
IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 62, no. 3, march 2015 531

This work is licensed under a Creative Commons Attribution 3.0 License.  
For more information, see http://creativecommons.org/licenses/by/3.0/
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of Ultrasonic Images
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Abstract—This article investigates the restoration of ultra-
sonic pulse-echo C-scan images by means of deconvolution with 
a point spread function (PSF). The deconvolution concept 
from linear system theory (LST) is linked to the wave equation 
formulation of the imaging process, and an analytic formula 
for the PSF of planar transducers is derived. For this analytic 
expression, different numerical and analytic approximation 
schemes for evaluating the PSF are presented. By comparing 
simulated images with measured C-scan images, we demon-
strate that the assumptions of LST in combination with our 
formula for the PSF are a good model for the pulse-echo imag-
ing process. To reconstruct the object from a C-scan image, 
we compare different deconvolution schemes: the Wiener filter, 
the ForWaRD algorithm, and the Richardson-Lucy algorithm. 
The best results are obtained with the Richardson-Lucy algo-
rithm with total variation regularization. For distances greater 
or equal twice the near field distance, our experiments show 
that the numerically computed PSF can be replaced with a 
simple closed analytic term based on a far field approximation.

I. Introduction

An unavoidable problem in ultrasonic imaging is that 
the image is not an exact representation of the ob-

ject, but is blurred. This severely limits the quality and 
resolution of an image. As the same problem occurs with 
optical imaging in microscopy or astronomy, there has 
been considerable research on improving the image quality 
by some kind of inversion of the imaging process. These 
inversion schemes model the imaging process as a space-
invariant linear system

	 I x y f x y g x y( , ) = ( , ) ( , )∗ ,	 (1)

where I is the image, f the object, ∗ is the two-dimension-
al convolution operator, and g is a point spread function 
(PSF) describing the imaging system. Because the image 
I is equal to the PSF g for an object f(x, y) = δ(x, y) (i.e., 
a point reflector located in the origin), the PSF can also 
be considered as a spatial impulse response. The process 
of approximately inverting (1) to obtain f is known as 
deconvolution. Much of the research on deconvolution of 
ultrasonic images is devoted to blind deconvolution (i.e., 

the case of unknown PSF g, which is to be estimated from 
the image I [1], [2], [3]). In non-blind deconvolution, the 
image I is not used for computing the PSF, but it is either 
measured directly from scattering objects approximately 
representing an impulse [4], or it is reconstructed via in-
verse filtering for special scattering objects [5], [6], or it is 
theoretically computed from a model of the imaging pro-
cess [7].

The present article is devoted to non-blind deconvolu-
tion of ultrasonic imaging with planar transducers and 
homogeneous transport media, and it addresses the two 
main questions in non-blind deconvolution: how to select 
a deconvolution algorithm that computes f from given I 
and g, and how to determine the PSF g.

The classic non-blind deconvolution algorithm is the 
Wiener filter [8], which is widely deployed and has been 
demonstrated to improve the image quality in X-ray radi-
ography [9] and in ultrasonic imaging [7]. It is very attrac-
tive because it provides a simple closed analytic formula 
for directly computing the deconvolution result in a single 
step, but it has the disadvantage of creating ringing ar-
tifacts. These can be especially problematic in ultrasonic 
imaging because they seem to indicate echoes which are 
actually not existent. An algorithm that particularly tries 
to remedy this shortcoming is the ForWaRD algorithm by 
Neelamani et al. [10]. Whereas Neelamani et al. tested the 
ForWaRD algorithm only on artificially blurred images, 
Zhou et al. demonstrated its usefulness for the deconvolu-
tion of X-ray phase contrast images [11].

In astronomy and microscopy, a different non-blind de-
convolution algorithm is usually deployed that was de-
vised by Richardson [12] and Lucy [13]. It is an iterative 
algorithm and thus slower than the Wiener filter, but un-
like the Wiener filter, it does not suffer from introducing 
artifacts. It has been shown to perform better than the 
Wiener filter in the comparative study [14]. As the itera-
tion of the original Richardson-Lucy algorithm does not 
converge, Dey et al. suggested a total variation regulariza-
tion, which circumvents the need to guess the appropriate 
numbers of iterations beforehand [15].

For computing the PSF in ultrasonic imaging, Ranga-
rajan et al. proposed a numeric scheme for computing the 
PSF [7]. They did not give an analytic expression for the 
PSF which the numeric algorithm approximates, but di-
rectly derived the numeric scheme with the patch element 
method [16]. Based on Snell’s law of refraction [17], they 
also computed PSFs in the presence of medium transitions 
with the patch element method. They used the computed 
PSFs to restore ultrasonic images with the Wiener filter.
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The present article extends the work done by Rangara-
jan et al. in two ways. The first extension is a derivation 
of an analytic formula for the PSF by means of compar-
ing a solution of the wave equation with (1) and making 
a simplifying assumption, which we call the linear sys-
tem theory (LST) approximation. The numeric scheme by 
Rangarajan et al. turns out to be one special method for 
computing our analytic expression numerically. Beyond 
reproducing this earlier result, the analytic expression is 
useful in itself as a starting point for deriving alterna-
tive numeric schemes and also for analytic approximation 
schemes for computing the PSF (e.g., via a far field ap-
proximation that removes the need for numeric integra-
tions when the object is not too close to the transducer). 
It should be noted that our solution is restricted to planar 
transducers, because the Rayleigh integral, on which our 
solution is based (as explained in the Appendix), only 
holds in this case.

The second extension is a comparison of different con-
volution algorithms utilizing the PSF, both on simulated 
and real images. In our experiments, the results of the 
Wiener filter showed serious artifacts which make it less 
recommendable for the deconvolution of ultrasonic im-
ages. Whereas the results of the ForWaRD algorithm were 
better than the Wiener filter, the Richardson-Lucy algo-
rithm led to the best deconvolution results in all cases. To 
test the assumptions of our model and the LST approxi-
mation, we have also compared simulated images with real 
images, which were in good agreement.

This article is organized as follows: in Section II, we 
present our physical model and derive the solution for 
the PSF. The technical parts of the derivation are moved 
to the Appendix to make this section easier to read. In 
Section III the different deconvolution algorithms are ex-
plained, and in Section IV we present our experimental 
results for validating our model and for comparing the 
different deconvolution algorithms.

II. Physical Model and Mathematical Treatment

Let us consider the following experimental setup for 
ultrasonic imaging (Fig. 1):

•	A planar transducer is positioned in the transducer 
plane. The transducer acts both as a transmitter and, 
after some time delay, as a receiver. The piston sur-
face area A(x, y) is centered around point (x, y).
•	A planar scattering object is positioned in the reflec-
tor plane, which is parallel to the transducer plane at 
distance z0. The scattering object is described by its 
object function

	 f x y A( ) .′ ′ ′{, = 1
0

inside the scattering area
outside

	 (2)

It is this object function f that we are interested in 
and which needs to be reconstructed from the received 
transducer signal S(t, x, y). Let us assume that S is pro-
portional to the force acting on the transducer surface1

	 S t x y dx dy p t x y z
A x y

( , , ) ( , , , = 0)
( , )

∼ ∫∫ ′′ ′′ ′′ ′′ ,	 (3)

where p(t, x, y, z) is the sound pressure field. For visu-
alization, the time dependent signal S(t, x, y) is usually 
converted to a grayscale image SC(x, y), also known as C-
scan, hence the subscript C. For converting the time vary-
ing signal S at position (x, y) to a single gray value, differ-
ent methods are possible. A commonly used approach is to 
use the maximum amplitude of the A-scan signal

Fig. 1. The geometry of the model and the coordinate systems in the transducer plane and the reflector plane.

1	Strictly speaking, the signal actually is a temporal convolution of the 
force with the transducer electro-mechanical transfer function [39]. Our 
assumption is equivalent to using a delta distribution as transfer func-
tion.
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	 S x y S t x yC
t t t

( , ) = ( , , )
1 2< <
max | | .	 (4)

The pressure field p(t, x, y, z) in (3) is subject to the 
wave equation

	 ∇ −
∂
∂

2
2

2

2
1

= 0p
c

p
t

,	 (5)

where c is the sound velocity of the surrounding medium. 
Transducer and scattering object enter the mathematical 
formulation as boundary conditions whose type depends 
on the medium and the scattering material. In medical ul-
trasound, e.g., the scattering object is a density inhomoge-
neity in the medium, which requires a special theoretical 
model [18]. In our situation we consider two simpler spe-
cial cases: scattering by a rigid object in a fluid medium, 
and scattering by a cavity in a solid medium.

A. Formal Solution for the Transducer Force and the PSF

In the case of scattering at a cavity in a solid medium, 
we have a soft boundary where the pressure is zero at the 
cavity surface, thereby leading to a Dirichlet boundary 
condition. In the case of a hard boundary in a fluid me-
dium, the particle velocity perpendicular to the boundary 
surface is zero. In the situation of Fig. 1, the boundary is 
perpendicular to the z-direction, so that the boundary 
condition prescribes the velocity in the z-direction vz(t, x, 
y). For a medium of density ρ, the relationship between 
pressure p and velocity 

�
v  is

	
∂
∂

− ∇ ⇒
∂
∂

−
∂
∂

�
v
t p

v
t

p
z

z=
1

=
1

ρ ρ .	 (6)

Hence the boundary condition at a hard scattering object 
is a condition upon the pressure gradient perpendicular to 
the boundary surface, which is a von Neumann boundary 
condition.

A solution of the wave equation, however, not only re-
quires knowledge of the boundary conditions at the trans-
ducer and the diffraction object, but also in the entire 
transducer and reflector planes. Whereas closed form so-
lutions, known as Rayleigh integrals, can be given for the 
sound field for pure Dirichlet or von Neumann bound-
ary conditions, the same does not hold for mixed bound-
ary conditions. Unfortunately, diffraction problems lead 
to mixed boundary conditions [19] and formal analytical 
solutions are only known for special cases such as diffrac-
tions of plane waves by circular objects [20], [21] or point 
sources diffracted by an infinite half plane [22]. Approxi-
mate solutions for arbitrarily shaped reflection objects, 
however, can be obtained with Kirchhoff’s approximations 
or modifications thereof, as described by Bouwkamp [19].

As we show in the Appendix, within such an approx-
imation the solution for the resulting transducer signal 
given by (3) can indeed be written in the form of a con-
volution between the object function f(x, y) and a PSF:

	 S t x y e dx dy f x y g x x y yi t( , , ) ( , ) ( , )
2

∼ − ′ ′ ′ ′ − ′ − ′∫∫ω

R

,	 (7)

where the PSF g(x, y) is given by

	 g x y
i v

H z x y z H z x y z z
( , ) =

4
( , , ) ( , , )0

2 0
= 0

ωρ
π

∂
∂

,	 (8)

where v0 is the velocity amplitude of the transducer oscil-
lating with frequency ν = ω/2π, ρ is the density of the 
medium, and H is given by

	 H z x y d d
e
z x y

A

ik z x y
( , , ) =

( ) ( )
(0,0)

2 ( )2 ( )2

2 2 2∫∫
− + + + +

+ + + +
ξ η

ξ η

ξ η
.	 (9)

For point symmetric transducer surfaces A(x, y) = 
A(−x, −y), the substitutions x′ = −ξ and y′ = −η lead to

	 H z x y dx dy
e
z x x y

A

ik z x x y y
( , , ) =

( ) (
(0,0)

2 ( )2 ( )2

2 2∫∫ ′ ′
+ − ′ +

− + − ′ + − ′

−− ′y )2 ,	 (10)

which is exactly proportional to the Rayleigh integral that 
describes the pressure field generated by a baffled piston 
oscillating with constant frequency. As this problem has 
already been studied in the literature for some time, sev-
eral approximation schemes for computing H(z, x, y) are 
known [23], [24], [16], [25], some of which will be discussed 
in the next section.

B. Numerical Computation of the PSF

It is in principle possible to compute the z-derivative 
in (8) analytically by drawing it under the integral. For a 
numerical evaluation, it is, however, more convenient not 
to do so because when we have a numerical routine for 
computing H(z, x, y), we can also use it to compute its 
derivative numerically via

	 ( ( ) ( )) 20 0H z z H z z z+ − −∆ ∆ ∆/ ,	 (11)

	 or /( ( ) ( ))0 0H z z H z z+ −∆ ∆ ,	 (12)

Eq. (11) has a smaller error of order Δz2, but requires 
three evaluations of H for computing the PSF in (8) (at 
z0, z0 − Δz, and z0 + Δz), whereas expression (12) requires 
only two evaluations of H, but has a larger error of order 
Δz.

A straightforward numerical method for evaluating H(z, 
x, y) given by (10) is the patch element method (PEM) 
[16]. The idea is to decompose the transducer area A(0, 
0) into N rectangular patches of area ΔwΔh that are suf-
ficiently small, so that the Fraunhofer approximation (see 
Section II-C) holds for each patch. The resulting integrals 
can then be evaluated analytically and the integral over 
A(0, 0) is the sum of all patch contributions (compare 
(10) in [16])
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n

N ikR
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( )
2

( )
2

=1

≈

×
−

⋅
−

∑
−

∆ ∆

∆ ∆
sinc sinc ,

	 (13)

where (xn, yn) is the center of the nth patch element, Δw 
and Δh are width and height of each patch element, and 
R2 is z2 = (x − xn)2 + (y − yn)2. The same idea was uti-
lized by Rangarajan et al. to derive a numerical expression 
for the PSF based on a heuristic model of the scattering 
process [7]. The patch element method can be used for 
arbitrary shapes A of the transducer surface.

For circular transducer surfaces A(0, 0), a transition to 
cylindrical coordinates allows for an analytic evaluation 
of one of the integrals in the double integral (10). Even 
though this results in different possible equivalent single 
integral expressions, like the Schoch integral [26], the King 
integral [27], or variants thereof [28], [29], [30], these are 
not necessarily better suited for a numerical evaluation. 
McGough et al. compared in [31] different equivalent inte-
gral expressions for (10), and found the smallest numerical 
error for Gaussian quadrature with the following single 
line integral:2

	
H z x y

i a
k d

s a
s a as

e ik s a as

( )
cos

cos

( cos

, , =
2

2
0

2 2

22 2

π

ϕ

ϕ
ϕ

ϕ∫
−

+ −

× − + − ++ −−z ikze
2

),

	 (14)

where s2 = x2 + y2 and a is the radius of the transducer 
area.

Fig. 2 shows the absolute value of the PSF computed 
with (14), (11), and (8), where the integral in (14) has 
been evaluated with the GNU Octave function quadgk.3 
The shape of the PSF is identical to Fig. 2(b) in [7], as 
should be expected because Huygen’s principle, on which 
the numerical method by Rangarajan et al. is based, is a 
reformulation of the first Rayleigh integral and therefore 
also makes the approximation of the modified Kirchhoff 
theory. In other words, our solution (8) is the exact ana-
lytical expression for which Rangarajan et al. have given 
one particular numerical approximation scheme in [7].

C. Analytical Computation of the PSF

For two special cases of a circular piston with radius 
a, we can derive closed analytic expressions for the PSF: 
on the acoustical axis and in the far-field approximation. 
These solutions are not only useful as a ground truth 
against which the numerical solutions can be compared, 
but they provide also insight into the qualitative behavior 
of the PSF.

On the acoustical axis, we have x = y = 0 so that the 
integral (10) can be directly evaluated in cylindrical co-
ordinates to

	
H z d dr r

e
z r

i
k e

a ik z r

ik z z a

( ,0,0) =

4
0

2

0

( ) 2

2 2

2 2

2 2

π

ϕ

π

∫ ∫
− +

− + +

+
=

/ sin
kk z z a( )

2

2 2− +
.

	 (15)

The resulting amplitude |g| of the PSF given by (8) is then 
proportional to |H∂zH| and is shown in Fig. 3.

In the far-field approximation z ≫ a, which is in optics 
also known as the Fraunhofer approximation, the term R 
in the integral (10) is replaced by R r x y z≈ + += 2 2 2 
in the denominator and by R ≈ r − (xx′ + yy′)/r  in the 
exponent:

	 H z x y
e
r dx dy e

z a ikr

A

ik xx yy r( , , )
(0,0)

( )≈ ′ ′
−

′+ ′∫∫
�

/ .	 (16)

For a circular piston with radius a, this integral can be 
evaluated analytically to [23]:

	 H z x y
e
r

a
ka J ka

ikr
( , , )

2
( )

2

1≈
− π

θ θsin sin ,	 (17)

where r x y z= 2 2 2+ + , and sinθ = 2 2x y r+ / , and 
J1 is the Bessel function of the first kind and first order 
[32]. Fig. 4 compares the resulting far-field PSF amplitude 
|g| ~ |H∂zH| with the numerical solution based on (14) for 
different values of the on-axis distance z.

Fig. 2. Absolute value of the PSF perpendicular to the acoustical axis 
for two different values of the on axis distance z for a circular transducer 
area with radius a = 5  mm and λ = 0.296  mm. The PSF has been nor-
malized to maximum value one. N = (4a2 − λ2)/4λ ≈ a2/λ is the near 
field distance.

2	Note that the term called H by McGough et al. [31] corresponds to 
−H/2π in our notation.

3	See http://www.octave.org/.
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III. Deconvolution Schemes

In Section II, we have derived an expression for the C-
scan image (4) from the wave equation which is based on 
fundamental physical principles. This is, however, not the 
only way in which the imaging process can be modeled. 
In LST, the imaging process is modeled as a black box 
operation that transforms the object function f into a C-
scan image SC[f]. Under the assumption that this mapping 
is linear and position-invariant, the most general form of 
this mapping is [8]

	 S f f hC[ ] = ∗ ,	 (18)

where the ∗ symbol denotes a 2-D convolution

	 ( )( , ) = ( , ) ( , )
2

f h x y dx dy f x y h x x y y∗ ′ ′ ′ ′ − ′ − ′∫∫
R

,	

and h(x, y) is an unknown PSF that completely describes 
the imaging system. The term PSF stems from the fact 
that it is the image of a point scatterer located in the 
origin, as can be seen by inserting f(x′, y′) = δ(x′, y′) into 
(18).

To see how linear system theory relates to the imaging 
model from Section II, we can insert f = δ into (7) and (4). 
It follows that the PSF from linear system theory is given 
by |g(x, y)|, where g is given by (8). It should be noted, 
however, that in general (18) does not hold, because the 
C-scan image according to (4) and (7) is given by |f ∗ g|, 
which in general is not identical to f ∗ |g| because, even 
though f is real and nonnegative, g in general is not real 
and positive. In other words, the physical model of Section 
II can only be reformulated in terms of linear system the-
ory under the assumption that

	 f g f g x y∗ ∗≈  for all , 	 (19)

Let us call this assumption the LST approximation. 
Although it looks like a crude approximation, the experi-
mental results in Section IV show that this approximation 
actually works quite well.

In the framework of linear system theory, the problem 
of reconstructing the object function f from an image SC 
is known as the deconvolution problem. Whereas the PSF 
h is known in our situation, there is still an unknown term 
because an actual pulse-echo image is always disturbed by 
some noise η(x,y):

	 S f hC = ∗ + η.	 (20)

For approximately solving this equation for f, there are 
different algorithms, three of which we discuss in the fol-
lowing subsections.

A. Wiener Filter

The Wiener filter is the most popular deconvolution 
algorithm because it can be expressed as a closed analytic 
formula for estimating the object function f [8]:

	 f F
F S
F h

F h
F h K

C≈ ⋅
+











−1
2

2
( )
( )

( )

( )
,	 (21)

where F denotes the two-dimensional Fourier transform 
and F−1 its inverse, and K is a regularization constant 
acting as a free parameter for optimizing the result. It 
should be noted that (21) is not guaranteed to be real and 
positive, so that the real part of (21) needs to be taken 
and negative values must be set to zero.

The Wiener filter has been shown to improve degraded 
images both in X-ray radiography [9] and in ultrasonic 
imaging [7]. It has, however, the disadvantage of creating 
ringing artifacts at edges and performed worse than other 

Fig. 3. Absolute value of the PSF for a circular transducer area with 
radius a = 5  mm along the acoustical axis (i.e., x = y = 0) for λ = 
0.296  mm. The curve has been normalized to maximum value one.

Fig. 4. Comparison of the far-field approximation (solid) for the absolute 
value of the PSF with the numerical solution (dotted) for a circular 
transducer area with radius a = 5  mm and λ = 0.296  mm.
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deconvolution methods in the comparative study by Ver-
beeck and Bertoni [14].

B. Richardson-Lucy Algorithm

The Richardson-Lucy algorithm, also known as the 
expectation maximization method, is an iterative scheme 
that computes successive improved images fn from the 
starting point f0 = SC [33]:

	 f
S
h f h fn
C

n
n+ ∗

∗






 ⋅1 = ,	 (22)

where h x y h x y( ) ,, = ( , )− −  which is the same as h(x, y) for 
symmetric PSFs h. The Richardson-Lucy algorithm is 
commonly deployed in astronomy [34] and microscopy 
[35]. In the comparative study [14], it performed better 
than the Wiener filter.

A problem with the iteration (22) is that it amplifies 
noise so that for n → ∞ the image consists of noise only. 
This makes it tricky to apply because the iteration needs 
to be stopped before too much noise is amplified. There-
fore different regularization schemes have been proposed 
to achieve actual convergence of the iteration, like the to-
tal variation regularization by Dey et al. [15]:

	 f
S
h f h

f
n

C

n

n
f

f
n

n

+ ∗
∗







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−









1 =
1 λdiv

,
grad

grad

	 (23)

where div is the divergence, and grad is the gradient, 
where the partial derivatives can be computed [e.g., with 
(11)] with a step width of one pixel. It should be noted 
that this regularization can lead to a division by zero or 
even to a negative fn in some cases, so that the regulariza-
tion parameter λ must not be too large. Dey et al. recom-
mended λ = 0.002 and used the convergence criterion

	 x y
n n

x y
n

f x y f x y

f x y

∑∑
∑∑
+ −1( , ) ( , )

( , )
< some threshold.	 (24)

C. ForWaRD

The problem that the Wiener filter introduces artifacts 
at edges is specifically addressed by the ForWaRD decon-
volution scheme by Neelamani et al. [10]. To this end, they 
have reformulated the traditional Wiener filter based on 
the Fourier transform (21) as a “shrinkage” operation on 
the Fourier expansion of the object function. This formu-
lation can be generalized to other expansions such as the 
wavelet transform, thereby leading to a wavelet Wiener 
filter (WWF). In the ForWaRD deconvolution, the Wie-
ner filter is followed by a WWF, which acts as a nonlinear 
denoising operation.

Details of the algorithm and its parameter determina-
tion can be found in [10] or [11]. Moreover, Neelamani has 

made a demo application available which includes source 
code of an implementation of this algorithm.4 In the study 
[11], the ForWaRD algorithm was applied to X-ray phase 
contrast images and showed better results than the Wie-
ner filter.

IV. Experiments and Results

All measurements have been made with a circular 
H5K transducer (GE Sensing and Inspection Technolo-
gies GmbH, Hürth, Germany). The radius was a = 5 mm 
and the mean frequency ν = 5 MHz which corresponds 
to a wavelength λ = 0.296 mm in the medium water. 
The relative bandwidth (−6  dB) of this transducer was 
±2.5  MHz, so that replacing the frequency spectrum with 
a single mean frequency might look like a crude approxi-
mation at first sight. The experimental results in this sec-
tion demonstrate, however, that this approximation ac-
tually works quite well, both for simulating the C-scan 
image and for deconvolution.

With this system, we have recorded C-scan images of 
the (x, y)-plane with a resolution of 0.1  mm at different 
on-axis distances z for the following three scattering ob-
jects:

•	a circular disk of radius 1.5  mm
•	two circular disks of radius 3  mm with center distance 
5  mm
•	two circular disks with radii 2 and 3  mm with center 
distance 5  mm

We have used these images in two ways:

	 1) 	to compare them with a simulated image obtained 
from a convolution between object function and 
PSF, and

	 2) 	to deconvolve them and compare the result with the 
known object function.

The first point allows to evaluate how well our PSF and 
the LST approximation describe the C-scan imaging pro-
cess, and the second point allows for a comparison of the 
different deconvolution algorithms.

A. Validation of the LST Approximation

To evaluate the validity of the LST approximation and 
of our physical model, we have simulated C-scan images 
by means of both sides of (19) with the PSF given by 
(8), (14), and (11) for different objects f and for different 
on axis distances z. All convolutions have been computed 
with the Octave function conv2, which directly computes 
the convolution. This is slower than an FFT-based convo-
lution, but does not introduce an imaginary part and is 
more accurate.

4	http://dsp.rice.edu/software/forward.
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Fig. 5 shows the signal intensity distribution for a cir-
cular disk. Due to the rotational symmetry of this geom-
etry, all information is visible along the x-direction for y = 
0. The two on-axis distances z are the same as for the 
PSFs shown in Fig. 2. As can be seen, the model describes 
the shape of the signal intensity quite well. In Fig. 5(a), 
the difference between f ∗ |g| and |f ∗ g| is smaller than the 
difference to the measured signal. We conclude that the 
LST approximation works quite well in our situation and 
introduces a smaller error than other assumptions in our 
model, namely the assumption of a single frequency ω of 
the transducer.

The same conclusion can be drawn from the two-di-
mensional C-scan images in Fig. 6, which have been color-
ized in the online version of this article with a diverging 
colormap after Moreland [36], as implemented in the func-
tion false_color of the Python library Gamera:5 red repre-
sents high values, blue represents low values, and light 
gray represents medium values. Differences between f ∗ |g| 

and |f ∗ g | are barely noticeable, and the shape of the 
signal intensity in the measured signal corresponds to the 
shape in the simulated images.

B. Evaluation of Deconvolution Schemes

We have implemented the Wiener filter and the Rich-
ardson-Lucy algorithm in GNU Octave, and the ForWaRD 
algorithm in C++ based on the code by Neelamani. To 
find a good choice for the parameter K in the Wiener fil-
ter, we have computed the mean square error between the 
deconvolution of known convolutions f ∗ |g| and the object 
function f, because the Wiener filter tries to minimize this 
error [8]. Depending on the on-axis distance z and the 
object function f, the minimum error occurred for values 
K between 100 and 1000, so that we have settled on K = 
500. For the Richardson-Lucy (RL) algorithm, we set the 
number of iterations to 30, and for the total variation 
regularization (RL-TV), we set the convergence threshold 
to 0.5% because for smaller values we had not observed a 
satisfying convergence.

We had thus four different deconvolution algorithms 
which we have compared both on simulated and real 
pulse-echo images. The PSFs for simulation and decon-
volution have been numerically computed with (8), (11), 
and (14). Moreover, we have tested how well the far-field 
approximation (17) of the PSF works even when the on-
axis distance is not yet in the far-field region.

1) Simulated Images: As all deconvolution algorithms 
make the assumption that the image is of the form f ∗ |g|, 
where f is the object and |g| is the PSF, we have tested 
first how the algorithms compare when this assumption 
exactly holds. To this end, we have applied the algorithms 
to the images in the second rows of Fig. 6. Note that in 
these images, no noise was artificially added. In other 
words, the only noise was due to numerical inaccuracies 
and to digitization errors from the 0.1  mm rastering.

Fig. 7 shows the deconvolution results along the y = 
0 axis for two disks of different size. This is the most dif-
ficult of our three object configurations because the echo 
of the smaller disk is weaker and tends to be swallowed 
by the echo of the larger disk. With the exception of the 
ForWaRD algorithm for z = 2N, all algorithms can sepa-
rate the two echoes. The Wiener filter creates the stron-
gest contrast in the near field, whereas outside the near 
field the regularized Richardson-Lucy algorithm results in 
a slightly stronger contrast. The Wiener filter and the 
ForWaRD algorithm, however, introduce oscillations with 
negative values, which are particularly strong for the Wie-
ner filter in the near field. Even when these are truncated, 
the positive local maxima from these oscillations remain 
and introduce artifacts into the deconvolved image. The 
ForWaRD algorithm smoothes the oscillations, but this 
has the side effect that the echoes are poorly separated in 
the far field. The Richardson-Lucy algorithm, especially 
in its regularized form with an automatic selection of the 
number of iterations, shows the best result in all cases: the 

Fig. 5. Comparison of the measured C-scan signal along the x-direction 
for a circular disk f with radius 1.5 mm with the convolutions f ∗ |g| and 
|f ∗ g|. (a) z = N/3 = 28.1  mm, (b) z = N = 84.4  mm.

5	See http://gamera.sf.net/.
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deconvolved images only have two local maxima which are 
clearly separated.

For the simulated images, we have also tested the ro-
bustness of the Richardson-Lucy algorithm with respect 
to noise. To this end, we have added Gaussian noise η with 
variance σ2 to the result of the convolution:

	 S f gC = { ,0}max ,∗ + η 	 (25)

where the maximum has been applied to avoid negative 
signal intensities in the simulated image. As can be seen 
in Fig. 8, even for high noise levels, the total variation 
regularization of the Richardson-Lucy algorithm is very 
robust with respect to noise. This is in agreement with the 
results by Dey et al. [15].

2) Real Images: On the real images, similar effects can 
be observed for the deconvolution results shown in Fig. 9. 
The Wiener filter works best at the near field distance, for 

which it actually produces a sharper minimum between 
the two disks than the other algorithms, at the expense of 
slight oscillations near to the objects. In the near and far 
field, however, these oscillations create serious artifacts: in 
the near field the larger disk of the object in the bottom 
row appears to be split up into more than one component, 
and in the far field the smaller disk in the bottom row is 
indistinguishable from the artifacts created by the Wiener 
filter.

The ForWaRD algorithm produces weaker artifacts at 
the expense of a less clear separation of echoes. Like the 
Wiener filter, the ForWaRD algorithm works best at the 
near field distance N. In the near field, it introduces stron-
ger artifacts than in the far field, but the echoes are con-
siderably poorer separated in the far field: the spread of 
the echoes at large distances is larger than for the Wiener 
filter.

The Richardson-Lucy algorithm performs best in all 
cases: It introduces no artifacts at all and results in exact-

Fig. 6. Comparison of the measured C-scan image (top row) with the convolutions f ∗ |g| (middle row) and |f ∗ g| (bottom row) for three different 
objects f: a single disc (left column), two disks of identical size (middle column), and two disks of different size (right column). (a) within near field: 
z = 37  mm, (b) near field distance: z = N = 84.4  mm, (d) out of near field: z = 2N = 168  mm. All images are 16 mm high, the narrower images 
are 16 mm wide, and the wider images are 20  mm wide.
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ly the number of local maxima as there are real objects. 
Like the other algorithms, the echoes remain more widely 
spread in the far field, but unlike the other algorithms, 
it performs even better in the near field than at the near 
field distance N. This is particularly impressive because 
the original image has minima at the object locations 
due to interference effects, which are perfectly restored as 
maxima.

3) Far Field Approximation: The far field approxima-
tion (17) avoids the numerical integration in the compu-
tation of the PSF and can thus be desirable to use in 
practice. It is therefore interesting to see how well it works 
even outside the actual far field region. Because the far 
field approximation always has its maximum value on the 
acoustical axis x = y = 0, we cannot expect it to work in 
the near field, where the PSF can even have a local mini-
mum at x = y = 0 (Fig. 3). Hence, it only makes sense to 
try the far field approximation for z > N ≈ a2/λ.

Fig. 10 shows the result of the best performing decon-
volution algorithm (RL-TV) on simulated images f ∗ |g| 

when the PSF |g| in the deconvolution is replaced by its 
far field approximation. For z = 2N the approximation 
works quite well, whereas it works more poorly for z = N, 
as was to be expected. Even for z = N, however, a decon-
volution with the far field approximated PSF improves the 
image.

4) Runtime Considerations: All computations have been 
done without parallelization with GNU Octave 3.2.4 on an 
Intel i7–4770 CPU 3.40  GHz. The computation of a 200 
× 200  PSF took 10  s with (14) and (11), and 7  s with 
(14) and (12), due to about one-third fewer evaluations 
of H. The computation of the far-field PSF with (17) and 
(11) took only 0.5  s. Although the far-field approximation 
saves considerable runtime, it should be noted that the 
PSF needs to be computed only once for a given on-axis 
distance z. It can therefore be tabulated beforehand and 
has little impact on the total runtime of the deconvolution 
under production conditions.

The Richardson-Lucy deconvolution with total varia-
tion regularization took about 3  min for a 200 × 200  im-
age with the Octave function conv2, but only 3  s with 
taking instead the real part of fftconv2 (a convolution 
implementation by means of a fast Fourier transform). 
It should be noted that the processing time presumably 
can be further reduced significantly by utilizing speed-up 
techniques for the Richardson-Lucy algorithm like those 
described in [37] and [38].

In any case, even when the PSF is computed on the fly, 
the deconvolution can be done in real-time, because the 
runtime for the convolution is less than the run-time for 
capturing the C-scan pulse-echo image.

V. Conclusion

We have presented an analytical expression for the PSF 
of ultrasonic pulse-echo imaging that was in good agree-
ment with our experiments. It can be used for non-blind 

Fig. 7. x-Axis cuts at y = 0 of the different deconvolution results for 
simulated images of two circular discs with radii 1 mm and 1.5 mm. (a) 
within near field: z = 37  mm, (b) outside near field: z = 2N = 168  mm.

Fig. 8. Results (bottom) of the Richardson-Lucy algorithm with total 
variation regularization at different noise levels η0 = σ/max(f ∗ |g|) for 
simulated images (top) with additive Gaussian noise with variance σ2. η0 
= 0.05 (left), η0 = 0.10 (middle), η0 = 0.20 (right).
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deconvolution by computing the PSF numerically or (for 
z ≥ 2a2/λ) analytically. As a deconvolution scheme, we 
would recommend the Richardson-Lucy algorithm be-
cause it showed the best results in our experiments. With 

the total variation regularization, the convergence of the 
Richardson-Lucy algorithm occurred typically between 50 
and 100 iterations, so that, as an alternative to the regu-
larization, the original Richardson-Lucy algorithm might 

Fig. 9. Results of the different deconvolution algorithms on real pulse-echo images (left column): RL stands for the Richardson-Lucy algorithm with 
30 iterations, and RL-TV for the Richardson-Lucy algorithm with total variation regularization. Negative values in the results of the Wiener and 
ForWaRD filters have been truncated to zero. All images are 20  mm wide and 16  mm high. (a) within near field: z = 37  mm, (b) near field distance: 
z = N = 84.4  mm, (c) out of near field: z = 2N = 168  mm.
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be applied with 50 iterations to ultrasonic images as a rule 
of thumb, but even with fewer iterations the results are 
satisfying.

In our derived formula for the PSF, we have made 
the assumption of a single frequency of the transducer. 
Although this was only a crude approximation for our 
experiments, the results were nevertheless quite good. It 
would be interesting to investigate whether the agreement 
between experiment and theory can be further improved 
by taking the exact shape of the transducer frequency 
spectrum into account.

The PSF presented in this article only holds for sound 
propagation through a single isotropic medium. This 
means that our solution cannot be applied directly to ul-
trasonic inspection of solid media. Even though we show 
in the Appendix that the PSFs for hard scatterers (obsta-
cles in fluids) and soft scatters (holes in solids) are identi-
cal, the assumption of a single medium does not hold for 

the ultrasonic inspection of solid materials, because the 
latter typically are coupled with the transducer through 
another fluid medium. In the case of a planar medium 
transition, both media might be approximated through 
a single medium with an effective path concept [7]. This 
conjecture, however, requires a closer experimental and 
theoretical investigation.

Another interesting point is that our experiments have 
shown a surprisingly good agreement between f ∗ |g| and |f 
∗ g| (the LST approximation). Because it is not clear 
which special properties of f and g justify this approxima-
tion in our case, another interesting subject for future re-
search would be to determine under which circumstances 
this approximation holds from a mathematical approxi-
mation theory point of view.

Appendix A. Analytical Expression  
for the Sound Field of Hard Scatterers

While the boundary condition at the transducer only 
depends on the known transducer velocity vz(t, x, y), the 
boundary condition at the scattering object depends on 
its material. When the scatterer is a rigid object, it is vz  
= 0 at its surface. Moreover, we assume the transducer 
velocity to be the same over its entire area, i.e., vz(t, x, y) 
= vz(t), which leads to the following boundary conditions

	
∂
∂

−{p
z

v tz= ( )
0
ρ � at the transducer

at the scatterer
,	 (26)

where the dot denotes a time derivative. To solve the wave 
equation, it is convenient to decompose the total pressure 
field p into a sent pressure field psent and a scattered pres-
sure field pscat,

	 p t x p t x p t xsent scat( , ) = ( , ) ( , )
� � �

+ .	 (27)

When the transducer is in sender mode, pscat is zero near 
the transducer surface, and when it is in receiver mode, 
psent is zero near the transducer surface. The received 
transducer signal is therefore pscat alone, so that this pres-
sure field is the interesting observable.

For completely determining the pressure field, the 
boundary condition (26) needs to be extended into the en-
tire transducer and scatterer plane. To avoid the problem 
of mixed boundary conditions, an often made approxima-
tion is that of the modified Kirchhoff theory (see [19], 
Section IV):

	
∂
∂

−p
z

v t A x ysent z= ( ) ( , )
0
ρ � inside the transducer area

elsewhere in tthe transducer plane.{ 			

		  (28)

When the transducer is mounted on a rigid wall (a baffled 
transducer), this boundary condition holds exactly, but 
for most practical situations it is merely an approxima-

Fig. 10. x-Axis cuts at y = 0 of the RL-TV deconvolution for simulated 
images of two circular discs with radii 1 and 1.5  mm, which are repre-
sented by an object function f according to (2). In the solid curves, the 
PSF g was replaced by its far field approximation in the deconvolution, 
whereas the dotted curve was obtained with the numerically computed 
exact PSF. (a) near field distance: z = N = 84.4 mm, (b) outside near 
field: z = 2N = 168  mm.
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tion. The solution of the wave equation (5) under this 
boundary condition is given by the Rayleigh integral6 [23] 
(for other, equivalent expressions see [24]):

	 p t x y z dx dy
v t R c

Rsent
A

z( , , , ) = 2
( )ρ

π ∫∫ ′ ′ −� /
,	 (29)

where A is the transducer surface area and R2 is z2 + (x 
− x′)2 + (y − y′)2. For the constant frequency case vz(t) 
= v0eiωt, where ω = 2πc/λ = ck (c denotes the velocity 
of sound, λ the wavelength, and k the wavenumber), this 
becomes

	 p t x y z
i v

e dx dy
e
Rsent

i t

A

ikR
( , , , ) = 2

0ωρ
π

ω ∫∫ ′ ′
−

.	 (30)

Inside the scattering area, the hard boundary condition 
(26) leads to

	
∂
∂

⇒
∂
∂

−
∂
∂

p
z z p z pscat sent= 0 = .	

Outside the scattering area A′ and z ≥ z0, we make the 
modified Kirchhoff approximation again and obtain as 
boundary conditions for the scattered field at z = z0: 

	
∂
∂

−
∂
∂

′p
z z p Ascat sent=

0

inside the scattering area

elsewhere in the sscatterer plane.








			

		  (31)

This boundary condition is formally identical to (28), and 
the solution is again given by the Rayleigh integral

	

p t x y z z

dx dy z p t R c x y z z

scat

A

sent

( , , , )

=
1
2

( , , , = )

0

0

−

− ′ ′
∂
∂

− ′ ′

′
∫∫π

/
RR .

	 (32)

Inserting (32) and (30) into (3), we obtain for the received 
signal

	

S t x y dx dy p t x y z

e

A x y
scat

i t

A x

( , , ) ( , , , = 0)

=

( , )

(

∼ ∫∫ ′′′ ′′′ ′′′ ′′′
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2
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


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− ′′

x dy z
e
R

ikR

z z= 0

,

	 (33)

where R0
2′′′  = z0

2 + (x′′′ − x′)2 + (y′′′ − y′)2 and R′′2 = z2 
+ (x′′ − x′)2 + (y′′ − y′)2. After expressing the integral 
over A′ with the object function (2) by writing

	
′ −∞

∞

−∞

∞

∫∫ ∫ ∫′ ′ ′ ′ ′ ′
A

dx dy dx dy f x y… …= ( , ) 	 (34)

and after exchanging of the first two integrals and substi-
tuting x′′′ = ξ + x, y′′′ = η + y, and x′′ = ξ′ + x, y′′ = η 
+ y, (33) becomes

	 S t x y e dx dy f x y g x x y yi t( , , ) ( , ) ( , )∼ − ′ ′ ′ ′ − ′ − ′
−∞

∞

−∞

∞

∫ ∫ω ,	 (35)

where g(x, y) is given by

	 g x y
i v

H z x y z H z x y z z
( , ) =

4
( , , ) ( , , )0

2 0
= 0

ωρ
π

∂
∂

	 (36)

with

	 H z x y d d
e
z x y

A

ik z x y
( , , ) =

( ) ( )
(0,0)

2 ( )2 ( )2

2 2 2∫∫
− + + + +

+ + + +
ξ η

ξ η

ξ η
.	 (37)

Eq. (35) shows that the received time dependent signal 
can be written as a spatial convolution of the object func-
tion with a PSF g.

Appendix B. Analytical Expression for the Sound 
Field of Soft Scatterers

When the scattering object is a cavity, the boundary 
condition at the the scatterer does not impose a vanishing 
velocity, but vanishing pressure, i.e., p(z0) = 0 inside the 
scattering area A′. With the decomposition (27) of the 
sound field into a sent and scattered field, this condition 
becomes

	 p p pscat sent= 0 =⇒ − .	

To extend this boundary condition beyond the scattering 
area, the modified Kirchhoff theory suggests to simply set 
the scattered pressure to zero in the scattering plane out-
side the scattering area [19]:

	 p p A
scat

sent=
0

− ′inside the scattering area
elsewhere in the scatterrer plane{ .			

		  (38)

The solution for this boundary condition is given by the 
second Rayleigh integral [20]

	

p t x y z z

dx dy z
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scat

A

sent

( , , , )
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0

0

−

− ′ ′ ∂
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′
∫∫π
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RR
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where R2 is z2 + (x − x′)2 + (y − y′)2. The sent field psent 
is the same as for a hard scatterer, and is thus given by 

6	Actually this is the first Rayleigh integral, but in most of the litera-
ture this is simply called the Rayleigh integral.
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(29). Inserting (29) into (39), we obtain for the received 
signal

	

S t x y dx dy p t x y z
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A x y
scat

i t

A x y

( , , ) ( , , , = 0)

=

( , )

( , )

∼ ∫∫

∫

′′ ′′ ′′ ′′

− ω ∫∫ ∫∫′′ ′′ ′ ′

×
∂
∂ ′′










′

− ′′

dx dy dx dy
i v

z
e
R

A

ikR

z z

ωρ
π

0
2

= 0

4

AA x y

ikR
dx dy

e
R

( , ) 0

0

∫∫ ′′ ′′
′′′

− ′′′

,

	 (40)

where R0′′′ = z0
2 + (x′′′ − x′)2 + (y′′′ − y′)2 and R′′2 = z2 

+ (x′′ − x′)2 + (y′′ − y′)2. Again, we express the integral 
over A′ with the object function f, make the substitutions 
x′′′ = ξ + x, y′′′= η + y, and x′′ = ξ′ + x, y′′ = η′ + y, and 
obtain

	 S t x y e dx dy f x y g x x y yi t( , , ) ( , ) ( , )∼ ω

−∞

∞

−∞

∞

∫ ∫ ′ ′ ′ ′ − ′ − ′ ,	 (41)

where g(t, x, y) is given by

	 g x y
i v

z H z x y H z x y
z z
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with

	 H z x y d d
e
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( ) ( )

2 2 2

2 2 2
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.	 (43)

Within the modified Kirchhoff approximation, we thus ob-
tain the same expression for the transducer signal both for 
soft and hard scatterers.
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