction must be made between these 
fields and the commonly referred to specular signal. The 

Fig. 1. Scattering of waves from a crack-like defect with a rough surface. 
For an infinite crack, the scattered field is shown separated into coherent 
and diffuse components. The coherent field lies in the specularly reflected 
direction such that the magnitude of the incident angle, θinc, equals the 
magnitude of the scattering angle, θsc. The diffuse field has a component 
in all scattering directions. The total field that is measured at any scat-
tering angle from a specific rough surface is therefore composed of the 
components from the coherent and diffuse fields.
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specular signal is that which is observed in the specular 
(or mirror-like) direction. For rough surfaces, this com-
prises the whole of the coherent signal and a contribution 
from the diffuse field. Because the coherent signal is in 
phase for all realizations of the same statistical class, it 
must lie in the specular direction only. Parts of the wave 
that scatter away from the specular direction are random 
and therefore diffuse.

Currently, in industrial practice in the power genera-
tion industry, predictions of the backscattered signals from 
rough defects are generally made through an extension of 
Kirchhoff theory provided by Ogilvy [10]. For this reason, 
the numerical models developed here will be compared 
directly to findings from Kirchhoff theory to confirm the 
equivalent performance of both approaches under condi-
tions in which Kirchhoff theory is known to be accurate, 
and demonstrate the advantage of using the FE approach 
when the surface characteristics are out of the range of 
Kirchhoff theory.

A. The Application of Kirchhoff Theory

The application of Kirchhoff theory to the prediction 
of backscattered signals by Ogilvy [10] has resulted in the 
derivation of a single expression for the reduction in co-
herent ultrasonic signal amplitude caused by increasing 
defect roughness:
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The magnitude of the coherent signal, φσcoh , is a function 
of σ, the rms height of the defect surface, and kinc and ksc, 
the wavenumbers of the incident and scattered signals in 
directions θinc and θsc, respectively. The magnitude of the 
coherent signal is normalized against φσcoh

=0 , the magni-
tude of the coherent reflected signal from a smooth sur-
face.

Unlike a more general Kirchhoff formulation in which 
an arbitrary surface can be discretized into facets [28], 
the expression given in (6) is for a particular, simplified, 
formulation of Kirchhoff that is limited to several funda-
mental assumptions. These translate to a solution in the 
far-field of the defect, from an incident plane wave scat-
tering from an infinitely wide rough surface (i.e., no crack 
tips), described by a Gaussian distribution of roughness, 
for instances in which the scattering can be assumed to be 
independent of the correlation length.

Fig. 2 shows the predicted attenuation of the reflected 
coherent signal amplitude, caused by increasing roughness 
σ, for a normally incident plane wave with wavelength 
λinc, expressed as a function of the incident wavelength 
and normalized against the response from a smooth sur-
face [10].

As defect roughness increases, the magnitude of the 
coherent signal that is scattered from the rough surface is 
reduced. The expression given by (6) represents the reduc-
tion in the coherent signal only. It is not possible to cal-

culate an exact expression for the diffuse signal amplitude 
because of its incoherent nature. However, an approximate 
calculation that takes the average field intensity is used to 
give an order of magnitude estimate. This partly explains 
the reason for highly pessimistic predictions for reduction 
in signal amplitude made using this expression, because 
the total field signal amplitude is not considered.

The amplitude of the reflected field given by (6) is not 
sensitive to the correlation length, λ0. Eq. (6) is appli-
cable to scenarios in which the correlation length, λ0, is 
such that the profile of the rough surface remains ergodic, 
and must therefore be small in comparison to the extent 
of the surface. The results presented in Fig. 2 assume an 
infinite rough surface, making the results independent of 
the correlation length. For the purpose of NDE, finite-
sized defects with rough surfaces by their very nature will 
be ergodic. Furthermore, the width of the field from the 
transducer will typically be much larger than the correla-
tion length of the defect. Therefore, the independence of 
correlation length is a valid assumption for this applica-
tion.

B. The Finite Element Model

Using a FE model overcomes the limitations of apply-
ing Kirchhoff theory and it is possible to calculate both 
the coherent signal and the total scattered field, by per-
forming multiple simulations of the scattering from dif-
ferent surface realizations that satisfy the same statistical 
description. The results for the coherent field can then be 
compared against predictions for coherent signal ampli-
tude obtained using Kirchhoff theory.

In order for a fair comparison to be made between the 
FE and Kirchhoff theory solutions, it is important that 
the FE model is defined to represent the same setup that 
was assumed for the Kirchhoff approach. As previously 

Fig. 2. Amplitude of the coherent and diffuse signals when compared 
with a smooth surface, for a normal incident plane wave with wavelength 
λinc, scattering from a defect with surface roughness, σ, as predicted by 
Kirchhoff theory [10].
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mentioned, the expression given by (6) is limited to sev-
eral fundamental assumptions. These conditions can be 
represented in the FE model by using a two-dimensional, 
plane strain, unit cell model [29]. The model has symmet-
ric (periodic) boundary conditions at the lateral boundar-
ies of its domain (Fig. 3) such that the scattering from a 
small section of an infinitely long periodic defect can be 
calculated; provided the width of the cell is significantly 
larger than the correlation length. The width of the unit 
cell is set to be equal to 10 λ0. This is deemed to be suffi-
ciently wide so as to include an accurate representation of 
the surface, yet not so wide as to drastically increase the 
computational size of the model. The unit cell model can 
provide a good representation of the reflection behavior of 
the infinitely wide case, hence, the FE model assumptions 
are essentially the same at those used in (6), except for the 
nature of the solver itself.

The model is set up such that all scalar quantities (in-
cluding defect roughness, σ) can be expressed as a function 
of the incident wavelength. Thus, the results are shown for 
an excitation frequency of 1 Hz, in a material in which the 
bulk velocities are 2 and 1 units for compression and shear 
waves, respectively, with a triangular mesh discretized at 
30 nodes per incident wavelength. Forcing along the nodes 
of the excitation line (Fig. 3) represents the generation of 
an infinitely wide plane wave at normal incidence to the 
rough surface.

The signal is monitored parallel to the plane of the in-
cident wave at a range that is sufficient to distinguish be-
tween the reflected compression and shear wave modes. A 

plane wave solution is obtained by averaging the response 
along the length of the monitoring line to produce a single 
time history for the response from the rough surface.

III. Results From Normal Incident Inspections

The FE model considers twenty classes of roughness 
within a range from σ = 0.017λinc up to and including a 
value of σ = 0.340λinc. For each class, multiple realiza-
tions of defects all defined by the same statistical class are 
processed using the unit cell model. The number of real-
izations required to calculate the mean signal attenuation 
is dependent upon the class of defect roughness. When de-
fect roughness is low, the number of realizations required 
for a convergent solution is less than for greater degrees 
of roughness, therefore surface realizations are considered 
until a convergent solution has been obtained. Results 
from the convergence study are discussed and compared 
with work presented by Zhang et al. [13], who discusses 
converging solutions obtained from Kirchhoff theory simu-
lations.

A. Coherent Signal Amplitude

To extract the coherent signal amplitude, the responses 
from each defect realization within the statistical class of 
roughness must be superposed, as governed by

	 φ
φσ
σ

coh = =1 ii
N

N
∑ ,	 (7)

where φσi  denotes the scattering response from an indi-
vidual surface realization i, within the statistical class of 
defect surface roughness, σ, for the total number of real-
izations for that class of roughness, N.

By summing the responses from each defect realiza-
tion within the statistical class, the effects of superposi-
tion cause any out-of-phase artifacts that are inconsistent 
across all the surfaces to be canceled out. What remains 
is the in-phase coherent signal which is common to all 
surfaces within that class of roughness. Using (7), the re-
duction in coherent signal amplitude for the rough surface 
with respect to the smooth surface becomes
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where ϕσ=0 is the scattering response from a smooth de-
fect with σ = 0. Fig. 4 shows the comparison between the 
analytical solution, (6), and numerical solution, (8).

For low levels of roughness, there is excellent agreement 
between the two techniques. This is as expected, because 
the FE method provides a highly accurate solution to elas-
tic wave scattering and Kirchhoff theory is known to be a 
good approximation at low levels of roughness [10].

At high levels of roughness, disagreement is observed, 
confirming the pessimism of Kirchhoff theory. Because 

Fig. 3. Unit cell FE model with symmetric boundaries to simulate an 
infinite periodic surface, used to calculate the elastic wave scattering of a 
normally incident compression wave. The model is repeated for multiple 
realizations of defects defined by the same statistical class of roughness. 
The signal is monitored parallel to the plane of the incident wave along 
a monitoring line.
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of the limitations of Kirchhoff theory, scenarios in which 
multiple reflections or surface shadowing occur are not 
accounted for. An accurate scattering solution is only ob-
tained from the scatterer if the deviation of the surface 
from flat (over a distance comparable to the incoming 
wavelength) is small in comparison to the wavelength of 
the incoming wave [1].

This surface property can be expressed quantitatively 
as a function of the radius of curvature of the defect, a. 
The Gaussian nature of the surface means that this pa-
rameter is itself defined by a distribution function. It is 
important to know the minimum value within this spread 
amin, (defined by the 95th percentile), because these small-
er surface artifacts are not considered in the analytical 
solution [4]:

	 amin =
0.1 0

2λ
σ ,	 (9)

where λ0 is the surface correlation length. From (9), it can 
be seen that amin is inversely proportional to roughness, 
explaining why Kirchhoff theory is no longer valid at high 
levels of roughness. The accuracy of Kirchhoff theory at 
high levels or roughness (as described by Bass and Fuks 
[1]) can be quantitatively expressed by the condition

	 k ainc min inccos ,3 1θ � 	 (10)

which relates the physical size of the radius of curvature, 
amin, to the incident wavenumber kinc and incident angle 
θinc. Combining (9) and (10) allows for a single expres-
sion that relates the validity of Kirchhoff theory to defect 
roughness:

	
0.1

1.0
2 3k inc incλ θ
σ
cos

� 	 (11)

By plotting (10) as a function of roughness, a valid regime 
of Kirchhoff theory can be identified, Fig. 5.

As roughness increases, the function kincamin cos3θinc 
tends to a value of 1. This denotes scenarios in which 
Kirchhoff theory becomes increasingly inaccurate and ex-
plains the disagreement at high levels of roughness ob-
served in Fig. 4.

Because multiple realizations of rough surfaces from 
statistical classes are used to calculate the coherent sig-
nal, it is important to understand how many simulations 
are required to extract the true coherent signal. If too few 
are considered, not all of the out-of-phase components will 
have been removed from the scattered signal. However, 
running an unnecessarily large number of surface realiza-
tions drastically increases computational expense with 
little benefit to the accuracy of the overall result.

To illustrate this point, the variation in coherent signal 
amplitude with increasing number of simulations is shown 
for three classes of roughness, Fig. 6.

The values selected (σ = 0.100λinc, σ = 0.150λinc, and 
σ = 0.333λinc) relate to low, medium, and high levels of 
roughness. It can been seen that for low levels of rough-
ness, relatively few realizations are required, typically of 
the order of a hundred. Little benefit is gained over the 
accuracy of the reduction of the coherent signal amplitude 
by running further simulations. For rougher surfaces, this 
is no longer the case. In this instance, thousands of surface 
realizations are required. This results from the increased 
variation in the surface profile height that can be expected 
with surfaces that are defined by much larger rms values. 
It is thought that by extending the crack length, it would 
be possible to reduce the number of surface realizations 
required to obtain a convergent solution for the coherent 
field. However, this would be at the expense of increasing 
the computation required to solve each unit cell. The rela-
tionship of such a trade-off has not been considered here.

Fig. 4. Reduction of amplitude of wave reflecting from a rough surface, 
with respect to a perfectly smooth surface. Results shown for coherent 
component, comparing Kirchhoff theory and finite element simulations. 
Results are for a normally incident compression wave with wavelength 
λinc, scattering from a defect with surface roughness, σ.

Fig. 5. The variation in the function kincamin cos3θinc with increasing 
roughness for a normally incident compression wave, which must be sig-
nificantly greater than 1 for a valid application of Kirchhoff theory [4].
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Studies of simulated reflections from multiple realiza-
tions of rough surfaces have previously been considered 
by Ogilvy [12], using Kirchhoff theory for acoustic wave 
scattering and Zhang et al. [13], using Kirchhoff theory 
for the elastic case. Zhang also includes the use of an FE 
model, presenting the scattering from the defect in the 
form of a scattering matrix. The numerical model is used 
to identify a valid regime of Kirchhoff theory, concluding 
that for defects with low levels of roughness, the computa-
tional efficiency of the Kirchhoff approach outweighs the 
increased accuracy offered by FE. Zhang et al. [13] also in-
vestigated convergence of the total field (not the coherent 
field) with increasing numbers of simulations. Although 
different than the coherent field discussed here, the same 
principles are observed, with increasingly rough surfaces 
requiring a greater number of surface realizations to tend 
toward convergence. It is also clear that for low levels of 
roughness, the difference between Kirchhoff theory and 
FE is small; however, as defect roughness is increased, 
Kirchhoff theory becomes increasingly inaccurate and a 
fully numerical approach is therefore required.

B. Total Signal Amplitude

The convention in dealing with the ultrasonic NDE of 
rough defects in the power generation industry has been 
to quantify the reduction of amplitude of the reflection 
by calculating the expected coherent signal. Of greater 
practical interest is the mean of the total signal ampli-
tude, which considers both the coherent and diffuse signal 
amplitudes combined. Multiple realizations must still be 
considered, but in this instance, instead of superposing 
the scattering response to obtain a coherent average, the 
amplitude of the signal from each simulation is obtained 
and then the average of these amplitudes is calculated. 
This removes any dependence of phase variation from the 
results and instead delivers the value of the amplitude of 

the reflected signal that would be expected, on average, in 
an experimental setup. This is the total field, comprising 
the coherent field and the contribution of the diffuse field 
in this backscatter direction. The consideration of the to-
tal field that results from the combination of coherent and 
diffuse fields has been previously reported by Ogilvy using 
a Kirchhoff theory solution [4]. The extension made here 
is to consider a large number of surface realizations with 
the use of a fully numerical approach:

	 φ φσ σ
tot = ,i N .	 (12)

Using (12), the reduction in total signal amplitude result-
ing from increasing roughness becomes

	
φ
φ

φ
φ

σ σ

σ
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inc
= ,

=0
i N .	 (13)

Fig. 7 shows the comparison between the analytical solu-
tion for the reduction in coherent signal amplitude, (6), 
and the numerical solution for the reduction in total signal 
amplitude, (13). Usually, these two signals would not be 
directly compared, however, as stated earlier, in NDE the 
inspection of safety-critical components has often relied 
upon the coherent signal amplitude only, as a means to 
calculate attenuation caused by defect roughness. Further-
more, an analytical expression for the total signal ampli-
tude cannot be deduced.

The significance of identifying this total field for evalu-
ation is that it is consistent with what is observed when 
performing an NDE inspection. During an inspection 
there is normally only a single defect under consideration, 
therefore, there is no means to calculate the coherent sig-
nal. On the other hand, the calculation of the amplitude 
of the total field from multiple realizations of defects of 
the same statistical description provides the best possible 
estimate of the expected amplitude: the average value of 

Fig. 6. Variation in coherent signal amplitude with increasing number 
of surface realizations for three classes of surface roughness to show the 
number of realizations required to tend toward a convergent result.

Fig. 7. Comparison between the reduction in signal amplitude for the 
mean total reflected signal (calculated using FE) and the coherent signal 
(predicted from Kirchhoff theory). The total reflected signal is plotted 
with the 95.4% spread (or 2σ confidence) about the mean value.
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the amplitude of the received signal for different realiza-
tions of such a surface.

The results, in Fig. 7, show that as defect roughness 
is increased, the mean maximum amplitude of the total 
field is reduced, but not nearly to the same extent as for 
the Kirchhoff predictions for the coherent field, nor for 
the FE predictions of the coherent field that were shown 
in Fig. 4. For defect roughness above σ = 0.125λinc, the 
mean reduction in signal amplitude plateaus to a value of 
approximately −12.0 dB.

Fig. 7 also shows confidence bands, showing the spread 
of predicted signal amplitude, which can be applied to 
this data to indicate the deviation about this mean value. 
Because multiple realizations of defect roughness are con-
sidered in this process, the uncertainty about the mean re-
duction can also be shown. As defect roughness increases, 
the uncertainty in the mean signal amplitude also increas-
es. The confidence bands in Fig. 7 show the 95.4% spread 
(or 2σ confidence) about the mean value. The confidence 
bands are calculated using an empirical cumulative densi-
ty function which makes no assumptions about the nature 
of the results or their distribution.

By making comparisons with the coherent signal ampli-
tude from (6), it can be seen that for low levels of rough-
ness there is excellent agreement between the two tech-
niques. For low levels of roughness, Kirchhoff theory is a 
very good approximation for the elastic wave scattering. 
Furthermore, in this region, the majority of the total scat-
tered field consists mainly of the coherent scattered field, 
with the diffuse field still being of relatively low ampli-
tude. However, beyond roughness values of σ = 0.125λinc 
the total measured field and coherent field begin to devi-
ate. This is because the total field is now comprised of a 
diffuse scattering component which increases with increas-
ing roughness. This confirms the pessimism of Kirchhoff 
theory for severely rough surfaces and provides a more 
accurate estimate of the attenuation in signal amplitude 
caused by defect roughness.

The results discussed here are of importance for practi-
cal NDE inspections which are forced to conduct inspec-
tions in the high defect roughness regions. Because of the 
spread in the results, it is difficult to predict what the 
response from a severely rough defect will be. As previ-
ously discussed, the approach taken by industry has been 
to take an overly conservative approach as outlined by 
Ogilvy [10], and assume that the reflected backscattered 
signal from the defect is severely reduced.

The purpose of this approach is to establish a minimum 
reporting threshold for defects; a level above which the 
back scattered signal from the defect is deemed unaccept-
able and action must be taken to address the indication. 
The approach ensures that all defects of concern are found, 
but at the expense of drastically increasing the likelihood of 
oversizing an indication and making subsequent false calls. 
This in turn results in a large increase in costs because of 
avoidable periods of extended maintenance or repair.

From Fig. 7 it is possible to establish a new report-
ing threshold based upon the lower level in the spread of 

the results (with an associated level of confidence), such 
that any defect giving a response above this value will be 
deemed unacceptable. The application of the new report-
ing threshold will significantly reduce the number of false 
calls currently associated with rough defect inspection, 
removing the overly conservative approach that is cur-
rently taken, but without compromising the safety of the 
inspection.

IV. Oblique Incidence Backscatter

For oblique incidence, the scattering from rough sur-
faces is still characterized by the total, coherent, and 
diffuse signals; however, the same attenuation character-
istics are not observed. Convention in the power genera-
tion industry has been to suggest that for the purposes 
of NDE, rough surfaces attenuate ultrasonic signals when 
compared with the equivalent smooth surface for oblique 
incidence. However, this is not necessarily the case, be-
cause the rough surface will still maintain a coherent and 
diffuse component. This will contribute to the total field 
because the magnitude of the diffuse signal is greater for 
rough surfaces than it is for the smooth and it is scattered 
in all directions.

For oblique incidence, the combined effect of the co-
herent and diffuse scattering signals is difficult to assess 
quantitatively using analytical methods; therefore, a nu-
merical approach is applied. This approach is capable of 
deducing the total scattered field in any desired direction 
for any incident angle. Furthermore, in the manner ap-
plied to the case of normal incidence, a statistical distribu-
tion of results can be obtained to provide the mean signal 
amplitude from multiple realizations of rough defects from 
the same statistical class.

Here we consider the effects of defect roughness on the 
total scattered field for the specific case of backscatter, 
that is, the field that is scattered back along the path of 
the incident wave. This case has practical importance for 
pulse–echo inspections using a single transducer. We con-
sider this case for a range of oblique angles of incidence. In 
this case, an incident shear wave is used, with all spatial 
dimensions expressed in terms of the incident wavelength. 
To provide some understanding for the effect of increasing 
defect roughness for angular performance, these simula-
tions are compiled for two different classes of roughness, σ 
= 0.063λinc and σ = 0.200λinc. The amplitude of the total 
field is then compared with the smooth defect case.

The oblique incidence case cannot be simulated using 
the unit cell model that was deployed for the normal in-
cidence study. Therefore, to satisfy the requirement for 
a Gaussian representation of the surface roughness, for 
which the extent of the defect must be significantly larger 
than the wavelength of the incident wave, the FE model 
was set up to represent a relatively large spatial domain. 
This also has the advantage of minimizing the influence of 
the response from the defect tips on the scattering solu-
tion, because they are positioned sufficiently far from any 
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interaction with the narrow incident beam. Furthermore, 
performing multiple realizations, across multiple angles of 
incidence, for multiple classes of defect roughness dramat-
ically increases the number of computations required to 
extract a statistically significant result. For these reasons, 
the FE model used had to be adapted slightly through the 
use of a domain-linking algorithm [22]. An illustration of 
the FE model is given by Fig. 8, showing the positioning 
of the defect relative to the incident beam.

This allows for the FE model to only consider the area 
immediately surrounding the defect. An algorithm based 
on Greens’ functions is used, linking the wave potentials 
around the FE domain to any desired location, in this case, 
a position in the far field of the defect that is back along 
the propagation path of the incident wave. All other model 
variables remain consistent with the normal incident case.

The displacements and stresses for the scattered re-
sponse are recorded by a monitoring box, and are then 
passed to the domain-linking algorithm. Here, defect 
roughness remains fixed while the angle of misorientation, 
θ, is varied from −60° to 60° in 10° increments. This range 
is limited because greater values of defect tilt drastically 
increase the size of the FE model. Multiple realizations of 
the same defect roughness are considered to calculate the 
mean total field across all angles of incidence. The results 
are compared with the response from a smooth defect at 
normal incidence, see Fig. 9.

For smooth defects, increasing the misorientation of the 
defect results in a reduction of the magnitude of the total 
ultrasonic signal that is measured back along the path of 
propagation. The maximum signal is observed at a mis-
orientation of 0°, which relates to the normal incidence 
case. The reduction observed is due to the fact that the 
specularly reflected signal no longer lies along the path 
of the incident wave. For smooth defects, the signal am-
plitude drops off rapidly, indicating that small degrees of 

misorientation will hinder the detection of defects. For an 
infinite smooth crack, it would be expected that response 
should be zero for any angle of misorientation. In this 
case, the extent of the defect is greater than the width of 
the incident beam in order to minimize the influence of 
the defect tips, however, they still maintain a small con-
tribution to the scattering solution.

For defects with roughness of σ = 0.063λinc, at 0° there 
is an observed reduction in the mean amplitude of the to-
tal field, which is consistent with what has been measured 
in Fig. 7. As the misorientation increases beyond 10°, the 
mean amplitude of the total field is again reduced, how-
ever, the reduction in signal amplitude is less than what is 
observed for the smooth case. This is due to an increase in 
the diffuse scattered field, which is a dominant component 
of the total scattered field measured back along the path 
of the incident wave.

As defect roughness is increased further still, as is seen 
for σ = 0.200λinc, the same trends are observed. Again, at 
0° there is an observed reduction in the mean amplitude of 
the total field and as the misorientation increases, the am-
plitude of the total field is again reduced. But in this case, 
for angles of misorientation greater than 10°, the increase 
in roughness results in an increase in the diffuse compo-
nent of the scattered field and therefore a higher amplitude 
signal than for the smooth and σ = 0.063λinc cases.

For defects with misorientation greater than 10°, de-
fect roughness will increase the magnitude of the back-
scattered signal back along the path of propagation, when 
compared with the same response from a smooth defect, 
with the same misorientation.

V. Experimental Validation

The methodology is validated by comparisons with two 
experiments, one involving a simple regular profile that 

Fig. 8. FE model with significantly reduced spatial domain (model basis 
from Rajagopal et al. [22]) for an incident shear wave interacting with a 
rough defect at oblique incidence where the extent of the defect is greater 
than the incident beam.

Fig. 9. The mean total reflected signal amplitude as a function of defect 
misorientation for an incident shear wave. The scattered response for two 
classes of defect roughness (σ = 0.063λinc and σ = 0.200λinc) is plotted 
and normalized against the normal incidence case for a smooth defect.
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can be studied in a deterministic nonstatistical manner, 
and the other involving a real rough surface that is studied 
statistically.

A. Simple Regular Profile

A rectangular test piece of thickness 10.0 mm with a 
sinusoidal artificial defect machined into the back face is 
scanned from the opposite face in contact using couplant 
to couple the ultrasound to the test piece. The test piece 
is made of 304L stainless steel. The sinusoidal back wall, 
Fig. 10, is corrugated such that the surface profile varies 
in one direction only, with a value of σ = 0.220λinc. On ei-
ther side of the sinusoidal defect, the back wall is smooth; 
this is used to normalize the response from the rough sur-
face to that from a smooth surface, so that the results can 
be presented in the conventional manner as the reduction 
of amplitude caused by roughness. The sample is scanned 
from the front face with a 5-MHz, 0.25-in (6.35-mm)-di-
ameter compression wave transducer at normal incidence.

The significance of this sample is that it is a well under-
stood scatterer that can be represented by two-dimension-
al plane-strain models used in both the Kirchhoff theory 
and FE approaches. Furthermore, because the sample is 
sinusoidal, the value of σ remains constant across the sur-
face of the defect.

A pulse–echo configuration is deployed in both the 
experiment and the modeling, such that the monitored 
response is a single time history at a position above the 
defect. The transducer scans along the sinusoidal sample 
extracting the pulse–echo time history at 1.0 mm incre-
ments. The signals from the flat back wall on each side 
of the defect are used to normalize the signals at every 
rough surface scan position. The experimental approach 
is replicated in FE by computing individual simulations 
at every scanning position. The scan results from the ex-
perimental and FE simulations are shown in Figs. 11(a) 
and 11(b), respectively. A time-domain window is used 
to remove transducer ring-down for the experimental re-
sults. A 0.7 μs delay is added to the FE model results to 
calibrate them against the experimental results. This time 
difference is due to the delay associated experimentally 
with imitating the ultrasonic pulse, and it being coupled 
and transferred into the material.

Figs. 11(a) and 11(b) show good agreement. The time 
of arrival of the reflected signals are consistent with one 
another, with both showing similar patterns of reduction 
of the signal amplitude caused by roughness. The response 
from the smooth back wall can be seen at scanning po-
sitions 0.0 mm and 37.0 mm. To better appreciate the 
reduction in signal amplitude caused by roughness, the 
maximum response within the time window 3.9 μs to 5.0 
μs is plotted against scanning direction, Fig. 12.

There is excellent agreement between the experiment 
and the simulations, with the FE model accurately pre-
dicting the reduction in the scattered amplitude caused 
by roughness. The mean measured reduction caused by 
roughness is −9.9 dB, with FE slightly overestimating the 
reduction (−11.0 dB).

Fig. 10. Sinusoidal-surface test piece used to validate elastic scattering 
from rough surface. This sample is scanned from the front face with 
a 5-MHz, 0.25-in (6.35-mm)-diameter compression wave transducer at 
normal incidence; this scan is then replicated in FE.

Fig. 11. Figure to show (a) experimental scan and (b) FE scan of sinusoi-
dal test piece showing (gray scale) reduction in signal amplitude caused 
by roughness; scans are normalized against the response from the smooth 
back wall at 0.0 mm and 37.0 mm. The response from the sinusoidal sec-
tion has an arrival time of 3.9 μs and is followed by the response from 
the smooth section at 4.1 μs.
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The previously used approximate Kirchhoff theory so-
lution, Fig. 2, for this problem predicts a reduction of 
−33.4 dB. Here, the FE approach for the generic case of 
this level of roughness, shown in Fig. 7, predicts a reduc-
tion of −12.6 dB, showing that this approach provides a 
far more accurate representation.

B. Real Rough Surface

The FE model presented here is a two-dimensional 
plane-strain representation of elastic scattering from 
rough surfaces. To check the validity of this approach, the 
attenuation caused by defect roughness shown in Fig. 7 is 
compared against experimental data.

Four ferritic alloy A533b rectangular test blocks of 
length 60.0 mm, breadth 40.0 mm, and thickness 40.0 
mm were produced with back walls which have roughness 
varying in both dimensions. In each case, the roughness of 
the back wall has been generated by a combination of cy-
clic loading and tearing which has resulted in three types 
of cracking; fatigue, ductile tear, and brittle fast fracture. 
The rough back walls are scanned using an Alicona mi-
croscope (model number ALC13, Alicona Imaging GmbH, 
Raaba, Austria) to give a highly resolved measurement of 
their surface profiles (25-μm spatial discretization). From 
these profiles, measurements of surface roughness can be 
made.

The test blocks are raster scanned from the front face 
in contact using couplant to couple the ultrasound to the 
test piece. The scan increments at 1.0 mm steps with a 
4-MHz, 0.5-in (12.7-mm) diameter, unfocused compres-
sion wave transducer at normal incidence. The roughness 
of the back wall varies in two directions and as a result 
contains a distribution of rms values. A small smooth sec-
tion of the back wall is used to normalize the responses 
to established reduction in signal amplitude caused by 
roughness, Fig. 13.

For each increment over the surface, a single time his-
tory is obtained. Each time history shows the reduction 
in signal amplitude of the back-wall signal caused by 
roughness. This reduction varies over different scanning 
positions because of local variations in surface roughness 
across the sample. From the surface profile data, the local 
rms of the surface for the area immediately beneath the 
transducer can be calculated. The local rms is calculated 
using an area that would have been equivalent to the pro-
file of the transducer on the back face. No weighting is ap-
plied to the surface to compensate for any effects of beam 
spread. Combining this local rms value of the surface 
with the reduction in signal amplitude (compared with 
a smooth back wall) gives an experimental measurement 
of the reduction in signal amplitude caused by increas-
ing roughness. Across the four samples, 4396 discrete ex-
perimental measurements have been taken. Scan positions 
that are close to the test block edges have been omitted 
because the effect of the edge of the test block on the scan 
data is unknown.

Fig. 14 shows a comparison between predictions made 
using the FE model and the experimental data points. 
As predicted with the FE model, rough surfaces with the 
same level of roughness show a spread in the reduction in 
signal amplitude, this being due to the unique nature of 
each surface within the statistical class.

The measurements taken experimentally show a pla-
teau in signal attenuation as roughness is increased. This 
suggests that increasing the roughness further will have 
no effect on the mean attenuation or the confidence in the 
spread of data.

From the 95.4% spread (or 2σ confidence), by defini-
tion it is expected that 2.3% of the experimental data 
points would lie beneath the lower confidence level. Here, 
14.1% of the data points were found to lie below this line. 
The largest difference between the FE model and the ex-
perimental data is at mid-roughness values in the range 
σ = 0.050λinc to σ = 0.167λinc. The mean attenuation is 
still applicable; however, experimentally an increase in the 
spread of values is observed. Therefore, the lower confi-

Fig. 12. Reflection coefficient from a scan over a sinusoidal surface, show-
ing comparison between experimental measurements and FE simulations.

Fig. 13. Dimensions of test blocks and the position of the rough back wall 
relative to the scanning surface.
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dence band in this range for the FE model is optimistic. 
This discrepancy could be attributed to the FE model not 
considering the response of the transducer or inconsisten-
cies of coupling across the extent of the scanning surface. 
The use of a two-dimensional model has been justified 
and remains consistent with approximations imposed on 
the solution derived from Kirchhoff theory [10], however, 
the experimental configuration will only truly be repre-
sented by a three-dimensional model. At this stage it is 
unclear what differences would arise. It is expected that 
the introduction of an additional dimension of roughness 
would cause scattering to occur out of the plane in three-
dimensions. This would lead to a difference between the 
two- and three-dimensional cases and perhaps a further 
reduction in the expected back-scattered signal. FE mod-
els could be re-run to be more representative of the exact 
system that has been measured experimentally, however 
the agreement in general is very good, and it is not con-
sidered worthwhile to pursue such details.

From all the experimental data points, only 0.1% had 
a signal attenuation that was less than −30.0 dB. Practi-
cally, this implies that the likelihood of encountering a 
defect that would attenuate the signal amplitude this se-
verely is rare. Furthermore, the statistical nature of this 
problem means that encountering a crack with such a high 
signal attenuation across the entire crack surface is even 
less likely.

VI. Conclusions

Defects which possess rough surfaces greatly affect 
ultrasonic wave scattering behavior, often reducing the 
magnitude of reflected signals. Ultrasonic NDE inspec-
tions of safety-critical components rely upon this response 

for detecting and sizing flaws. Reliable characterization is 
crucial, so it is essential to find an accurate means to pre-
dict any reductions in signal amplitude. Kirchhoff theory 
has been the tool of choice for modeling elastodynamic 
scattering problems from complex geometrical scatterers; 
however, it has been widely recognized that this approach 
often overestimates signal attenuation, especially for high 
levels of roughness. A numerical method, such as a FE 
model, does not suffer the same limitations as an analyti-
cal technique and offers the potential to calculate a fully 
elastic solution to the scattering from rough surfaces.

Here, the application of FE models to calculate the elas-
tic scattering from multiple realizations of defects within a 
statistical class of roughness for normal and oblique inci-
dence is used. Results from the FE models were compared 
with Kirchhoff theory predictions and experimental mea-
surements to establish confidence in the new approach.

At low roughness, excellent agreement was observed, 
whereas higher values confirmed the pessimism of Kirch-
hoff theory. Furthermore, the mean total signal amplitude 
was calculated, which is more representative of the infor-
mation obtained during an NDE inspection. Reductions in 
the total signal amplitude caused by increasing roughness 
have been found to be significantly less than indicated by 
the coherent signal component alone.

The numerical model was extended to consider the 
response for oblique incident cases. It has been shown 
for defect misorientation greater than 10° that as defect 
roughness increases, the total scattered field reflected in 
the direction that is back along the path of the incident 
signal is increased when compared with the smooth defect 
case.

The validity of the FE model has been assessed by com-
paring the predicted attenuation in signal amplitude due 
to roughness, to that measured on experimental samples. 
Good agreement between the FE and experimental data 
was demonstrated. The 95.4% spread (or 2σ confidence) 
from the FE model has been shown to be narrower than 
the spread measured experimentally; however, the mean 
attenuation in the total field amplitude is consistent with 
the experimental data points.

The results from this study present a significant im-
provement that can be used directly for the benefit of 
inspections in industry. The analysis provides a robust 
basis for a less sensitive, yet safe, threshold for inspection 
of rough defects in safety critical components.
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