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Abstract—Crack-like defects form an important type of tar-
get defect in nondestructive evaluation, and accurately charac-
terizing them remains a challenge, particularly for small cracks 
and inclined cracks. In this paper, scattering matrices are used 
for defect characterization through use of the correlation coef-
ficient and the structural similarity (SSIM) index as similarity 
metrics. A set of reference cracks that have different lengths 
and orientation angles are compared with the test defect and 
the best match is determined in terms of the maximum simi-
larity score between the scattering matrices of the test defect 
and reference cracks. Defect characterization using similarity 
metrics is invariant to scale and shift, so calibration of ex-
perimental data is not needed. Principal component analysis 
(PCA) is adopted to reduce the effect of measurement noise 
and recover the original shape of scattering matrices from noisy 
data. The performance of the proposed algorithm is studied in 
both simulation and experiments. The length and orientation 
angle of four different test cracks are measured at two different 
noise levels in the simulation case, and excellent agreement is 
achieved between the measurement results and the actual val-
ues. Experimentally, the lengths of five subwavelength cracks 
are measured to within 0.10 mm, and their orientation angles 
are measured to within 5°.

I. Introduction

Crack-like defects form an important type of tar-
get defect in nondestructive evaluation [1]. Accurate 

characterization of crack-like defects leads to more quan-
titative monitoring of the structures being inspected, pro-
viding essential information on the integrity of the struc-
ture. For example, the depth of surface breaking cracks 
was measured by the potential drop method, which relates 
the potential drop to the crack length and the crack depth 
[2]. Model-based estimation of ultrasonic signal param-
eters (e.g., the time of arrival) was proposed in [3]–[5], 
and cracks were sized by the difference in arrival times 
between the tip-diffracted and corner-trap echoes.

In recent years, ultrasonic arrays have seen increased 
use for defect detection and characterization because of 
their ability to form an image of the interior of the test 
structure [6]. For example, the total focusing method 

(TFM) [7] works by postprocessing the full set of array 
data that consists of measurements from all transmitter–
receiver pairs in an array. By focusing the ultrasonic beam 
at each pixel point in the region of interest, the TFM 
can produce acoustic images of significantly higher resolu-
tion than conventional plane and focused B-scan images 
[8], [9]. The inverse wave field extrapolation [10] and the 
wavenumber algorithms [11] work under the same scheme 
(i.e., processing the full array data and synthetically fo-
cusing the beam at each image pixel), and provide resolv-
ing capabilities similar to TFM. As a result, for relatively 
large cracks, the parameters of crack length and orien-
tation angle can be extracted directly from these high-
resolution images (e.g., by fitting a box that covers all of 
the pixels within −6 dB of its maximum amplitude [12]). 
The performance of this so-called −6-dB box fitting ap-
proach was also studied with application to rough cracks 
[13], and it was shown that such image-based sizing tends 
to underestimate the length of inclined cracks with high 
roughness [13]. Imaged-based sizing algorithms require the 
target crack to be sufficiently large, and hence perform 
poorly when the crack length becomes comparable with 
the wavelength.

The scattered field from a crack is known to encode the 
key information about the crack [1], such as location, size, 
and orientation angle. The interaction of an ultrasonic 
wave with cracks can be modeled analytically if they are 
assumed to have simple geometry: elliptical cracks [14], 
planar cracks [15], penny-shaped cracks and spherical cav-
ities [16], and surface-breaking cracks [17]. The scattering 
matrix describes the scattered field of a defect (in the far 
field) as a function of incident and scattered angles as well 
as frequency [12]. Scattering matrices of side-drilled holes 
were estimated by an exact model (based on the separa-
tion of variables method) and the Kirchhoff model, and 
used to accurately predict the ultrasonic array data [18]. 
The vector TFM (VTFM) [19] extracts vector information 
from the scattering matrix [12], [20] for each pixel point in 
the image, which can be used to characterize the defect as 
planar or volumetric. With the VTFM results, the orien-
tation angle of 1-mm cracks (i.e., approximately one ultra-
sonic wavelength in length) was determined within 5°, and 
cracks were distinguished from side-drilled holes. Scatter-
ing matrices were also used to size small cracks, and the 
length of cracks was related to the maximum amplitude 
[20] or the half-width at half-maximum (HWHM) of the 
pulse–echo part of the scattering matrix [12]. For experi-
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mental measurements, a reference scatterer, for which the 
scattering matrix is exactly known, is needed to normalize 
the absolute amplitudes of the extracted scattering matri-
ces when amplitude-based sizing is used [20]. Because the 
HWHM is only related to the shape of a scattering ma-
trix, HWHM-based characterization does not require such 
calibration of experimental data. However, HWHM-based 
characterization has two limitations. First, the HWHM 
can only be correctly measured when the specular reflec-
tion is included in the scattering matrix, and thus is not 
applicable for certain cases (e.g., vertical cracks). Second, 
the performance of HWHM-based sizing degrades dramat-
ically with the presence of measurement noise, as shown 
in this paper.

In this paper, an approach that outperforms the ex-
isting HWHM-based characterization is proposed. The 
robustness of the method to noise is improved by the ap-
plication of principal component analysis (PCA) [21]. Two 
similarity metrics are introduced in Sections II and III, 
and are used to find best match results based on the shape 
of scattering matrices. The performance of the proposed 
approach is studied both with simulated data (in Section 
III) and experimentally (in Section IV).

II. Characterization Based on Noise-Free 
Scattering Matrices

A. Preparation of the Database

This paper studies the characterization of small cracks, 
and as such, all of the cracks considered have a length 
comparable to or less than one wavelength. Given the 
scattering matrix of a test defect, the first step of the 
proposed approach is to form the database using the scat-
tering matrices of reference cracks. In this paper, the scat-
tering matrices of cracks are simulated using the 2-D fast 
semi-analytical technique developed in [22], which is based 
on a boundary integral equation method, and only the 
longitudinal-longitudinal (LL) scattering matrix is output, 
although the model inherently includes all modes. Accord-
ing to this method, the crack opening displacements are 
calculated first and then an exact integral representation 
of the scattered wave field [23] is used to calculate the 
scattering matrix. Because of the limited aperture of an 
array, practically extracted scattering matrices are often 
only a portion of the global scattering matrix [i.e., the 
ranges of incident (θ1) and scattering (θ2) angles are lim-
ited, instead of ranging from −π to π], and the incident 
and scattering angles that can be obtained with a specific 
array are determined by array element positions and the 
position and angle of the crack. Fig. 1 shows the geom-
etry of the measurement configuration, from which the 
scattering matrices of test and reference cracks are ex-
tracted. The example linear array adopted here and in 
the following experimental case has 64 elements, and the 
operation frequency of the array is 5 MHz. Detailed array 

parameters are given in Table I. If a horizontal crack is 
considered, it is easy to see that the incident and scatter-
ing angles of the extracted scattering matrix will be lim-
ited to [φ1, φ2]. (Note that φ1 has a negative value because 
it is measured anticlockwise from the z-axis.) Similarly, 
the scattering matrix of the inclined crack will include 
incident and scattering angles ranging from φ1 − α to φ2 
− α. Note that the orientation angle α of the crack can 
have either positive (if measured clockwise) or negative (if 
measured anticlockwise) values.

Figs. 2(a)–2(d) show the scattering matrices (calculat-
ed by the semi-analytical technique and extracted from 
the configuration shown in Fig. 1) of the four different 
test cracks A–D. In this work, only the amplitude of the 
scattering matrix has been considered, and hereafter the 
term “scattering matrix” refers to the amplitude of the 
scattering matrix. The material in Fig. 1 is assumed to 
be aluminum, with Young’s modulus = 69 GPa, Poisson’s 
ratio = 0.334, and density = 2700 kg·m−3. The length and 
orientation angle of each crack are specified in Table II. 
Because the ultrasonic wavelength in aluminum is 1.24 
mm when the frequency is 5 MHz, the length of cracks 
C and D is comparable to one wavelength, whereas the 
lengths of cracks A and B are below one wavelength. The 
database is then formed by the scattering matrices of a 
set of reference cracks, which have lengths ranging from 
0.2 mm to 2 mm (at 0.05 mm intervals), and orientation 
angles α = −85° to 90° (at 5° intervals). This is chosen to 
cover the crack sizes and orientation angles of interest.

If the angular range of the scattering matrix includes 
the specular reflection, the HWHM can be measured from 
the pulse–echo component of the scattering matrix (i.e., 
where the incident and scattering angles are identical) as 
shown in Figs. 3(a) and 3(b). Because the HWHM de-

Fig. 1. Geometry of the scattering matrix measurement.

TABLE I. Array Parameters for Simulation  
and Experimental Measurements. 

Array parameter Value

Number of elements 64
Elements width (mm) 0.53
Element pitch (mm) 0.63
Element length (mm) 15
Central frequency (MHz) 5
Bandwidth (−6 dB) (MHz) 3–7
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creases monotonically as crack size increases [12], the 
relationship between crack size and the HWHM was es-
tablished (see [12, Fig. 6(c)]), making it possible to size 
cracks based on their scattering matrices. In addition, 
the orientation angles of test cracks were found to be the 
angle corresponding to the maximum amplitude of the 
pulse–echo signal. HWHM-based characterization is ap-
plied to the scattering matrices of test cracks and the 
results are given in Fig. 3. In Fig. 3(a), the full-width at 
half-maximum (FWHM) is measured, and the result of 
crack A is obtained as 1.01 mm, 1°, which is in excellent 
agreement with the true value shown in Table II. Only the 
half-width at half-maximum is measured in Fig. 3(b), and 
crack B is characterized as 0.50 mm, 30°. It seems that 
HWHM-based characterization works well for cracks A 
and B. However, HWHM-based characterization fails to 
give a measurement result for crack C because the peak 
of the scattering matrix cannot be identified within the 
measured angular range [see Fig. 3(c)]. Furthermore, the 
characterization result of crack D is 1.07 mm, −25°, which 

is very poor. This is because the peak identified here is not 
the specular reflection.

B. The Correlation Coefficient as a Similarity Metric

Once the scattering matrix of a test crack is obtained, 
this can be compared with the set of reference (i.e., the 
database) cracks, and the one that is the best match to 
the test crack can be determined. In this paper, the best 
match is found in terms of the maximum similarity score 
between the scattering matrices of the test crack and ref-
erence cracks. Evaluation of the similarity between two 
images has been extensively studied in image registration 
[24], and various similarity (or dissimilarity) measures 
were introduced in [25], including similarity measures such 
as the Pearson correlation coefficient [26], Spearman’s 
rank correlation coefficient (Spearman’s rho) [27], Ken-
dall rank correlation coefficient (Kendall’s tau) [28], and 
mutual information [29] and dissimilarity measures, such 
as the sum of absolute differences (L1 norm) and the sum 
of squared differences (square L2 norm). The calculation 
of Spearman’s rho and Kendall’s tau is based on ranks of 
the intensities, and mutual information requires the joint 
probabilities of the corresponding intensities [25]. Here, 
the correlation coefficient which uses the normalized in-
tensities is selected as the first similarity metric to be ex-
plored for the following reasons: First, popular dissimilar-
ity (distance) metrics such as L1 norm and square L2 norm 
calculate the differences between the corresponding pixel 

Fig. 2. Scattering matrices (calculated by the semi-analytical technique [22], and extracted from the configuration shown in Fig. 1) of the test cracks, 
where (a)–(d) are the scattering matrices of cracks A–D, respectively. The scattering matrix describes the scattered field of a defect (in the far field) 
as a function of incident (θ1) and scattered (θ2) angles as well as frequency, and here the amplitude of the scattering matrices is plotted. The length 
and orientation angle of each crack are specified in Table II.

TABLE II. Details of Cracks A–D. 

Crack
Length  
(mm)

Orientation angle α  
(°)

A 1.00 0
B 0.50 30
C 1.20 90
D 1.20 −70
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intensities of two images, which implies that calibration of 
experimental data is needed for scattering matrices of test 
defects to be compared with the reference cracks. On the 
other hand, as in the HWHM-based characterization, such 
calibration is not necessary for the calculation of the cor-
relation coefficient. Second, compared with feature-based 
similarity metrics [30], intensity-based similarity metrics 
[30] (e.g., the correlation coefficient) are preferred in this 
paper because it is difficult to tell in advance which fea-
tures of a scattering matrix are meaningful and should be 
specifically detected and used for comparison. In fact, the 
intensity-based similarity metrics merge the feature detec-
tion step and the matching step of the image registration 
[31], and can hence be operated in an automatic way [30]. 
Moreover, as a widely used similarity measure [30], the 
correlation coefficient is the optimal criterion for two im-
ages obtained with the same modality, when a linear rela-
tion is assumed between the signal intensities [32].

For scattering matrices SE (obtained experimentally) 
and SR (reference), the correlation coefficient is given by
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where SE and SR are of size N × N, and SE and SR are the 
mean values of the matrices SE and SR, respectively. Giv-
en the test scattering matrix SE, the correlation coeffi-
cients between SE and those of the reference cracks (SR) 
are calculated. Then, the defect is characterized as the one 
with which SE has the maximum correlation coefficient. 
Figs. 4(a)–4(d) show the correlation coefficients calculated 
between the reference cracks and cracks A–D, respectively. 
It can be seen that there is a peak (maximum) in each 
figure which corresponds to the actual crack length and 
orientation angle. It is also clear that the correlation coef-
ficient is more sensitive to the change of orientation angle 
than the change of crack length. Nevertheless, the correla-
tion coefficient is still able to distinguish between cracks of 
the same orientation angle.

III. Characterization Based on Scattering 
Matrices With Noise

A. Scattering Matrices With Noise

It was shown in Fig. 4 that noise-free cracks can be cor-
rectly characterized using the correlation coefficient met-
ric. However, for practical measurements, the extraction 
of the scattering matrix from array data will be inevitably 

Fig. 3. HWHM-based characterization of the test cracks, where (a)–(d) show the measurements of cracks A–D, respectively. For cracks A and B, 
the results are 1.01 mm, 1°, and 0.50 mm, 30°, which are in good agreement with reality. For crack C, HWHM-based characterization fails to give a 
measurement result, and the result of crack D is poor.
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affected by measurement noise. Figs. 5(a) and 5(b) show 
the scattering matrices of cracks B and D, respectively, 
with 20% zero-mean random Gaussian measurement add-
ed noise. Gaussian noise is added directly to the scattering 
matrices to simulate measurement noise that would be 
included in the array data. The relative noise level nσ is 
defined with respect to the peak amplitude AP of the scat-
tering matrix of crack A:

	 n
W
Aσ
σ= 100%
P
× ,	 (2)

where Wσ represents the standard deviation of the ran-
dom noise. HWHM-based characterization results of such 
scattering matrices with noise are given in Table III. Each 
measured length and angle in Table III is calculated from 
100 realizations of random noise, and shows a spread of 
two standard deviations from the mean. For a specific re-
alization of noise, if the errors in the measured length and 
orientation angle are within 0.10 mm and 5°, respectively, 
then the measurement result is regarded as acceptable. 
The acceptable result rate is then defined as

	 ra
number of acceptable measurements

number of total measur= eements ×100%.	 (3)

It can be seen from Table III that crack A can be char-
acterized with reasonable accuracy when the noise level 

is 10%, and the result is degraded when the noise level 
becomes 20%, which is indicated by the increased stan-
dard deviation and the decreased acceptable result rate. 
For crack B, only the measured orientation angle appears 
meaningful, but the measurement uncertainty (standard 
deviation) has increased compared with crack A. For 
cracks C and D, the results are dominated by the noise.

B. Denoising by Principal Component Analysis

Faced with the difficulty in the characterization of scat-
tering matrices with noise, principal component analysis 
[21] is adopted in this paper to recover the shape of the 
original scattering matrices from noisy data. Let L ∈ 
RN M2×  be the database (M is the number of reference 
cracks in the database), whose columns are the vectorized 
scattering matrices of the reference cracks. Standardiza-
tion of L gives L′, which has the same size as L. The col-
umns of L′ are centered and scaled to have zero mean and 
unit standard deviation. The mean of the column vectors 
of L′ is

	 l l=
1

=1
M
k

M

k
'∑ ,	 (4)

where lk'  is the kth column of the matrix L′. Then the co-
variance matrix can be calculated as

Fig. 4. The correlation coefficients calculated between the scattering matrices of database cracks and the test cracks, where (a)–(d) show the results 
of cracks A–D, respectively. In each figure, the length and orientation angle corresponding to the peak is indicated with an arrow.
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In (5), L� ∈ RN M2× , and its column vectors are given by

	 �l lli i
' i M= , = 1,2,...,− .	 (6)

Eigendecomposition of C gives

	 C EDE= T,	 (7)

where the ith column of E is the eigenvector of C, with 
the corresponding eigenvalue di (the ith diagonal element 
of D). In PCA, most of the information contained in L′ 
can be reconstructed using only the eigenvectors (princi-
pal components) that correspond to the largest eigenval-
ues [33]. Given a (vectorized) scattering matrix Sn that 

contains noise, the projection of Sn onto the principal 
components is given by

	 P E S l= ( )p
T

n − ,	 (8)

where Ep ∈ RN k2×  consists of the columns of E which cor-
respond to the largest k eigenvalues. Then, the denoised 
version of Sn is

	 S E Pld p= + .	 (9)

Regarding the selection of principal components, a com-
monly used rule of thumb is Kaiser’s rule [21], [34], which 
states that only the principal components with eigenval-
ues larger than the average eigenvalue should be used for 
reconstruction. Fig. 6 shows the distribution of the largest 
50 eigenvalues calculated from the database, and the first 
21 principal components are adopted in this paper accord-
ing to Kaiser’s rule. The denoised versions of the scatter-
ing matrices (see Fig. 5) are shown in Figs. 7(a) and 7(b). 
Again, it is possible to apply HWHM-based characteriza-
tion to denoised scattering matrices of the test cracks, and 
the results are specified in Table IV. The measured length 
and angle in Table IV are calculated from the same 100 
realizations of random noise as used in Table III, and also 
show a spread of two standard deviations from the mean. 
For crack A, the measurement performance is improved 
significantly compared with applying HWHM-based char-
acterization directly to the noisy data. Although the ac-
ceptable result rate of crack B is decreased because of the 
systematic error found in the measured orientation angle, 
the length is measured much more accurately. It is inter-
esting to see that HWHM-based characterization fails for 
cracks C and D, either because the true peak cannot be 
identified (for crack C), and/or because multiple peaks are 
found within the measured angular range (for crack D). 
Note that most of the noise has been successfully removed 
in the denoised scattering matrices shown in Figs. 7(a) 
and 7(b), but there is also a shift in the amplitude com-
pared with those in Fig. 2 (because the scattering matrices 
of the database cracks are standardized to have zero mean 
before calculating PCA). To measure the HWHM correct-
ly, this shift is compensated by adding a constant value 
to the denoised scattering matrices so that the mean of 
the denoised scattering matrices remain unchanged. How-
ever, the mean value of the noise is typically not known a 
priori, so one would have to make an assumption about its 

Fig. 5. Scattering matrices of the test cracks with 20% noise [the rela-
tive noise level is defined in (2)], where (a) and (b) show the scattering 
matrices of cracks B and D, respectively.

TABLE III. HWHM-Based Characterization Results of Cracks A-D With Noise. 

Noise level 
(%)

Crack A 
(1.00 mm, 0°)

Crack B 
(0.50 mm, 30°)

Crack C 
(1.20 mm, 90°)

Crack D 
(1.20 mm, −70°)

Measured length (mm) 10 1.01 ± 0.12 1.29 ± 3.92 0.24 ± 0.34 2.72 ± 5.12
20 0.98 ± 0.31 2.29 ± 5.26 2.60 ± 5.61 1.75 ± 4.56

Measured orientation angle (°) 10 −0.05 ± 7.74 32.41 ± 15.05 −4.00 ± 86.32 −23.07 ± 12.61
20 1.07 ± 10.41 29.00 ± 18.96 −2.32 ± 74.73 −19.25 ± 36.59

Acceptable result rate (%) 10 79 29 0 0
  [see (3)] 20 41 14 0 0
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nature. Interestingly, it will be shown that characteriza-
tion using similarity metrics is invariant to shift, and thus 
does not require such compensation.

C. The Correlation Coefficient and the Structural 
Similarity Index as Similarity Metrics

The limitations of the HWHM-based characterization 
method have been clearly shown in Tables III and IV. 
When HWHM-based sizing is directly applied to noisy 
data, the uncertainty in the measurement is extremely 
high. For the denoised scattering matrices, HWHM-based 
sizing fails if the specular reflection is not included in the 
measured angular range (e.g., for test cracks C and D).

Because the original shape of the scattering matrices 
(see Fig. 2) is recovered very well in the denoised results, 
the plots of correlation coefficient calculated between the 
scattering matrices of the reference cracks and the de-
noised results are visually identical to those shown in Fig. 
4. For crack A, the peak is found exactly at the same posi-
tion as the noise-free case (1 mm, 0°). For cracks C and D, 
the peaks are found at 1.30 mm, 90° and 1.25 mm, −70°, 
respectively, without significant change of the landscape. 
This implies that characterization using the correlation 
coefficient metric gives acceptable measurement results for 
cracks A, C, and D.

Fig. 8 shows the distribution of the correlation coef-
ficient calculated for the denoised scattering matrix of 
crack B, in which a threshold of 0.01 is applied and only 
the pixel values that are within this threshold from the 
peak are plotted. It can be seen that the peak is at 0.75 
mm, 30°, thus it has a large error (50%) in the measured 

length. We can also see that besides the global maximum 
at 0.75 mm, 30° (Peak 1), there is another local maximum 
at 0.45 mm, 35° (Peak 2) that is near in the value of the 
correlation coefficient to the global maximum (the values 
of Peaks 1 and 2 are 0.9928 and 0.9914, respectively). A 
similar situation occurs for crack D, for which the other 
local maximum [the flat peak that can be seen from Fig. 
4(d)] is located at 1.60 mm, −25°, and has a value (0.9117) 
near the global maximum (0.9227). Clearly, it is desirable 
to adopt another similarity metric to distinguish between 
these competing peaks.

The main problem with the correlation coefficient met-
ric (1) is that when comparing two scattering matrices, 
features from high-amplitude parts of the scattering matri-
ces dominate the result, and features from low-amplitude 
parts are less strongly weighted. To address this issue, a 
second similarity metric, the structural similarity (SSIM) 
index [35] is introduced, which applies a small local win-
dow to images before calculating the local correlation co-
efficients (so the features in each part of the images are 
treated equally). In this paper, the structural similarity 
index is calculated within a 3 × 3 square window. Unlike 
in the original paper, in which the structural similarity 
index was calculated based on luminance comparison (i.e., 
comparing the mean intensities of two images), contrast 
comparison (comparing the standard deviations of two 
images), and structure comparison (the correlation coef-
ficient of two images) [35], only the correlation coefficient 
is calculated here because the other two factors are not 
invariant to scale and shift. The outcome is the mean 
SSIM (or MSSIM) index [35], which is the mean of the 
local correlation coefficients obtained by moving the win-
dow pixel-by-pixel over the entire scattering matrices. For 
scattering matrices SE and SR (both of size N × N), the 
MSSIM index is given by
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Fig. 6. The first 50 eigenvalues calculated from the database and the 
95th percentile calculated from random permutations of the database. 
Parallel analysis [36] (see the Appendix) suggests use of the first 12 
eigenvalues for reconstruction, and the number suggested by Kaiser’s 
rule is 21.

TABLE IV. HWHM-Based Characterization Results of Cracks A–D (Denoised). 

Noise level  
(%)

Crack A 
(1.00 mm, 0°)

Crack B 
(0.50 mm, 30°)

Crack C 
(1.20 mm, 90°)

Crack D 
(1.20 mm, −70°)

Measured length (mm) 10 1.00 ± 0.05 0.42 ± 0.08 NA NA
20 0.97 ± 0.06 0.32 ± 0.17 NA NA

Measured orientation angle (°) 10 −0.06 ± 2.01 35.39 ± 6.41 NA NA
20 0 ± 2.01 34.46 ± 8.22 NA NA

Acceptable result rate (%) 10 100 12 0 0
  [see (3)] 20 100 5 0 0
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Figs. 7(c) and 7(d) show the scattering matrices rep-
resented by Peak 1 (0.75 mm, 30°) and Peak 2 (0.45 mm, 
35°) shown in Fig. 8, respectively. Both of them are simi-
lar in shape to the denoised scattering matrix of crack B 
shown in Fig. 7(a), with a difference of 0.0014 in their 
values of the correlation coefficient. Peak 1 is slightly bet-
ter than Peak 2 in terms of the correlation coefficient. 
However, if the MSSIM index is calculated for Peak 1 and 
Peak 2, they can be distinguished in a clearer way (the 
MSSIM index of Peak 1 is 0.7449 and Peak 2 is 0.8494). 
As a result, Peak 2 should be chosen as the match result 
because it is significantly better than Peak 1 in terms of 

MSSIM, and it is indeed a better measurement of crack B 
than Peak 1. Similarly, in the result of crack D, the global 
peak at 1.25 mm, −70° has a much larger MSSIM index 
(0.4299) than the flat peak at 1.60 mm, −25° (0.3242) [see 
Fig. 4(d)], thus it can be regarded as the best match result 
for this case.

In summary, the defect characterization approach pro-
posed in this paper can be described as follows:

•	Step 1: Prepare the database, which consists of the 
scattering matrices of reference cracks. The incident 
and scattering angles of the scattering matrices should 
be the same as those of the scattering matrix of the 
test defect.
•	Step 2: Apply PCA to noisy data Sn to obtain the 
denoised scattering matrix Sd [see (8) and (9)]. The 
number k of principal components that are used for 
reconstruction can be determined by Kaiser’s rule. Al-
ternatively, a proper value for k can be determined by 
parallel analysis [36] (see the Appendix).
•	Step 3: Calculate the correlation coefficients between 
Sd and the scattering matrices from the database.
•	Step 4: Find peaks (local maxima that have large cor-
relation coefficients) in the preceding result. If an au-
tomatic procedure is required, this can be done in it-
erations, where one peak is found and the peak region 
(consisting of the peak and the associated near-peak 
candidates that potentially have large correlation co-

Fig. 8. The correlation coefficients calculated between the scattering ma-
trices of database cracks and crack B (denoised), only showing the peaks 
and near-peak results with the threshold of 0.01.

Fig. 7. Scattering matrices of the test cracks (denoised) and two reference cracks found for crack B, where (a) and (b) are the denoised scattering 
matrices of cracks B and D, respectively, and (c) and (d) are the scattering matrices of two reference cracks (Peak 1: 0.75 mm, 30° and Peak 2: 0.45 
mm, 35°) in Fig. 8.
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efficients) is removed from the result in each itera-
tion. The iteration stops when all of the correlation 
coefficients above some threshold have been removed. 
The threshold used to determine the number of peaks 
must be chosen with care. If the chosen threshold is 
inappropriate and too many local maxima (most of 
them are actually false peaks) are found, the MS-
SIM index can potentially fail to give the desired best 
match. Although the distribution of the MSSIM index 
has shaper local peaks than the correlation coefficient, 
it is globally less robust to changes in the scattering 
matrix (that are caused by the denoising procedure). 
For this reason, it is necessary to exclude those less 
significant peaks by choosing an appropriate thresh-
old, above which the MSSIM index is calculated.
•	If there is only one peak in the result obtained at 
Step 4, the crack is characterized as the corresponding 
reference crack. If there is more than one peak, the 
crack is characterized as the one which has the largest 
MSSIM index.

The proposed approach has been applied to the scat-
tering matrices of test cracks with noise. In the iterative 
procedure described at Step 4, the peak region is defined 
as a 0.40 mm × 10° rectangular region with the peak at 
the center, and the threshold is set to be 0.01 from the 
maximum correlation coefficient. The noisy data here is 
the same as that used in Table III, which includes two dif-
ferent noise levels, 10% and 20%, and 100 realizations of 
random noise for each noise level. As before, the measured 
length and angle of each test crack and each noise level 
are given in Table V, showing a spread of two standard de-
viations from the mean. When the noise level is 10%, the 
length and orientation angle of cracks A and B are mea-
sured to high accuracy for all the cases. There is a con-
stant error in the measured length of crack C (0.05 mm), 
and a small deviation in the measured length of crack D. 
However, the angle results are highly accurate for cracks 
C and D, and the acceptable result rates for all of the test 
cracks are 100%. When the noise level increases to 20%, 
the characterization results of crack A are again accurate 
for all 100 realizations. Although the measured length of 
crack C shows a small variance, the acceptable result rate 
of crack C remains 100%. For cracks B and D, incorrect 
results begin to appear, and specifically, the result of crack 
B is worse than the other cases. As can be observed from 
Fig. 4(b), even in the noise-free case, the correlation coef-

ficient peak of crack B has a plateau in both the length 
and orientation angle axes, which means there are many 
reference cracks whose scattering matrices are similar in 
the neighborhood of the peak. It is for this reason that the 
characterization of small cracks is more easily affected by 
noise than larger cracks, but the acceptable result rate of 
crack B would still be satisfactory in many applications. 
The performance of the algorithm is expected to drop 
further for smaller cracks, and/or for higher noise levels. 
Inspection at a higher frequency is expected to be helpful 
for more accurate characterization of small cracks because 
this results in further information content in the scatter-
ing matrix. For the same reason, adopting an array with 
a larger aperture size (which extends the angular coverage 
of the array and the measured scattering matrix) is also 
expected to be beneficial.

Attempts to characterize non-crack-like defects can be 
rejected by the described approach, if the calculated corre-
lation coefficients in Step 3 are below some threshold (e.g., 
0.9). Fig. 9 shows the correlation coefficients calculated 
between the scattering matrices of the reference cracks 
and a 1-mm side-drilled hole. The scattering matrix of a 
1-mm hole is calculated using the analytic solution in [37], 
and reconstructed with k = 21 principal components as 
before. In the result shown in Fig. 9, the peak is located 
at 1.35 mm, 90°, and the corresponding correlation coef-
ficient is 0.5468, which is significantly lower than the sug-
gested threshold of 0.9. Such a low value is an indication 
of a poor match, thus none of the reference cracks should 
be chosen as the match result for the side-drilled hole.

Because real crack-like defects often have rough surface 
profiles [13], it is important for any characterization ap-
proach to be robust to a certain degree of roughness. Giv-
en a random surface z(n), its roughness can be described 
by the rms roughness σ and the correlation length λ0, 
which are defined as the standard deviation of z(n), and 
the distance at which the autocovariance function of z(n) 
falls by 1/e [38], respectively. Figs. 10(a)–10(c) show the 
profiles of example rough cracks (solid lines) with different 
roughness parameters. All the cracks have the same length 
of 1 mm, and they are generated by assuming that the 
height distribution function and the autocovariance func-
tion are Gaussian [38]. The scattering matrices of such 
rough cracks are calculated using the finite-element local 
scattering (FELS) model developed in [39]. More details 
about the rough surface generation and the FELS model 
can be found in [38].

TABLE V. Characterization of Cracks A–D With Noise, Using PCA and Similarity Metrics. 

Noise level 
(%)

Crack A 
(1.00 mm, 0°)

Crack B 
(0.50 mm, 30°)

Crack C 
(1.20 mm, 90°)

Crack D 
(1.20 mm, −70°)

Measured length (mm) 10 1.00 ± 0 0.50 ± 0 1.25 ± 0 1.21 ± 0.03
20 1.00 ± 0 0.50 ± 0.19 1.27 ± 0.05 1.22 ± 0.07

Measured orientation angle (°) 10 0 ± 0 30 ± 0 90 ± 0 −70 ± 0
20 0 ± 0 34.00 ± 4.92 90 ± 0 −69.10 ± 12.66

Acceptable result rate (%) 10 100 100 100 100
20 100 88 100 98
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The performance of the proposed algorithm for the ex-
ample rough cracks is shown in Fig. 10(a)–10(c), where 
the dashed lines represent the best match results found for 
each case. The roughness parameters of the crack shown 
in Fig. 10(a) are σ = 30 μm and λ0 = 50 μm, and a good 
match result is found to be 1.10 mm, 0°. The crack shown 
in Fig. 10(b) has an orientation angle of 45° and similar 
roughness parameters (σ = 30 μm, λ0 = 57 μm), and is 
also accurately identified as a 1.10 mm, 40° crack. It can 
be seen that although the database only consists of scat-
tering matrices of smooth cracks, the performance of the 
algorithm is still satisfactory for rough cracks, as long as 
the degradation of the scattering matrix because of rough-
ness is not too severe. In Figs. 10(a) and 10(b), the peak 
correlation coefficients are 0.9862 and 0.9819 (above the 
suggested threshold of 0.9), thus both of the characteriza-
tion results can be safely accepted. However, if the crack 
shown in Fig. 10(c) (σ = 120 μm, λ0 = 43 μm) is con-
sidered, the peak (still plotted and called the best match 
result) is located at 1.40 mm, 75°, and the corresponding 
correlation coefficient is 0.8227. For the same reason as for 
the side-drilled hole, attempts to characterize such cracks 
with high roughness must be rejected without further cal-
culation of the MSSIM index, because the correlation coef-
ficient falls below the threshold.

IV. Experimental Results

The proposed algorithm has also been studied experi-
mentally. In practice, the scattering matrix of a defect 
must be extracted from the measured array data; however, 
the real transmit–receive array data contains a superposi-
tion of responses from all scatterers including defects and 
structural features. The signals from different scatterers 
are usually overlapped and, in general, it is not possible 
to isolate and extract the scattered signals from the defect 
of interest in the original time domain signals. Several sig-
nal processing techniques have been developed to extract 
the scattering matrix from a particular defect from the 
array data [20], [40]. In the current paper, the subarray 
approach [20] is used.

A 64-element array with central frequency of 5 MHz 
(see Table I) was used on an aluminum sample with six 
scatterers (one 1-mm hole and five 0.25 mm by 1 mm 
slots with different orientation angles) shown in Fig. 11. 
The slots were cut using wire electrical discharge machin-
ing (EDM), and the detailed machining process and the 
geometry of the slots can be found in [19]. The scattering 
matrices of the defects are extracted in separate measure-
ments by moving the array in such a way that the target 

Fig. 9. The correlation coefficients calculated between the scattering 
matrices of database cracks and a 1-mm side-drilled hole. The peak is 
located at 1.35 mm, 90°, and the corresponding correlation coefficient 
is 0.5468.

Fig. 10. Surface profiles (solid lines) and the best match results (dashed 
lines) found with the proposed approach, where the roughness param-
eters are: (a) σ = 30 μm, λ0 = 50 μm, (b) σ = 30 μm, λ0 = 57 μm, and 
(c) σ = 120 μm, λ0 = 43 μm. Rough cracks shown in (a) and (b) can be 
correctly characterized with peak correlation coefficients of 0.9819 and 
0.9862; however, the attempt to characterize the rough crack shown in 
(c) is rejected, because the peak correlation coefficient (0.8227) is below 
the threshold of 0.9.
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defect is located at the array center (this is the same as 
the test geometry shown in Fig. 1). In Fig. 11, the 15° slot 
is at the array center, and its scattering matrix is extract-
ed from the array data. The scattering matrices of the 0°, 
30°, and 45° slots are extracted in the same manner. For 
the measurement of the 60° slot, the array is moved to 
the right-hand edge of the sample, but the target defect is 
not exactly at the array center. Similarly, the scattering 
matrix of the 1-mm hole is measured by placing the array 
at the left-hand edge.

Figs. 12(a)–12(f) show the extracted scattering matri-
ces of the 1-mm hole and the slots of orientation angles 0°, 
15°, 30°, 45°, and 60°, respectively. Note that the subarray 
approach adopted to extract scattering matrices suffers 
from a small amount of interference from nearby defects 
[the interference can be seen as diagonal stripes in Figs. 
12(a)–12(c)]. Given the different array–defect configura-
tions, three different databases are needed for the char-
acterization of the 1-mm hole, the 60° slot, and the four 
inner slots.

The proposed algorithm is applied to the scattering 
matrices shown in Fig. 12. For each case, the number of 
principal components k is selected by both Kaiser’s rule 
and parallel analysis (see the Appendix), and their per-
formance is compared. Before performing PCA, both the 
scattering matrices of reference cracks and those extracted 
experimentally are normalized to their maximum ampli-
tudes. This is necessary because otherwise the experimen-
tally measured scattering matrices as shown in Fig. 12 
cannot be effectively centered by subtracting the mean 
[see (8)] which is obtained from the scattering matrices 
of reference cracks. The normalization of the scattering 
matrices in this manner does not change the shape, and 
the match results are not affected. It is also much easier 
than the calibration of experimental data, which requires 
measurements from a reference defect. The characteriza-
tion results are tabulated in Table VI. As in the simula-
tion case, the peak is found at 1.35 mm, 90° (when k = 
9 and 17) for the 1-mm hole, but the results should be 
rejected because of the low values of the correlation coeffi-
cient (0.6538 when k = 9 and 0.6739 when k = 17). For the 
slots, the selection of k by both suggested methods per-

forms equally well. The measured orientation angles are in 
excellent agreement with the actual values, and the errors 
in the measured length are within 0.10 mm. It should be 
pointed out that within the angular ranges shown in Figs. 
12(b)–12(f), there is no significant difference between the 
scattering matrices of the slots and their ideal counter-
parts (reference cracks of the same size and orientation 
angle). As a result, the measurement results given by the 
proposed algorithm are reliable. However, if the experi-
mentally extracted scattering matrix only consists of the 
tip-diffracted signal from the machined slots, performance 
degradation of the algorithm could be expected.

V. Conclusions

An approach for the characterization of small cracks 
has been proposed. The scattering matrix of test defects 
is denoised by the application of principal component 
analysis. When the noise in the data is considerable, the 
number of principal components used for reconstruction 
should be carefully chosen, and this can be achieved by 
using Kaiser’s rule or through parallel analysis (see the 
Appendix). In addition, when the test defect falls outside 
the database, the peak correlation coefficient found with 
the database cracks was below a threshold, and such re-
sults could be rejected because they indicate poor matches 
with the reference cracks.

The correlation coefficient and the structural similar-
ity index are used as the similarity measures. With the 
correlation coefficient metric, some candidate cracks are 
chosen, which are distinguished at the next step by cal-
culating the mean structural similarity index. If an auto-
matic procedure is required, the peaks can be found in 
the iterative procedure described in Section III-C. In this 
paper, all of the simulation and experimental results of 
the proposed algorithm are obtained using this automatic 
procedure. When the noise level is low, the acceptable 
result rates of all the test cracks in the simulation case 
are 100%, and the results of five experimentally measured 
subwavelength cracks are also acceptable (the errors in the 
measured length and orientation angle are within 0.10 mm 
and 5°). The measurement becomes less accurate as the 
noise level increases, but the acceptable result rate is 88% 
even for the smallest crack (crack B), which has a size of 
less than half a wavelength.

Appendix

In principal component analysis, the selection of the 
number of principal components is regarded as one of the 
major difficulties [41]. Increasing the number of principal 
components is always beneficial for the reconstruction of 
database cracks (i.e., scattering matrices without noise). 
However, if the scattering matrix contains noise, and PCA 
is adopted for denoising purposes, using too many prin-
cipal components will also allow much of the noise to be 

Fig. 11. Experimental measurements of the scattering matrices. The 15° 
slot is at the array center in the figure, and its scattering matrix is ex-
tracted from the array data. For the measurement of the 60° slot and 
1-mm hole, the array is moved to the right-hand edge and left-hand edge 
of the sample, respectively.
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Fig. 12. The experimentally extracted scattering matrices of the six scatterers, where (a)–(f) are the scattering matrices of the 1-mm hole and the 
slots of orientation angles 0°, 15°, 30°, 45°, and 60°, respectively. A subarray approach [20] is used to extract the scattering matrices from the array 
data.

TABLE VI. Characterization of Six Test Scatterers Shown in Fig. 11. 

Number of principal 
components k

Characterization 
result

Peak correlation 
coefficient

1 mm hole 17 (Kaiser’s rule) 1.35 mm, 60° 0.6739
9 (parallel analysis) 1.35 mm, 60° 0.6538

1 mm, 0° crack 18 (Kaiser’s rule) 1.00 mm, 0° 0.9732
10 (parallel analysis) 0.95 mm, 0° 0.9758

1 mm, 15° crack 18 (Kaiser’s rule) 1.05 mm, 15° 0.9852
10 (parallel analysis) 1.05 mm, 15° 0.9842

1 mm, 30° crack 18 (Kaiser’s rule) 1.10 mm, 30° 0.9908
10 (parallel analysis) 1.10 mm, 30° 0.9867

1 mm, 45° crack 18 (Kaiser’s rule) 1.10 mm, 45° 0.9748
10 (parallel analysis) 1.05 mm, 45° 0.9653

1 mm, 60° 17 (Kaiser’s rule) 1.10 mm, 60° 0.9885
9 (parallel analysis) 1.10 mm, 60° 0.9734
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included in the reconstructed version (the model is said 
to be overparameterized [41]). According to Kaiser’s rule, 
for the noisy data in this paper, the first 21 principal 
components are selected, and the characterization results 
using similarity metrics based on the denoised scattering 
matrices are satisfactory, as shown in Table V. The effect 
of the number of the principal components on the charac-
terization result is shown in Fig. 13. For a given number of 
principal components k, the first k principal components 
are used to reconstruct the scattering matrices, and the 
algorithm proposed in Section III-C is adopted for the de-
noised scattering matrices. Figs. 13(a)–13(d) show the ac-
ceptable result rates of cracks A–D as a function of k (the 
same 100 realizations of noise as in Table V are used), and 
Figs. 13(e)–13(f) show the change of the mean peak cor-

relation coefficients when the noise level is 10% and 20%, 
respectively. When the noise level is 10%, the acceptable 
result rates for cracks A, C, and D remain 100% as long as 
k is larger than 6, which means the reconstruction is not 
affected significantly by increasing k. This can also be seen 
from Fig. 13(e), where the peak correlation coefficients do 
not fall after reaching maximum at approximately k = 20. 
On the other hand, the acceptable result rates of cracks C 
and D decreases (while crack A is still not affected) after 
achieving maximum when the noise level is 20%, which 
suggests that the reconstruction becomes degraded as k 
further increases. This can also be confirmed by the peak 
correlation coefficients shown in Fig. 13(f). The result is 
similar for crack B, except that the acceptable result rate 
diminishes after reaching maximum for both 10% and 20% 

Fig. 13. Characterization results of the proposed algorithm with different number of principal components, where (a)–(d) show the acceptable result 
rates of cracks A–D with noise, and (e) and (f) show the mean peak correlation coefficients when the noise level is 10% and 20%, respectively. k = 
21 corresponds to Kaiser’s rule, and k = 12 is the result of parallel analysis.
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noise. For all of the cases shown in Fig. 13(a)–13(d), k = 
21 which is obtained by Kaiser’s rule proves to be a good 
choice for the number of principal components to retain.

The number of principal components k can also be de-
termined from parallel analysis [36]. In parallel analysis, 
the eigenvalues obtained by applying PCA to the data-
base are compared with those obtained by applying PCA 
to a set of uncorrelated data matrices that have the same 
size as the database [41]. Uncorrelated data matrices are 
obtained by random permutations of the data as is sug-
gested in [42], and PCA is applied to 100 such randomized 
matrices to calculate the 95th percentile of the distribu-
tion of the eigenvalues [21]. The result is shown in Fig. 6, 
and the suggested value of k by parallel analysis is 12. It 
can be seen from Fig. 13 that the results obtained when k 
= 12 are also satisfactory (but when k lies between 12 and 
21, the acceptable result rate decreases when the noise 
level is 20%). The only exception is found for crack C, but 
this can be predicted by the low value of the peak correla-
tion coefficient when k = 12 [see Fig. 13(f)].
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