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Abstract—Ultrasonic phased array systems have become in-
creasingly popular in the last 10 years as tools for flaw detection 
and characterization within the nondestructive testing industry. 
The existence and location of flaws can often be deduced via im-
ages generated from the data captured by these arrays. A factor 
common to these imaging techniques is the subjective thresh-
olding required to estimate the size of the flaw. This paper puts 
forward an objective approach which employs a mathematical 
model. By exploiting the relationship between the width of the 
central lobe of the scattering matrix and the crack size, an ana-
lytical expression for the crack length is reached via the Born 
approximation. Conclusions are then drawn on the minimum 
resolvable crack length of the method and it is thus shown 
that the formula holds for subwavelength defects. An analytical 
expression for the error that arises from the discrete nature of 
the array is then derived and it is observed that the method 
becomes less sensitive to the discretization of the array as the 
distance between the flaw and array increases. The methodol-
ogy is then extended and tested on experimental data collected 
from welded austenitic plates containing a lack-of-fusion crack 
of 6 mm length. An objective sizing matrix (OSM) is produced 
by assessing the similarity between the scattering matrices aris-
ing from experimentally collected data with those arising from 
the Born approximation over a range of crack lengths and fre-
quencies. Initially, the global minimum of the OSM is taken as 
the objective estimation of the crack size, giving a measurement 
of 7 mm. This is improved upon by the adoption of a multi-
frequency averaging approach, with which an improved crack 
size estimation of 6.4 mm is obtained.

I. Introduction

Many safety critical structures, such as those found in 
nuclear plants [1], oil pipelines [2], and in the aero-

space industry [3], rely on key components that are con-
structed from heterogeneous materials. Ultrasonic nonde-
structive testing (NDT) uses high frequency mechanical 
waves to inspect these parts, ensuring they operate re-
liably without compromising their integrity. Within this 
field, considerable effort has been expended in exploiting 
the full matrix capture (FMC) [4], [5] collected by phased 

array inspections, in the hope of improving the methods 
currently used for the detection and characterization of 
defects. The current industry benchmark for interpreting 
the FMC is the total focusing method (TFM); a delay 
and sum imaging technique where the area of inspection 
is discretized into a grid and the sections of the signals 
from every transmit/receive pair relevant to each pixel are 
summed [4], [6]. However, inherent to the TFM [and other 
imaging algorithms [7]–[9]] is the need for an arbitrary dy-
namic threshold at which to size the defect. In this paper, 
a model-based crack sizing algorithm for zero-volume flaws 
is proposed so as to remove this subjectivity from crack 
size and orientation estimations. Work on objective crack 
sizing has previously been explored in [10], where both 
the maximum scattering amplitude and the half-width, 
half-maximum (HWHM) measurement of the pulse-echo 
response of a scattering matrix were shown to correlate 
with the crack length. The method presented here is simi-
lar only in its exploitation of the frequency domain scat-
tering matrices that arise when an incident pressure wave 
is scattered by a flaw. Favoring the roots of the pulse-echo 
response plot over the HWHM, the proposed crack-siz-
ing algorithm is immune to the effects of the transducer 
transfer function and is based on a mathematical formula 
rather than a numerically derived HWHM value.

To develop an understanding of the scattering of ultra-
sound waves [11, ch. 8] and to facilitate work on model 
based crack-sizing, an analytic mathematical model has 
been investigated. The Born approximation ([12], chapter 
10; [13], chapter 6; [14], chapter 4) is a low-frequency, 
weak-scattering approximation for volumetric flaws. It es-
timates the scattering amplitude arising from an incident 
wave (traveling in a homogeneous host medium) of given 
direction coming into contact with a flaw. Despite its re-
strictions, it is very useful in relating the flaw response 
directly to the flaw geometry and can be used to simu-
late strong back-scattering from crack-like defects. For the 
purposes of this paper, the scattering of a pressure wave 
by an ellipsoidal inclusion in an elastic medium is consid-
ered. Restricting attention to the 2-D plane below the lin-
ear array (the crack is approximated as an ellipsoid with 
a3 = 0, see Fig. 1), this is given by [12], equation 10.220:
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where ei and es are unit vectors in the transmission and 
reception directions, respectively; a1 and a2 represent the 
dimensions of the ellipsoidal flaw; kP0 is the wavenumber 
in the host material; g = ei – es; and re is the effective 
radius of the flaw, given by

	 r a aq qe = ( ) ( )1
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2e u e u⋅ + ⋅ 	 (2)

	 with e
g
gq = .	 (3)

Unit vectors u1 and u2 lie in the vertical plane along the 
major and minor axes of the flaw. The term Blnfl(ei, es) can 
be expressed as in [12, Eq. 10.218] and incorporates the 
material parameters of the host and flaw materials (here 
the subscripts refer to the nth component of the displace-
ment vector due to the incident wave in the lth direction). 
By changing the range of angles that the transmission and 
reception directions (ei and es) can take, different array 
apertures can be simulated. The size, shape, and location 
of the defect and material properties can also be varied 
and hence allow comparison of the model to experimental 
data. For the method presented in this paper, the focus 
will be on crack-like flaws located under the center of the 
array. These will be simulated by setting the flaw dimen-
sions so that a1 ≫ a2, where a = 2a1 is then taken to be 
the crack length and a2 is close to zero. The flaw orienta-
tion refers to the angle θ that u1 makes with the x-axis.

By plotting the scattering amplitude as generated by 
the Born approximation for pairs of transmit/receive 
directions (chosen to mimic a linear array) a scattering 
matrix is produced. This matrix contains information on 
the location, size, form, and orientation of the defect [15]. 
By plotting these matrices, patterns can be observed and 
later exploited to objectively characterize flaws.

II. Model-Based Crack Sizing

Work has previously been carried out by Zhang et al. 
[10] on the extraction of key parameters (i.e., crack length 
and orientation) from scattering matrices for small crack-
like defects. By empirical means, they showed that the 
half-width, half-maximum (HWHM) pulse-echo response 
plot of a scattering matrix decreased monotonically with 
crack length. One disadvantage of using the HWHM is 
that it is affected by the transducer response. Work on 
characterizing the field emitted and received by the trans-
ducer is discussed in [16], [17], and the scattered wave 
from the flaw can, in principle, be recovered by decon-
volving the function describing the transducer effects from 
the received signal. This increases the consonance of the 
HWHM in relation to the scattering profile of the flaw. 
However, this complication can be removed by concentrat-
ing on the zeros of the pulse-echo response as these are 
independent of the transducer effects. The crack-sizing al-
gorithm as developed and discussed in this paper is based 
on this idea, and in contrast to the work in [10], does not 

rely on an empirically attained correlation but instead is 
derived analytically.

A. The Zero-Degree Crack Case

The diagonal elements of a scattering matrix relate to 
the case where es = −ei, also known as the pulse-echo 
response. As the ratio of crack length to wavelength in-
creases, it is observed that the central lobe of the scatter-
ing matrix narrows (see Fig. 2). This narrowing can be 
measured by the distance between the zeros that lie either 
side of the global maximum of the pulse-echo response of 
the scattering matrix. Note that when using this method 
with discrete array elements, these zeros are replaced by 
the locations of the local minima in the pulse-echo re-
sponse, which relate to the ith and jth array element with 
position xi and xj. The ith transmitted wave unit vector is

	 e i =
( , )
( , )−
x r
x r
i

i
,	 (4)

where r is the distance of the flaw from the array. To de-
rive a formula for the length of the crack, it is temporarily 
assumed that xi is a continuous variable x, where x = 0 
corresponds to the center of the ultrasonic array. From 
(1), it follows that the zero in the pulse-echo response 
satisfies

	 sin cos( ) ( ) = 0.0 0 0k r k r k rP P Pg g ge e e− 	 (5)

From (2) and (5) it can be written that
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where M = 4.49341 (the first root of tan M = M), and for 
the pulse-echo case, eq = ei. Let us begin by examining 
the case where the crack is oriented at 0° (parallel to the 
array). Because u1 and u2 are equal to [1, 0]T and [0, 1]T, 
respectively, by substituting kP0 = 2π/λ and rearranging 

Fig. 1. Diagram depicting the general situation where the crack is ori-
ented at an angle θ relative to the x-axis. xi and xj are the element loca-
tions corresponding to the innermost zero of the pulse-echo response and 
ϕi and ϕj are the corresponding angles.
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(6), an explicit expression for the crack length a can be 
obtained,
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An expression for xi can also be derived in this manner,
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For this case, the central lobe in the pulse-echo response is 
positioned centrally about x = 0 (the center of the ultra-
sonic array). Due to the symmetry about x = 0, the first 
positive root xi is related to the first negative root xj via 
xi = −xj. The width of the main lobe is therefore 2xi. Eq. 
(8) suggests that as the depth of the flaw, r, increases, the 
width of the main lobe in the scattering matrix increases. 
On reflection, it can be understood that as the depth in-
creases, the angle between the outermost array elements 
decreases and hence the array captures less of the scatter-
ing profile, resulting in a scattering matrix with a wider 
central lobe. As interest is restricted to crack-like flaws 
(where a1 ≫ a2), (8) gives rise to the following conditions 
on a1 and a2: 

	
2

> 2 >
2

.1 2a M a
λ π λ 	 (9)

This condition shows (7) will only hold for cracks where 
a/λ > M/2π = 0.71529. This lower bound lies within the 
interval 0.1 ≤ 2πa/λ ≤ 10 in which it has been shown 
previously in [18] that use of the Born approximation is 
valid. Another consideration to be taken into account is 
the length of the array aperture. To have roots on the 
pulse-echo diagonal, xi must fall within the limits of the 
aperture. Let L be the length of the linear array, and let 

the flaw be located beneath its center. From (8), as the 
crack size decreases, then xi increases. So, the smallest 
crack size that can be resolved for a given aperture coin-
cides with xi = L/2. Hence, (8) gives
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Allowing a2 = 0, to approximate a crack, the minimum 
resolvable crack length is given by

	 â M Mr Lmin / /= 2 .2 2π π( ) + ( ) 	 (12)

Once again, it can be observed that as L → ∞, then âmin 
→ M/2π = 0.71529, giving the smallest crack size that 
can be resolved relative to the wavelength. Conversely, as 
the distance of the flaw from the array increases, so that 
r/L ≫ 1/2, then the smallest crack size that can be re-
solved increases, âmin → Mr/πL, since the width of the 
main lobe in the scattering matrix widens. It should be 
borne in mind, however, that there is no wave attenuation 
in the mathematical model and this method is based on 
the scattering wave coefficient rather than the scattering 
wave amplitude received by the array.

B. The Effect of Crack Orientation on Crack Sizing

In this section, the crack is now oriented so that the ar-
ray and the vector u1 are no longer parallel. Let the crack 
now be rotated by an angle θ in the anti-clockwise direc-
tion. Hence, u1 = (cosθ, sinθ) and u2 = (−sinθ, cosθ). The 
analysis is still focused on the pulse-echo response values, 
so it still holds that eq = ei, with ei as set in (4). Relat-
ing the values of xi and r to the angle ϕi as in Fig. 1, then 
(eq∙u1) = −sin(ϕi + θ), and similarly, (eq∙u2) = −cos(ϕi + 
θ). It follows then, from (6), that
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which results in an expression for the crack length

	 a
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However, there are now two unknowns, a and θ. The intro-
duction of the crack orientation angle θ calls for the use of 
the two innermost roots, as these describe the width and 
location of the main lobe of the scattering matrix. These 
relate to element positions xi and xj, which translate to 
the angles ϕi and ϕj as in shown Fig. 1. Eq. (14) can then 
be used to give

Fig. 2. Pulse-echo responses as generated by the Born approximation 
for cracks embedded in a homogeneous medium, lying 50 mm below and 
parallel to a linear array of 64 elements with a/λ values of 1 (dashed 
line) and 2 (full line).



IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 62, no. 5, May 2015918

	

M
a

M
a

i i

j

2 2

2
2

2
2 2

2 2

2
2

2
2 2

16
( ) ( )

=
16

( )

λ
π

φ θ φ θ

λ
π

φ θ

csc cot

csc c

+ − +

+ − oot ,( )φ θj +

	 (15)

which can be solved for θ. Note that it is possible to re-
write (13) in terms of element location xi as opposed to 
the angle ϕi,
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Rearranging for a gives
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Expressing a in this manner allows for exploration of the 
limitations of the algorithm due to the discretization of 
the array by the array pitch (see Section II-C). Observe 
that by substituting in θ = 0, re-creating the 0° oriented 
crack case, (7) is recovered.

Having calculated the crack orientation using (15), it is 
now possible to substitute this value into (14) and retrieve 
the crack length. Once again, conclusions can be drawn on 
the minimum aperture required for the algorithm to suc-
ceed. As the crack rotates from 0° to 90°, anti-clockwise, 
it is apparent that the array must be extended to the left 
to capture the two zeros along the pulse-echo response. 
Referring to Fig. 1, the locations of the first and last ele-
ments of the shortest suitable array can be calculated as 
xi = r tan(ϕi). Exact values for ϕi and ϕj can be calculated 
via (14):
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The minimum aperture length required is then given by

	 L r i j= ( ) ( ) .tan tanφ φ− 	 (20)

C. Errors Arising From Discretization of the Array

The implementation of this crack-sizing algorithm is 
dependent on the estimation of experimental parameters 
such as the array element pitch and the wavelength. It is 
of particular interest to analyze the maximum errors that 
can occur due to the discretization of x arising from the 
array design. Because the ultrasonic array is composed 

of a discrete set of elements, positioned at regular inter-
vals called the pitch p, then the estimation of xi that is 
extracted from the scattering matrix will only be approxi-
mate. The value of the crack size that is then predicted 
using this approximate value of xi is denoted by aD. The 
error due to this discretization (εD) is then given by the 
difference between the known a and aD. The formulae for 
the crack length can be analyzed, and an expression for 
the maximum error εM due to discretization by the array 
pitch can be subsequently derived. The resulting expres-
sion for the error can be further approximated to provide 
an analytical form that shows its dependency on the mod-
el parameters. This error is then denoted εA. In the worst 
case scenario, the estimated value for xi can potentially 
be out by up to one pitch. This is demonstrated in Fig. 3 
where it can be seen that the minimum of the discretized 
pulse-echo response, which occurs at xi, is further from 
the actual root (marked by the hollow disc) than array 
element xi−1.

Below, the limitations of the crack-sizing algorithm for 
cracks of nonzero orientation are explored. It must be 
noted that the error is not symmetrical about the line x 
= xi. The closer xi lies to the z-axis, the greater the change 
in ϕi caused by an error in the estimation of xi and hence 
the larger the error in the recovered crack size. Assuming 
xi is positive, the maximum possible error in the recov-
ered crack length is achieved when the root is estimated 
at xi − p. And so, from (17), see (21) next page. By Tay-
lor expanding, an analytical approximation for the maxi-
mum error εA is obtained as in (22), see next page. It can 
be seen from (22) that allowing the pitch p → 0, it follows 
that εA → 0. This is reiterated in Figs. 4 and 5, which 
demonstrate the effect of an increasing array pitch on the 
maximum relative error, ε̂M = εM/a (dotted), the ana-
lytical approximation of the maximum relative error, ε̂A 

Fig. 3. A segment of the pulse-echo response. Due to discretization by 
the array pitch, the minimum must be chosen from a set of discrete 
points (shaded discs). However, the minimum does not always corre-
spond with the element lying closest to the location of the actual root as 
predicted by the model (hollow disc).
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= εA/a (dashed), and the actual relative error incurred 
ε̂D = εD/a (full line; here the known value of θ has been 
used to isolate the effects of the discretization due to the 
array element pitch on the error). It can be seen that 
both the maximum relative error, ˆ ,εM  and its analytical 
approximation, ˆ ,εA  are much bigger than the obtained 
numerical error. This is because they are calculated from 
the worst case scenario where the estimated xi is out by a 
full pitch p. Although possible, it is more likely that the 
error in xi is within p/2 of the exact location. The ana-
lytical form of the error given by equation (22) has been 
recalculated for the case where the location of the root is 
estimated as xi – p/2. This is plotted as a thick full line 
in Figs. 4 and 5, and although not a strict upper bound 

on the potential error caused by array discretization, it 
proves to be a more accurate estimation of the actual er-
rors incurred.

Having examined the effect of discretization via the 
array pitch on the accuracy of the algorithm, the effect 
of an error in the estimated orientation of the crack will 
now be studied. Using values varying by up to 10° from 
the known value of θ, and inputting the exact value for 
ϕi (to discount the effects of discretization), (14) was cal-
culated. Figs. 6(a) and 6(b) plot the relative error in a 
against the error ε in the estimated crack orientation θε = 
θ + ε, for a 5-mm crack of orientations 0° and 30°, respec-
tively. From these plots, it can be observed that for the 
crack size to remain within a 5% error interval, ε ≤ 2.5°. 
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Fig. 4. Relative error in the recovered crack size versus the pitch p for the 
multi-orientation crack sizing algorithm for a crack with â = 1 and 0° 
orientation. Eq. (21) provides ε̂M = εM/a (dotted) and equation gives 
(22) ε̂A = εA/a (dashed). ε̂D = εD/a (thin full line) plots the actual error 
obtained using the multi-orientation crack sizing algorithm with the es-
timated value of xi taken from the discrete set of points dictated by the 
array element locations. The thick full line is obtained by substituting 
p/2 for p in (21).

Fig. 5. Relative error in the recovered crack size versus the pitch p for the 
multi-orientation crack sizing algorithm for a crack with â = 1 and 30° 
orientation. Eq. (21) provides ε̂M = εM/a (dotted) and (22) gives ε̂A = 
εA/a (dashed). ε̂D = εD/a (thin full line) plots the actual error obtained 
using the multi-orientation crack sizing algorithm with the estimated 
values of xi and xj taken from the discrete set of points dictated by the 
array element locations. The thick full line is obtained by substituting 
p/2 for p in (21).
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It can also be noted that Figs. 6(a) and 6(b) are identi-
cal, demonstrating that the error in the recovered crack 
length caused by an error in the estimated orientation is 
independent of the actual orientation. This becomes obvi-
ous by substituting θε and (18) into (14); the term sin(ϕi 
+ θε) becomes

	 sin sin( ( ( 16 ) 16 ( )) )1 2 2 2
2
2 2

1
2

2
2− − − +M a a aλ π π ε/ 	

and is independent of θ [this is similarly true for cos(ϕi 
+ θε)].

Figs. 6(c) and 6(d) show the absolute error in θ calcu-
lated via (15) as the pitch p increases (with set array 
length of 500 mm and a flaw embedded at a depth of 50 
mm from the array, where â = 1). It can be observed in 
Fig. 6(c) that even in the extreme case where the pitch is 
10 mm, the error in the estimated orientation for the case 

where θ = 0° is only 1.6°, well below the upper bound of 
2.5°. In the case where θ = 30° [Fig. 6(d)], the pitch can 
be increased to approximately 9 mm while remaining 
within the 2.5° interval. In both cases, (15) provides a 
suitable estimate of θ over the range of array pitches usu-
ally used within the NDT industry (0.5 to 2 mm) and is 
hence viable for the purpose of the multi-orientation 
crack-sizing algorithm derived in this paper.

D. Sensitivity Analysis

To assess the potential for further application of the 
crack-sizing algorithm described in Section II-B, it is in-
teresting to examine the sensitivity of the algorithm to 
errors in the system parameters. As successful recovery 
of the crack size is based primarily on a good estimation 
of ϕi, it is interesting to know how relative errors in the 

Fig. 6. By inserting the exact angle ϕi (the location of the zeros in the pulse-echo response) as calculated in (18) into the crack sizing formula, (14), 
and keeping all other parameters constant, it is possible to vary θ and analyze the effect that this has on the estimate for the crack size a. The results 
for cracks oriented at 0° and 30° are plotted in (a) and (b). Plots (c) and (d) track the absolute error in the estimation of θ, calculated via (15), as 
the pitch increases for cracks oriented at 0° and 30°, respectively. All of the plots shown are plotted for the case where â = 1.
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approximation of ϕi will affect the recovered crack size 
estimate. To analyze this, from (14), let
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The relative effects of changes in the estimated angle of 
reception, ϕi, on the crack size relative to the wavelength, 
,̂a  can be calculated from
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φ φ
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Fig. 7(a) plots ( )φ φi ia f/ /ˆ∂ ∂  against â = a/λ, demonstrat-
ing the sensitivity of the relative error in â due to varia-
tions in ϕi as â increases. For example, the relative error 
in the recovered crack length to wavelength ratio when â 
= 1 will be around 0.85 times the relative error in the es-
timated parameter ϕi (assuming that all other measure-
ments are correct). For the case where â = 2, the relative 
error in the recovered crack length to wavelength ratio will 
be around 0.95 times the relative error in the estimated 
parameter ϕi. And so, it can be observed that as the value 
of â increases, the sensitivity of the crack sizing algorithm 
to errors in ϕi increases. To help explain this, recall that 
as â increases, the width of the scattering matrices central 
lobe decreases, and hence, the elements at which the zeros 
of the pulse-echo response plot reside are located closer to 
the vertical axis. The closer the zero of the pulse-echo re-
sponse to the vertical axis, the greater the change in ϕi 
between neighboring array elements, and hence, the larger 
the potential error in the recovered crack size. This is cor-

roborated in Fig. 7(b) where it is shown that as ϕi in-
creases, the sensitivity of the crack-sizing algorithm to 
changes in ϕi decreases.

III. Application to Experimental Data

The test sample considered in this paper is manu-
factured from 316L stainless steel and constructed from 
welded austenitic plates with implanted defects. The de-
fect of interest is a 6 mm lack-of-fusion crack between the 
weld and plate, lying at a 50° angle with respect to the 
x-axis (see Fig. 8). The inspection was carried out by the 
5-MHz linear array (Vermon, Tours, France) as specified 
in Table I combined with the Dynaray (Zetec, Quebec, 
QC, Canada) array controller. A full matrix capture was 
collected from the sample where the array was positioned 
as depicted by the shaded region in Fig. 8. TFM images 
were constructed (with an experimentally derived pressure 
wave speed of 5820 m/s) to validate the location of the 
defect, allowing scattering matrices to be generated over 
the relevant time windows.

A. Model-Based Optimization

So far in this paper, it has been demonstrated how a 
mathematical model can be used to derive formulae for 
the characterization of zero-volume flaws, given a frequen-
cy domain scattering matrix. This analytical formulation 
allows for insight into the effects of individual parameters 
on the ability of the algorithm to correctly size a defect. 

Fig. 7. These plots demonstrate the sensitivity of the algorithm to changes in ϕi (the location of the zeros in the pulse-echo response) as (a) â in-
creases and (b) ϕi increases.

TABLE I. Transducer Specifications.

Ultrasonic transducer array parameter Value Unit

Number of array elements 128 —
Pitch 0.7 mm
Transducer center frequency 5 MHz
Bandwidth (−6 dB) 60 %
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However, the method is reliant on the approximation of 
the roots (or local minima) of the pulse-echo response. 
This is fine when the data arise from a flaw embedded in 
a perfectly homogeneous host material, but if the material 
is heterogeneous then a different tactic is required. The 
full line in Fig. 9 demonstrates the difficulty in extracting 
the location of these roots from pulse-echo responses aris-
ing from experimentally collected data (see Section III) 
as multiple minima and multiple peaks can be observed. 
Another complication in applying the formulae to experi-
mental data is that the formulae have been developed for 
the scenario where the crack is located directly under-
neath the center of the array. This is rarely the case in 
practice. As a move of the flaw from the origin causes a 
shift in the location of the maximum peak in the scatter-
ing matrix, it becomes difficult to extract a reasonable es-
timate of crack orientation and thus the formulae become 
unreliable. This is demonstrated in Fig. 9. The dashed 
line represents the pulse-echo response as generated by 
the Born approximation for a crack of 40° relative to the 
x-axis. This lies neatly on the full line which has been gen-
erated by the experimental FMC data. However, the crack 
within the experiment lies at an angle of 50° with respect 
to the x-axis and should lie underneath the dotted line, 
which is the model for a crack at this orientation. Thus it 
is not possible to implement the model-based crack-sizing 
algorithm in its current form to these cases. Instead, the 
model will now be used as a basis for an optimization 
technique, which will importantly retain the objective na-
ture of the final crack size estimate. This optimization 
technique utilizes the full scattering matrix, in contrast to 
the pulse-echo-based methods explored above, and hence 
exploits more of the data available to us through phased 
array inspections.

To implement the method, the elements of the model 
scattering matrix FB are calculated by the Born approxi-
mation,
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where a2, k0, re, g, and Blnfl(ei, ej) are as defined in Section 
I-A. The vectors ei and ej are chosen as the transmit and 
receive directions (respectively) arising from the location 
and dimensions of the array used in the experiment. Hav-
ing fixed all these parameters, the scattering matrix FB is 
solely dependent on the crack length a and frequency f. 
For each crack length and frequency pair, the elements of 
FB are summed and then subtracted from the sum of the 
elements of the experimental scattering matrix at the cor-
responding frequency,
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i

N

j

N

i j
B

i

N

j

N

i j
e

, , ,=|| ( , ) ( ) || .∑∑ ∑∑− 	 (27)

This is carried out over some range of crack lengths l ≤ 
a ≤ m and some range of frequencies q ≤ f ≤ r, where 
q and r are dictated by the bandwidth of the transducer 
employed in the experiment. Using the known minimum 
frequency of the transducer bandwidth, the longest wave-
length λl can be calculated and the lower bound on crack 
length chosen as l = Mλl/2π [so that (9) holds]. The up-
per bound m is chosen to be 50% of the total depth of the 
sample (it is assumed cracks larger than this are easily 
characterized using conventional imaging techniques). The 
matrix S will be referred to as the objective sizing matrix 
(OSM). Note that the scattering amplitudes have been 
normalized by dividing each element by the value of the 
largest element, and thus the optimization is dependent 
only on the shape of the scattering profile. It is anticipated 

Fig. 8. The schematic depicts a cross-section (the x-z plane) of the stain-
less steel test sample constructed from welded austenitic plates of 22 mm 
depth. A lack-of-fusion crack of 6 mm height lies along the left-hand side 
of the weld at an angle of 50° with respect to the x-axis. The location of 
the array is marked by the shaded gray box and the labels 1, 60, and 128 
mark the location of key elements which lie at (−37.1 mm, 16 mm), (4.2 
mm, 16 mm), and (51.8 mm, 16 mm) with respect to the flaw, which is 
situated at the origin.

Fig. 9. This plot depicts the pulse-echo response taken from experimen-
tally collected data arising from a lack-of-fusion crack of 6 mm length 
and 50° orientation (relative to the x-axis) lying between a stainless steel 
weld and plate. The data arise from inspection by a 128-element linear 
array and are examined here at the center frequency of 5 MHz (full 
line). The comparable pulse-echo responses as generated by the Born ap-
proximation using the same system parameters for cracks of 40° and 50° 
orientation (relative to the x-axis) are plotted by the dashed and dotted 
lines, respectively.
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that the global minimum of the OSM will relate to the 
actual crack length.

B. Scattering Submatrices

To apply the model-based optimization crack-sizing 
method to experimental data, it is prudent to first mini-
mize the gap between the model and experiment. It must 
be recalled that the Born approximation is concerned 
only with predicting the scattering by an ellipsoidal flaw; 
transduction effects, material heterogeneities, material 
attenuation, diffraction, refraction, and reflections from 
experimental artifacts other than the flaw are not con-
sidered. Additionally, the experimental data undergo dis-
cretization in the transformation from the time domain to 
the frequency domain via the FFT and so do not exhibit 
the continuous spectrum of frequencies available to the 
model. Thus an exact match between scattering matrices 
arising from the model and experiment is not anticipated. 
However, steps can be taken to increase the consonance 
between the two. This can be achieved by isolating the 
scattering pertaining to the crack from the scattering by 
other features (e.g., the front face, the back wall, and het-

erogeneities) where possible. To do this, it is assumed that 
the location of the flaw is known and a discrete Fourier 
transform is applied to the relevant time window. Due 
to the close proximity of the crack to the back wall in 
the sample as described in Section III, it is expected that 
in the chosen time interval, the received signals (particu-
larly those arising from elements lying further from the 
crack) will include high amplitudes from scattering by the 
backwall. This can be seen in Fig. 10(a), where the scat-
tering matrix arising from the experiment is plotted at 
the central operating frequency of 5 MHz. Fig. 10(b) has 
been generated by the Born approximation, mimicking the 
experimental setup that gave rise to Fig. 10(a). It can be 
observed that a secondary lobe emerges in the lower right 
segment of the matrix in Fig. 10(a) where there is none 
in Fig. 10(b). This can be attributed to interference by 
the back wall. To combat this, the scattering matrix can 
be cropped by using only signals collected by the first 60 
elements of the array, which importantly incorporate the 
signals closest to the specular reflection by the crack. It 
is assumed that the scattering by the crack which is ig-
nored by the exclusion of elements is negligible as a longer 
travel time is involved and the scattering is therefore sub-

Fig. 10. Plot (a) depicts the scattering matrix as generated from experimental FMC data over the full 128 elements. Plot (b) has been generated 
by the Born approximation, mimicking the parameters of the experimental set up. Plot (c) is obtained from a subset of the experimental data (the 
signals collected by the first 60 elements of the array) as described in Section III and is plotted at a frequency of 3.5 MHz. Plot (d) arises from the 
same data but is plotted at a frequency of 6.5 MHz.
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ject to more attenuation. Fig. 10(c) and (d) depict such 
submatrices (arising from the experimental FMC data). 
These scattering submatrices are plotted at 3.5 and 6.5 
MHz, respectively (the outer limits of the transducer’s 
bandwidth). The high-amplitude pulse-echo response (the 
diagonal of the scattering matrix) observed in Fig. 10(c) 
can be attributed to the ring down of the array elements, 
where the transmitted wave from the transmitting ele-
ment can initially interfere with the reception of that same 
element. This effect is overshadowed when the scattering 
amplitude is large as in Fig. 10(d).

Now that the secondary peaks of the scattering matrix 
have been effectively removed, it is interesting to know 
whether the remaining peak bears any resemblance to 
those predicted by the Born approximation. The pulse-
echo response as shown in Fig. 9 is used as a test case. 
It can be seen already that the width of the tallest lobe 
seems to correlate reasonably with that modeled by the 
Born approximation. Using the formulae given in (18), 
and allowing the flaw orientation to be 40° so that the 
model pulse-echo response aligns with that of the experi-
ment, the roots of the pulse-echo response are estimated 
to occur at −18 and −10 mm along the array. Given that 
the array begins at −37.1 mm (so that the flaw lies on the 
origin, see Fig. 8) and the pitch is 0.7 mm, this translates 
to element indices 27 and 39, which closely correspond 
to the innermost minima of the experimental pulse-echo 
response shown in Fig. 9 at indices 28 and 39 (although a 
discrepancy between the two estimations of the left-hand 
roots is apparent, the pitch is small so the error is small 
too, see Figs. 4 and 5). Hence there exists some corre-
spondence between the width of the central lobe of the 
scattering matrix as generated by the experiment and the 
model, despite the differences listed in Section III-B. Fur-
thermore, it can be noted that these elements lie within 
the scattering submatrices shown above and hence the 
formulae could potentially be used to guide the cropping 
process in the case where heterogeneities obscure the lobes 
of the scattering matrix.

C. Experimental Results

The results shown in Fig. 11 have been generated by 
application of the optimization technique to submatrices 
of size 60 × 60 (as discussed in Section III-B), arising 
from the data generated by the experiment detailed in 
Section III. As the crack is not located centrally under 
the array, the location of the maximum amplitude of the 
pulse-echo response of the scattering matrix (where ei = 
−ej) is no longer a reliable indication of the crack orien-
tation. However, it can still be used to tailor the model-
based scattering matrices to those arising from the ex-
periment. By taking the location of the maximum of the 
pulse-echo response of the experimental scattering matrix 
at each frequency lying within the interval determined by 
the bandwidth of the transducer (3.5 to 6.5 MHz) and 
comparing it to that of scattering matrices generated by 
the Born approximation, an orientation can be extracted. 

Averaging over these frequencies, an objective estimate 
of 39.7° (with respect to the x-axis) was reached, giving 
way to an absolute error of 10.3°. Fig. 11 displays the 
objective sizing matrix (plotted on a logarithmic scale to 
allow closer inspection of the minima) calculated by ex-
ploiting the 60 × 60 elements of the scattering submatrix 
taken over the bandwidth of the transducer. As the low-
est frequency of the transducer’s bandwidth gives rise to 
a wavelength of λl = 1.7 mm, it follows that the range of 
crack sizes considered should be greater than Mλl/2π = 
1.2 mm. The maximum crack length was chosen here as 
11 mm, half the depth of the sample. The cost function 
as given by (27) is calculated for every crack length and 
frequency pair where the Born approximation assumes the 
crack orientation to be the already estimated 39.7°. Recall 
that the shape of the scattering matrix is dependent on 
a/λ. As the experimental scattering matrices are plotted 
for a constant (unknown) crack length over a range of 
increasing frequencies, the a/λ value increases systemati-
cally. In comparing the scattering matrices arising from 
the experiment to those as generated by the model over a 
range of crack lengths and frequencies, it is this a/λ value 
that dictates where the minima occur, thus explaining the 
positive linear trend of the minima. From Fig. 11, it can 
be observed that the global minimum occurs when the 
crack length is equal to 7 mm at a frequency of 4.75 MHz. 
However, there exist multiple local minima lying along 
the blue line of Fig. 11 and their respective amplitudes are 
quite similar. Therefore the position of the global mini-
mum is sensitive to noise arising from experimental arti-
facts (e.g., scattering by the back wall or heterogeneities). 

Fig. 11. Plot of the objective sizing matrix for the data set arising from 
the experiment as described in Section III, computed over the range of 
frequencies determined by the bandwidth of the transducer (3.5 to 6.5 
MHz).
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To combat this and increase the robustness of the algo-
rithm, a multi-frequency averaging approach is adopted; 
for simplicity a uniform average is taken rather than some 
frequency weighted approach. Taking the global minimum 
of each column of the OSM and averaging, the objective 
crack length estimation of 6.4 mm is obtained (recall the 
actual crack length is 6 mm).

IV. Conclusions

A model-based approach to crack-sizing via the Born 
approximation has been derived. Through the analysis of 
the pulse-echo diagonal of the scattering matrices, it was 
observed that the distance between the zeros surrounding 
the central lobe correlated with the crack length. Using 
these zeros, a formula was derived to extract the crack 
length from the scattering matrices for the case where a 
single crack lay parallel (zero degrees orientation) to an 
ultrasonic, linear array. This was then extended to cover 
cracks of nonzero orientation. Subsequently, it was dis-
covered that the orientation could also be extracted from 
knowledge of the placement of the two innermost roots in 
the pulse-echo response plot. An analytical expression for 
the maximum error caused by discretization arising from 
the finite extent of the array pitch p was derived for both 
cases. It was shown that as the array pitch p tended to 
zero, this error also tended to zero. The error in the ap-
proximation of the crack orientation, θ, was also studied 
and it was shown that the resulting error in recovered 
crack size was independent of the actual crack orientation. 
Through a sensitivity analysis, it was observed that the 
algorithm was susceptible to errors in the measurement of 
the zeros in the pulse-echo profile. Thus, obtaining an ac-
curate value for these roots is key to the method’s success. 
As shown in the error analysis, this can be achieved by 
using as small an array element pitch as possible.

Although the crack sizing algorithm proved interest-
ing from a mathematical perspective, providing analytical 
insight into the effects of array pitch and length, crack 
length to wavelength ratio, frequency and flaw depth, it 
was deemed unsuitable for application to experimentally 
collected data from heterogeneous materials, due to the 
difficulty of extracting the zeros (or local minima) of the 
pulse-echo response curve and the limiting condition that 
the crack must lie under the center of the array. Hence, it 
was decided to use the model as a basis for an optimiza-
tion technique, which importantly retained the objectivity 
of the final crack length estimate. The scattering matrices 
arising from the collected experimental data were compared 
with those constructed by the Born approximation over a 
range of frequencies and crack lengths. First, the global 
minimum was taken as the objective crack length mea-
surement; however, a multi-frequency averaging approach 
was soon adopted to increase the algorithm’s robustness 
to noise. In application to the available experimental data, 
this approach provided an objective crack length estimate 
of 6.4 mm for an actual crack of length 6 mm.
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