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Modeling the High-Frequency Complex 
Modulus of Silicone Rubber Using  
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Finite Element Method
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Abstract—To gain an understanding of the high-frequency 
elastic properties of silicone rubber, a finite element model 
of a cylindrical piezoelectric element, in contact with a sili-
cone rubber disk, was constructed. The frequency-dependent 
elastic modulus of the silicone rubber was modeled by a four-
parameter fractional derivative viscoelastic model in the 100 to 
250 kHz frequency range. The calculations were carried out in 
the range of the first radial resonance frequency of the sensor. 
At the resonance, the hyperelastic effect of the silicone rubber 
was modeled by a hyperelastic compensating function. The 
calculated response was matched to the measured response 
by using the transitional peaks in the impedance spectrum 
that originates from the switching of standing Lamb wave 
modes in the silicone rubber. To validate the results, the im-
pedance responses of three 5-mm-thick silicone rubber disks, 
with different radial lengths, were measured. The calculated 
and measured transitional frequencies have been compared 
in detail. The comparison showed very good agreement, with 
average relative differences of 0.7%, 0.6%, and 0.7% for the 
silicone rubber samples with radial lengths of 38.0, 21.4, and 
11.0 mm, respectively. The average complex elastic moduli of 
the samples were (0.97 + 0.009i) GPa at 100 kHz and (0.97 + 
0.005i) GPa at 250 kHz.

I. Introduction

The method of emitting ultrasonic waves into tissue 
and detecting the interaction of the waves with the 

tissue for medical purposes is now established as a stan-
dard method for detecting lesions in the tissue [1]. Because 
of the high cost of the equipment, screening for detection 
of various cancer forms is not a common procedure [2]. At 
polyclinics, there is a need for low cost, small, hand-held 
probes that can be used to monitor the existence of lesions 
in tissues, for example, prostate cancer [3].

A series of studies have been reported in which piezo-
electric tactile sensors have been used to characterize soft 

tissue. These sensors can distinguish between normal and 
cancerous prostate tissue [4], [5]. Because the sensor is 
small and of the ready-to-use type, it could be a candi-
date for a new diagnostic instrument. The basic principle 
involves a piezoelectric sensor element, vibrating at reso-
nance. The mass added to the sensor, resulting from the 
contact with soft tissue, results in a small change in the 
resonance frequency. The interpretation of this frequency 
shift is used to identify variations of the structural proper-
ties of the tissue. To improve this ability to detect struc-
tural variations, and to better understand the interaction 
between the vibrating piezoelectric element and soft tissue 
or tissue-like materials (phantoms), further investigation 
of the sensor and tissue/phantom combination is required.

When it comes to tissue-mimicking phantoms for ultra-
sound imaging, agarose- and gelatin-based phantoms have 
been used [6]. Specially designed for elastography imag-
ing, gelatin-based phantoms with formaldehyde hardeners 
were investigated [7]. For evaluating the performance of 
a tactile piezoelectric sensor, a silicone rubber, has been 
used for phantoms [8]–[10]. This elastomer has also been 
used to model the elastic properties of the human skin 
[11]–[13].

The finite element method (FEM) is used today exten-
sively to calculate the effects of structural vibrations. The 
creation of a FEM model of the tactile sensor-tissue sys-
tem and fitting the model to measurements of the vibra-
tional spectra will be an important step toward a deeper 
understanding of the interaction between the vibrating 
sensor and the soft tissue with which it is in contact. In 
the process of creating such a FEM model, as a first step, 
cylindrical piezoelectric elements have been characterized 
using a FEM model utilizing harmonic overtones [14].

In this work, the next step is taken, through FEM mod-
eling of the viscoelastic properties of a tissue-like material 
that can be used as a phantom. A configuration with a 
single piezoelectric sensor, positioned in the center of a 
silicone rubber disk (SRD) emitting longitudinal waves 
into the disk, is used to model the viscoelastic properties 
of the SRD at the frequency range used by the tactile 
resonance sensor.

Human soft tissue and silicone rubbers have hyperelas-
tic properties; i.e., they normally do not have a linear 
stress–strain relationship for large strains [15]. In shear 
wave elastography, linear models of the stress–strain rela-
tionship have been used because the displacements were 
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small and the strain rates were rapid (faster than 0.5/s) 
[7], [16], [17]. Modeling the frequency dependence of the 
elastic modulus in soft tissue is a key to gaining informa-
tion about the existence of lesions.

Silicone rubbers are often used in applications in which 
its damping properties are utilized. Several models have 
been use to model the damping of viscoelastic materials. 
In the fractional derivative viscoelastic model (FDM), it 
is assumed that the stress is proportional to the strain 
derivative of fractional order [18], [19]. For finite element 
applications, the FDM has a great advantage of describing 
the relaxation properties with fewer parameters, cover-
ing the frequency spectrum, compared with conventional 
relaxation models such as the Maxwell model (a combina-
tion of sets of one spring in series with a dashpot) and the 
Voigt model (a combination of sets of one spring in paral-
lel with a dashpot).

It has been shown that Lamb wave [20] dispersion ul-
trasound vibrometry can be used to quantify mechanical 
properties of soft tissues with plate-like geometry [21]. In 
this work, the configuration of the sensor and the disk, 
vibrating at the first radial resonance, enables symmet-
ric Lamb waves to be established in the disk. Using an 
FDM of the viscoelastic properties of the SRD, together 
with the properties of standing Lamb waves, makes it 
possible to determine the frequency-dependent complex 
elastic modulus of the SRD. To get a better insight into 
the interaction between the sensor and the soft tissue us-
ing piezoelectric tactile sensors, a better understanding of 
the high-frequency elastic properties of silicon rubber is 
needed.

The purposes of this study were: 1) to develop a FEM 
model for a thick cylindrical piezoelectric element in con-
tact with a viscoelastic silicone rubber disk. The vibra-
tional modes in the silicone rubber disk can be detected by 
calculation of the frequency response of the impedance in 
the range of the first radial resonance of the piezoelectric 
element; 2) to model the complex elastic modulus of the 
silicone rubber disk using a fractional derivative model; 
3) to validate the FEM model by a comparison of the 
calculated and measured impedance responses of silicone 
rubber disks with three different radial lengths.

II. Method

The piezoelectric sensor had a cylindrical shape with 
electrodes on its flat surfaces and was positioned in the 
center of the SRD, as shown in Fig. 1. The sensor was 
configured to excite radial waves into the SRD and to 
sense the response from the material by measuring the 
frequency response of the electric impedance of the sensor. 
The frequency range was chosen so that the impedance 
was measured at frequencies covering the first radial mode 
of the sensor.

Three 5-mm-thick SRD samples with radial lengths of 
38.0, 21.4, and 11.0 mm were prepared; the samples were 

named SG5x38, SG5x21, and SG5x11, respectively. The 
physical geometries and material specifications are given 
in Sections III-A and II-B, respectively. Throughout this 
paper, a primed parameter represents the real part and a 
double primed parameter represents the imaginary part.

A. The Finite Element PSM Equations

The finite element equations and boundary conditions 
presented in this section form an extension of the finite 
element partial equations solver model (PSM) [14]. The 
extension handles losses in the sensor and models the vis-
coelastic properties of the SRD. A finite element partial 
differential equations solver (FlexPDE, PDE Solutions 
Inc., Spokane Valley, WA) was used in the PSM.

Fig. 1. (a) The measurement configuration oriented in a cylindrical co-
ordinate system with radial, polar, and longitudinal axes (r,θ, z). (1) 
Silicone rubber, disk-shaped material of thickness h and radial length 
lm; (2) the piezoelectric sensor, with electrodes on its flat surfaces and 
connecting electrical wires, positioned in the center of the disk, sur-
rounded by the silicone rubber being measured. (b) Definition of the 
finite element problem areas: vertical half-plane cut through the sensor 
and the silicone rubber disk in the plane of the z-axis. (3) The problem 
area (hatched) of the sensor with boundaries Γ10, Γ11, Γ12, and Γ13; (4) 
the problem area representing the silicone rubber disk with boundaries 
Γ20, Γ21, Γ22, and Γ11.



IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 61, no. 12, December 20142108

1) The Piezoelectric Sensor Equations: The PSM was 
configured for a 2-D axisymmetric piezoelectric disk, 
acting as the sensor, in a cylindrical coordinate system 
(r, z), as shown in Fig. 1(a). The disk had a diameter-to-
thickness ratio a/h. The system was assumed to be linear 
with small deviations from its equilibrium state. A vertical 
cross-section of the disk, shown in Fig. 1(b), was identi-
fied as the problem area for solving the partial differential 
equations that model the piezoelectric vibrations.

The mechanical system variables of the disk were the 
strain, Sq, and the stress, Tp. The 2-D cylindrical axisym-
metric mechanical strain vector is given in abbreviated 
subscripts [22] by
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where ur∗ = ur′ + iur′′ and uz∗ = uz′ + iuz′′ are the displace-
ment vectors, ui k,∗  = ∂ ∂∗u xi k/ , and i2 = −1. (A comma 
followed by an index denotes partial differentiation with 
respect to a spatial coordinate.) The electric flux density, 
Dk, and the quasistatic electric field, Ei, are the electric 
system variables. The elastic stiffness, piezoelectric, and 
inverted dielectric permittivity constants, listed in the Ap-
pendix, are denoted cpqD , hiq, and βik

S , respectively. In this 
paper, the subscripts i, j, k, and l take the values 1, 2, or 
3, and the subscripts p and q take the values 1, 2, 3, 4, 5, 
or 6 [23].

The piezoelectric constitutive equations with Sq and Dk 
as independent variables can be expressed as [23], [24]

	 T c S h Dp pq
D
q kp k= ,− � 	 (2a)

	 Ei iq q ik
S
kh S D= ,− + β 	 (2b)

with supporting equations

	 divDk = 0,	 (3a)

	 Ei i= − ∗ϕ, ,	 (3b)

	 divT up i= −ω ρ2 ,	 (3c)

where div is the cylindrical divergence operator [22], ρ is 
the density of the sensor, and ϕ∗ = φ′ + iϕ ′′ is the electric 
potential. Eq. 3(c) represents the equation of motion, 
where we assume harmonic oscillations of type eiωt with 
the angular frequency ω = 2π f, where f is the frequency.

A full treatment of the losses in the sensor requires 
implementation of loss factors in the viscoelastic, piezo-
electric, and dielectric matrices. Because the frequency 
range of the sensor was limited to the first radial reso-
nance mode, the loss factors were implemented as a subset 
in the viscoelastic matrix [25]. The loss in the sensor mod-

el was implemented as a viscoelastic loss tangent factor, 
ηpq, so that cpq∗  = cpq′ (1 + iηpq), where ηpq = c cpq pq′′ ′/ .

Because of the axis-symmetry of the model, the deriva-
tives of the displacement vector components with respect 
to θ can be ignored. Eq. 2(a) yields the real and imaginary 
components of the stress in cylindrical format:
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where Trr∗  = Trr′  + iTrr′′, Tθθ∗  = Tθθ′  + iTθθ′′, Tzz∗  = Tzz′  + iTzz′′, 
Trz∗  = Trz′  + iTrz′′, and Trθ∗  = T zθ∗  = 0. Eq. 3(c) relates the 
divergence of the stress to the motion of the vibrating 
body. Application of the divergence operator to the stress 
yields the equations that describe the periodic elastic vi-
brations of the piezoelectric disk:
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The second constitutional equation (2b), gives the compo-
nents of the electric field:
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Substitution of (3b) into (6) gives the electric flux density 
components:
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Application of (3a), the divergence of the electric flux den-
sity, yields

	 D
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Eqs. (4), (5), and (8) make up the system of partial dif-
ferential equations solved by the partial differential equa-
tion solver of the PSM to calculate the displacements in 
the sensor.

2) The Equations of Stress for the SRD (Linear Approxi-
mation): The silicone rubber was regarded as a homoge-
neous elastic material. Silicone rubbers are hyperelastic, 
which means that they have a nonlinear stress–strain re-
lationship for large deformations. Because the vibrations 
that propagate in the silicone rubber from the piezoelec-
tric element have very low displacement amplitudes, in 
this paper, the silicone rubber model was approximated to 
have a linear stress–strain relationship.

For an isotropic material, Hooke’s law,

	 T S Sij kk ij ij= 2 ,λ δ µ+ 	 (9)

where λ and μ are the Lamé’s constants and δij is the 
Kronecker delta, relates the stress to the strain of the ma-
terial. The stiffness tensor

	 cijkl ij kl ik jl il jk= ( )λδ δ µ δ δ δ δ+ + 	 (10)

was calculated. Using the symmetric properties of the ten-
sor, cijkl was abbreviated to cpq [22].

The expression for cpq together with the equations [20]

	 λ
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E E
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was used to express the silicone rubber stiffness matrix cpq, 
in terms of the elastic modulus, E, and the Poisson’s ratio, 
ν, as shown in (12), see above.

The viscoelastic properties of the silicone rubber were 
modeled using a fractional derivative model (see Section 
II-A-5) with a complex frequency-dependent elastic mod-
ulus E ∗( )ω . Hence, the coefficients of the stiffness matrix 
become complex cpq∗  = cpq′  + icpq′′. Because of the axis-
symmetry of the model, the PSM equations of stress for 
the cylindrical axisymmetric SRD are
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Eqs. (5) and (13) make up the system of partial differen-
tial equations solved by the partial differential equation 
solver of the PSM to calculate the displacements in the 
SRD.

3) Poisson’s Ratio and the 2-D FEM: Biological tissues 
and rubber-like materials are incompressible, i.e., they 
have a Poisson’s ratio ν ≈ 0.5. For an isotropic elastic 
material, ν is related to λ and μ by
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which is not defined for ν = 0.5. Hence, when performing 
finite element calculations using a linear isotropic elastic-
ity model, numerical instabilities arise when letting ν → 
0.5. It has been shown, under certain conditions, that for 
a 2-D representation of the geometry, the Poisson’s ratio 
can be expressed as ν ′ = ν /(1 + ν ) by regarding a unit 
cube of incompressible elastic material [26].

The expression for ν ′ was derived by regarding a unit 
cube1 of incompressible elastic material with axial, x1, lat-
eral, x2, and elevational, x3, orthogonal axes. The axial 
surfaces at x1 = 1 and x1 = 0 are allowed to expand in the 
lateral and elevational directions. The lateral surfaces, or-
thogonal to the lateral axis, and the elevational surfaces, 
orthogonal to the elevational axis, of the unit cube are free 
to move. The axial surface at x1 = 1 is subjected to a 
small axial compression (along x1). The displacements 
(u1, u2) are measured in a 2-D plane at x3 = 0. It can be 
shown [26] that the displacements (u1, u2) are the same as 
the displacements ( )u u1 2,′ ′  of an incompressible plane strain 
model used to calculate the displacements in a 2-D plane 
at x3 = 0 with ν ′ = ν /(1 + ν ). In the plane strain model, 
the elevational surfaces are clamped or the material is re-
garded infinite.

The preceding arguments can be extended to the cylin-
drical element depicted in Fig. 2. A surface of the element 
is denoted by the axis to which the surface is orthogonal. 
The element is considered to belong to an axisymmetric 
cylindrical body such as the SRD in Fig. 1. The situation 
is analogous to the unit cube case: let a small compression 
act in the radial direction with the radial surfaces free to 
expand in the longitudinal and polar directions. Measure-
ments of the displacements (ur, uz) in the problem plane 
indicated in Fig. 2 correspond to measurements of the dis-
placements in the unit cube plane (x3 = 0) [26]. The lon-
gitudinal surfaces are allowed to move freely. In the polar 
direction, which corresponds to the elevational direction 
in the unit cube case, because of the axisymmetric as-
sumption, the polar displacements, uθ, are all zero. Hence, 
the polar surfaces could be regarded as clamped. Thus, 
when we used the 2-D cylindrical finite element model to 

calculate the displacements for the axisymmetric SRD, we 
used an axisymmetric cylindrical model with the Poisson’s 
ratio set to ν ′.

Using this conversion of the Poisson’s ratio and com-
paring the calculated results of a 3-D model to a 2-D 
plane strain model results in relative displacement differ-
ences in the radial and vertical directions of <1% and 
<10%, respectively [26]. Because the waves emitted in to 
the SRD are radial, the deviation in vertical displacements 
has minimal impact. The 2-D finite element model, when 
compared with a 3-D model, cannot replicate any poten-
tial vibrational modes in the θ-direction (Fig. 2).

4) The Boundary Value Conditions of the Sensor and 
SRD Problem Areas: The boundaries of the sensor prob-
lem area are shown in Fig. 1(b). The boundaries Γ12 and 
Γ10 are defined in the planes of the electrodes in the figure. 
Boundaries Γ11 and Γ13 are parallel to the z-axis at r = a 
and r = 0, respectively. The electrodes were connected to 
an alternating voltage source, Veiωt, generating a vertical 
electric field. The boundary conditions are listed in Table 
I. The value function specifies the value that a dependent 
variable must take at a boundary of the domain. The load 
function specifies the value that the normal component of 
the gradient of the dependent variable should have at the 
boundary of the domain. At the origin (0, 0), a single point 
value( , )u ur z

∗ ∗  was set equal to zero to allow only axisym-
metric extensional mode vibrations. The electric potential 
ϕ∗ was set to zero at Γ10 and to the value of the exciting 
voltage at boundary Γ12.

The boundary conditions for the SRD problem area are 
listed in Table II. The sensor and the SRD are connected 
by boundary Γ11. The boundary condition at Γ11 was set 
so that the normal component of the stress was continuous 
across the boundary. To enable standing Lamb waves in 
the SRD, a mixed boundary condition [27] was set for 
boundaries Γ20 and Γ22, where the radial displacement, ur∗, 

Fig. 2. Cylindrical element with radial, polar, and longitudinal axes 
(r,θ, z); (1) finite element problem plane. u ur z

∗ ∗,  are complex displace-
ments in the problem plane.

TABLE I. PSM Boundary Value Conditions  
of the Sensor Problem Area. 

Boundary Type of condition

Γ10 load( )ur∗ load( )uz∗ value( )ϕ∗

Γ11 load( )ur∗ load( )uz∗ load( )ϕ∗

Γ12 load( )ur∗ load( )uz∗ value( )ϕ∗

Γ13 value( )ur∗ load( )uz∗ load( )ϕ∗

The displacements u ur z
∗ ∗,  and the electric potential ϕ∗ are all complex 

parameters. For all boundary value conditions load(), value(), the real 
and imaginary parts are set to zero except for boundary Γ12, where the 
real part of value(φ) is set to equal to the excitation voltage. At the 
origin (0, 0), a single point value ( , )u ur z

∗ ∗  was set equal to zero to allow 
only axisymmetric extensional mode vibrations.

1	The paragraph concerning the unit cube case is reproduced from 
Fehrenbach [26] for clarity.
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was set to zero. The curved surface of the SRD was set to 
move freely.

5) The Fractional Derivative Viscoelastic Model (FDM): 
Rubber-like materials exhibit a frequency-dependent vis-
coelastic property that can be modeled by a complex elas-
tic modulus E ∗( )ω

	 E E iE∗ ′ ′′+( ) = ( ) ( )ω ω ω ,	 (15)

where E′(ω ) is the real part or the storage modulus and 
E′′(ω ) is the imaginary part or the loss modulus. Analo-
gous to dielectric relaxation, the loss tangent, tanδ (ω ) = 
E′′(ω )/E′(ω ) indicates the damping of propagating acous-
tic waves in the material.

In the FDM, it is assumed that the stress is propor-
tional to the strain derivative of fractional order [18]. For 
finite element applications, the FDM has a great advan-
tage of describing the relaxation properties with few pa-
rameters covering the frequency spectrum.

The four-parameter FDM [28],

	 E
E E i

i
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where E∞ and E0 are the moduli at the high- and low-
frequency limits, respectively; τc is a characteristic time 
constant; and the frequency ωc = 1/τc is the maximum 
frequency of the loss modulus peak. The parameter α con-
trols the slope of the symmetric loss function (0 < α < 
1) [19].

The modulus E ∗( )ω  can be expressed in its real and 
imaginary parts:
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and the loss tangent
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where k = E∞/E0 ≫ 1 [19].

6) Standing Lamb Waves in the SRD: Because of the ra-
dial excitation of the vibrations into the SRD, the favored 
Lamb wave modes in the SRD in the actual frequency–
thickness range are the symmetric modes S0 and S1. A 
dispersion plot calculated using the computer program 
Wave Form Revealer 3.0 (Laboratory for Active Materi-
als and Smart Structures, University of South Carolina, 
Columbia, SC) for a 5-mm plate of the silicone rubber is 
shown in Fig. 3(a). In the dispersion plot, the S0 mode is 
the only mode that exists in the low-frequency regime. 
The S1 mode is nonexistent below its nascent frequency–
thickness of approximately 600 kHz·mm. The three shape 
plots in Figs. 3(b)–3(d) show the displacements as a result 
of the superposition of the S0 and S1 modes. The S0 mode 
dominates at the low-frequency part of the calculated fre-
quency range, whereas the S1 mode dominates at the high-
frequency part of the frequency range. In the intermediate 
frequency range, both modes are present and interfere, 
which can be seen as a modulation of the envelope in the 
shape plots.

B. Finding the PSM Model Parameters of the Combined 
System of Sensor and SRD

In the following two sections, the parameters Eini, α, 
and the hyperelastic compensating function Φ(ω ) are ref-
erenced. Detailed descriptions concerning each parameter 
can be found in Section II-B-2 for Eini, Section II-B-3 for 
α , and Section II-B-4 for Φ(ω ).

TABLE II. PSM Boundary Value Conditions of the Silicone 
Rubber Disk Problem Area. 

Boundary Type of condition

Γ20 value( )ur∗ load( )uz∗

Γ21 load( )ur∗ load( )uz∗

Γ22 value( )ur∗ load( )uz∗

Γ11 value( )ur∗ load( )uz∗

The displacements u ur z
∗ ∗,  are complex parameters. For all boundary 

value conditions load(), value(), the real and imaginary parts are set to 
zero except for boundaries Γ20 and Γ22, where the value( )ur∗  is set to 
zero to enable Lamb standing waves.

Fig. 3. The first two symmetric dispersion curves, S0 and S1, calculated 
with Waveform Revealer, for a 5-mm-thick silicone rubber plate, with ρ 
= 970 kg/m3, E = 1.0 GPa, and ν = 0.499. (a) The wave velocity vp is 
plotted versus the frequency–thickness in the actual range. Mode shape 
plots of the displacements at frequency–thicknesses (b) 582 kHz·mm, (c) 
721 kHz·mm, and (d) 1227 kHz·mm are shown in the insets. The shape 
plots are Lamb wave transitions of the sample SG5x11. 
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The density, thickness, and diameter of the piezoelec-
tric sensor, and the density and radial length of the SRD 
were set to fixed values and were not part of the fitting 
procedure. The piezoelectric sensor and the SRD were 
modeled by two separate sets of constitutive equations 
describing the piezoelectric sensor itself and the SRD con-
nected at a boundary with appropriate boundary condi-
tions as described in Sections II-A-1, II-A-2, and II-A-4.

The following parameters described the vibrational 
characteristics of the sensor: the elastic parameters c11, 
c12, c13, c33, and c44; the piezoelectric parameters e31, e15, 
and e33; the dielectric parameters ε11 and ε33; and the loss 
tangent, η. Because the sensor was identical to a piezo-
electric element (PZT-5A1, Morgan Electro Ceramics, 
Thornhill, Southampton, England) that was modeled in 
an earlier work, the PD02 model [14], the parameters were 
identical to the effective PD02 model parameters with the 
addition of the loss tangent parameter.

The silicone rubber SG612 (SilGel 612, Wacker Chemie, 
München, Germany) was used in the SRDs. The SG612 
was regarded as nearly incompressible. The Poisson’s ratio 
ν was set to the fixed value 0.49. Details on the silicone 
rubber are in Section III-A.

The complex elastic modulus E ∗( )ω  of the silicone rub-
ber was implemented in the stiffness matrix cpq∗ . E ∗( )ω  was 
modeled by the FDM, (16)–(19). For frequencies near the 
radial resonance, the hyperelastic compensating function 
Φ(ω ), (21), modifies the elastic modulus.

1) The PSM Parameter Fitting Procedure: In the pro-
cedure of fitting parameters, the sensitivity of the param-
eters was determined by calculating the sensitivity ma-
trix ξnm. The elements of the matrix are the ratios of 
the relative variation of target frequency–thicknesses to 
the relative variation in parameter values [14]. The pa-
rameters were tuned using the feedback algorithm for the 
determination of grouped parameters [14], here called the 
parameter tuning procedure (PTP).

As shown in the sensitivity matrix for the SG5x11 
model, Table III, the elements for the parameters α and 
τc demonstrate low sensitivity values which made fitting 
using the PTP difficult. The effects of the time constant 
τc and the fractional exponent α are related. A variation 
of τc moves the peak frequency of E′′ and a variation of α 
has the effect of altering the slope of log(E′′) when plot-
ted versus log(frequency). This means that the effect of 
a variation in τc can be neutralized by a variation of α. 
Therefore, it was decided to determine the parameter α by 
a procedure external to the method of using Lamb wave 
transition frequencies. This procedure is described in Sec-
tion II-B-3.

The procedure to fit the PSM parameters was divided 
into three consecutive stages:

	 1) 	The baseline tuning stage: The SRD, when connect-
ed to the piezoelectric sensor, will superimpose reso-
nance peaks to the baseline impedance response in 

the first radial resonance mode interval. To match 
the baseline of the PSM model to the measured 
baseline, the elastic parameters c11, c12, and c13 of 
the sensor were used. They are dominant in the low-
frequency tuning stage sensitivity matrix [14] for the 
R1 and Ra1  radial resonances. The parameters were 
tuned using the PTP. The convergence of the param-
eters c11, c12, and c13 using the PTP is shown in Fig. 
4. 

	 2) 	The viscoelastic tuning stage: The viscoelastic prop-
erties of the SRD were modeled by the FDM. The 
initial elastic modulus, Eini, was used together with 
the low-frequency limit value of the elastic modulus, 
E0, so that the initial k value for the fitting proce-
dure was k = Eini/E0.

		B efore fitting the FDM parameters, the sensitivity 
matrix ξnm was determined. As target frequencies, 
the first three transition frequencies were chosen of 
the measured SRD samples. The reason for this is 
that in each frequency response for each sample, the 
most suitable frequencies are the ones at lower fre-
quencies, away from the radial resonance frequency, 
with minimal impact from the hyperelastic effect. 
The SG5x11 sample had only three Lamb wave tran-
sitions below the radial resonance frequency, so it 
was decided to use the same number for all samples.

		 The time constant τc was determined by succes-
sive calculations of the impedance response of the 

TABLE III. The Viscoelastic Tuning Stage Parameter 
Sensitivity Matrix ξnm for Sample SG5x11. 

f h [kHz·mm] k α τc

497.0 ξ11 = 0.442 ξ12 = 0.014 ξ13 = 0.002
582.0 ξ21 = 0.505 ξ22 = 0.013 ξ23 = 0.002
669.5 ξ31 = 0.500 ξ32 = 0.010 ξ33 = 0.001

The frequency–thicknesses, f h, are not corrected for the hyperelastic 
effect.

Fig. 4. Convergence of the elastic parameters c11, c12, and c13 using the 
parameter tuning procedure PTP.
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SG5x38 model. By adjusting the time constant τc, 
the amplitude of the first three transitions were set 
equal to the measured transitions within ±0.5 dB. 
The value found through the fitting process for τc 
was also used for the SG5x21 and SG5x11 models. 
The parameter k was determined using the PTP and 
the viscoelastic tuning stage sensitivity matrix.

	 3) 	The hyperelastic compensating tuning stage: For fre-
quencies near the radial resonance, the function 
Φ(ω) compensates the decrease in the elastic modu-
lus caused by the increase in the displacement ampli-
tudes. The parameters were determined using the 
PTP with the hyperelastic stage tuning parameter 
sensitivity matrix. In Table IV, the sensitivity ma-
trix is listed for the SG5x38 SRD. The target fre-
quency–thicknesses were f4h, f6h, and f8h for the 
SG5x38 model; f1h, f3h, and f6h for the SG5x21 model; 
and f1h, f2h, and f3h for the SG5x11 model. Values for 
the target frequency–thicknesses are listen in Section 
IV-A. 

		 The effective thickness, he, of a SRD was found by 
shifting the calculated frequency–thickness response, 
i.e., multiplying the frequency with an increasing or 
decreasing thickness until the relative difference, Δn, 
of the selected transition frequencies was minimized. 
The thickness leading to the minimum Δn was set 
as he.

		 The relative difference was defined as

	 ∆n
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m m
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f f
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where n equals the number of transitions, and fmhc is 
the mth calculated and fmhe is the mth measured im-
pedance response transition frequency–thickness. Δn 
was calculated for each change in the thickness. The 
frequency–thicknesses used are listed in Section IV-A 
for each sample.

2) Procedure to Find the Initial Elastic Modulus, Eini: 
While establishing the initial value, Eini, it was observed 
that when sweeping the modulus from low to high val-
ues—typically 0.1 to 2 GPa—the transitional peaks in 
the calculated impedance response did not generate one 
unique match to the measured impedance response. A 
procedure was implemented that would point out possible 
values of Eini. The model of the SG5x21 SRD is used to 
explain the steps involved; the same arguments hold for 
the SG5x38 and the SG5x11 SRD models.

First, a characteristic standing Lamb wave mode was 
selected, as shown in Fig. 5 for the SG5x21 SRD. The 
mode was chosen at the low end of the frequency interval 
so that the influence from the peak in the radial resonance 
was minimal and the mode was stable between mode tran-
sitions. The selected standing Lamb wave mode has two 
associated frequencies fi and fo, where fi is the transition 
frequency into the mode and fo is the transition out of the 
mode, and where fi < fo. Next, calculations of the imped-
ance response of the SRD model were carried out in which 
the modulus was varied between 0.1 to 1.7 GPa. For each 
value of the modulus, the impedance response was plotted 
with the measured response versus the frequency–thick-
ness product. The calculated impedance transition at fi 
was matched to the measured transition by adjusting the 
effective thickness of the SRD model while preserving the 
number of transitions to the first radial resonance frequen-
cy. This was possible because the impedance response of 
the SRD is invariant when plotted versus the frequency–
thickness product for different thicknesses. Finally, the 
effective thickness, he, was plotted versus the modulus. 
From the plot, possible values of Eini were found for values 
of he equal to the real thickness of the SRD. The calcula-
tions were carried out for a 5.0-mm-thick SRD disk. For a 
disk with physical thickness below 5.0 mm, the plot was 
extrapolated to the physical value as shown in Fig. 6. If 
more than one value was found, the Eini value that gener-
ated the response that best corresponded to the measured 
response was selected.

3) Finding an Initial Value for the FDM Parameter α: 
The parameter α and the static elastic modulus of three 
fluoroelastomers were determined by others [19]. The 
values were (α, E0 [MPa]): (0.65, 0.74); (0.60, 1.44); and 
(0.51, 2.08), respectively. The hardness of the silicone rub-
ber SilGel 612 was measured by the manufacturer (private 
communication, Wacker-Kemi, Stockholm, Sweden, Nov 
2011) for different ratios of the components A and B. For 
the ratio A/B = 1.6 which was used in this work, the 
hardness measured with scale Shore-000 was 82. Using 
the conversion procedure described in [29], this hardness 
value corresponds to a static elastic modulus of 0.70 MPa 
for the SRD, which is near the value that was found for 
the first fluroelastomer measured in [19]. Using the as-
sumption that elastomers, at zero frequency, which have 
the same static elastic modulus will approximately have 
the same α value yields an initial estimation of α = 0.65.

TABLE IV. The Hyperelastic Compensating Tuning Stage 
Parameter Sensitivity Matrix ξnm for Sample SG5x38. 

fnh [kHz·mm] κ ω0 dω

685.6 ξ11 = 0.284 ξ12 = −0.142 ξ13 = 0.014
774.4 ξ21 = 0.452 ξ22 = −0.195 ξ23 = −0.002
863.8 ξ31 = 0.337 ξ32 = −0.045 ξ33 = −0.011 Fig. 5. The displacements of the SG5x21 silicone rubber disk model 

showing the standing Lamb wave pattern. The square to the left rep-
resents the sensor problem area ((a/2) × h). The rectangle to the right 
represents the problem area (lm × h) of the silicone rubber disk.
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To investigate the impact on the real and the imaginary 
part of E ∗( )ω , calculations using the FDM were carried out 
in which α was varied ±5.0%. A plot of the result is shown 
in Fig. 7. The maximum relative variation of the real part, 
E′ was ±0.06% in the frequency range of the calculations. 
The maximum relative variation of the imaginary part, E′′ 
was ±23% in the frequency range of the calculations and 
±0.24% relative the maximum value of E′′ at the frequen-
cy 16 Hz.

4) The Hyperelastic Compensating Function Φ(ω ): Mod-
eling the vibrational characteristics of the combined sys-
tem of the sensor and the SRD at the first radial resonance 
means that the model must also be able to handle the 
range of displacement amplitudes when the system goes 
into resonance. As the frequency of vibration approaches 
the resonance frequency, the mechanical system becomes 
unstable and the displacement amplitude increases rap-
idly. The silicone rubber is a hyperelastic material, which 
means that the linear Hooke’s model is not valid for large 
strains and is normally superseded by a nonlinear model 
for rubber-like materials [15]. The vibrating displacements 
of the silicone rubber, on the other hand, are very small 
but increase significantly when approaching the radial 
resonance. The increase in the amplitude of the displace-
ments at resonance increased the nonlinearity of the sys-
tem, which made fitting of the calculated and measured 
resonance responses impossible at the radial resonance.

The Payne effect [30] is a hyperelastic effect in which a 
decrease in the complex elastic modulus is a consequence 
of increasing periodic strain amplitudes. The situation for 
the SRD is similar, in that sense that there is a radical in-
crease in the displacement amplitudes when approaching 

the radial resonance frequency. It was assumed that the 
most probable explanation for the observed effect had its 
origin in the Payne effect. To compensate for the decrease 
in the elastic modulus, a Boltzmann function (sigmoidal) 
was introduced as a compensating function:

	 Φ( ) = (1 ) (1 ) ,( ( ) 2 )0ω κ κω ω π ω− + +−/
e / /e h d( ) 	 (21)

where κ = limω→∞Φ(ω), he is the effective thickness of the 
SRD, ω0 is the frequency at which Φ(ω0) = (κ + 1)/2, and 
dω controls the slope of the curve. The product of the 
compensating function and the elastic modulus, E ∗( ) ( )ω ωΦ , 
compensates the elastic modulus for the hyperelastic ef-
fect in the frequency range of the first radial resonance. A 
plot of compensated and uncompensated impedance re-
sponses for the SG5x21 sample can be found in Fig. 8.

5) Reference Measurement: To verify that Φ(ω) was ul-
timately associated with the properties of the SRD, a ref-
erence measurement was carried out on a polyamide disk 
(Andramid PA6GPE, Andrén & Söner, Stockholm, Swe-
den). The PA6GPE disk was 5 mm thick, with a radial 
length of 20.6 mm. The measurement was carried out at 
room temperature, which was well below the glass transi-
tion temperature of the material. The piezoelectric sensor 
was placed in the center of the disk by carefully positioning 
it in a drilled hole with the same diameter as the sensor. 
To increase the acoustic coupling to the disk, ultrasound 
gel was used on the contact surface between the sensor 
and disk. The disk was suspended from a 0.1-mm fishing 
line glued to the outer periphery, which allowed all sides 
of the disk to move freely. The electric impedance was 
measured with a network analyzer (Agilent E5100A/B, 

Fig. 6. The PSM-calculated effective thickness, he, determined using a 
5-mm-thick SG5x21 model where two Lamb wave transitions are used 
in the determination, versus the elastic modulus E′. (Open circles) 
thickness and elastic modulus where the selected Lamb wave transi-
tion matches (Section II-B-2); (solid lines) extrapolated to values below 
5.0 mm; (solid square) elastic modulus chosen as Eini = 1.0 ± 0.05 GPa 
for a 4.75-mm-thick silicone rubber disk.

Fig. 7. The real part E′ and the imaginary part E′′ of the elastic modulus 
calculated using the fractional derivative model, FDM, plotted for the 
SG5x38 sample with parameters k = 1.40 × 103, α = 0.65, τc = 10 ms. 
Plots: (blue line) E′; (red line) E′′. (Dotted line) the parameter α is 
increased by 5.0%; (dashed line) the parameter α is decreased by 5.0%. 
Enlarged in the inset is the relative variation of ΔE′ and ΔE′′ for the 
frequency range of the finite element calculations. δE′ = ±0.06%; δE′′ 
= ±23%. The relative variation of δE′′ to the maximum value at the 
frequency 16 Hz is ±24%. 



jonsson et al.: modeling the high-frequency complex modulus of silicone rubber 2115

Agilent Technologies Inc., Santa Clara, CA) from 100 kHz 
to 250 kHz with a frequency step resolution of 0.25 kHz.

In Fig. 9, the calculated and measured impedance re-
sponses of the polyamide PA6GPE sample are plotted. 
The calculated response is without the hyperelastic com-
pensating function Φ(ω). The FDM parameters were k = 
3.15 × 105, α = 0.65, and τc = 1000 mS. The Poisson’s 
ratio was set to ν = 0.39 [31]. The elastic modulus of the 
sample in the measured frequency interval was determined 
to 3.2 GPa. The value of the elastic modulus provided by 
the manufacturer was 3.1 GPa.

III. Experimental Procedure

A. Preparation of the Silicone Rubber Disks

Three silicone rubber disks with different radial lengths 
were configured to confirm that the Lamb wave mode 
switching was consistent with the same finite element 
model for all lengths. The purpose was to study if the hy-
perelastic effect differed between samples. To measure the 
electric impedance response of the SRD samples, a mea-
surement setup was configured with a cylindrical piezo-
electric sensor placed in the center of the SRD as shown 
in Fig. 1.

The thickness of the piezoelectric sensor and the ra-
dial lengths of the SRDs were determined using a cali-
per (No.102–217, Mitutoyo Corp., Kawasaki, Japan). The 
thickness of the sensor was 5.04 ± 0.01 mm. The radi-
al lengths of the silicone rubber disks, lm, were 38.0 ± 
0.05 mm for sample SG5x38, 21.4 ± 0.05 mm for sample 
SG5x21, and 11.0 ± 0.05 mm for sample SG5x11. The di-
ameter-to-thickness ratio, a/h, of the piezoelectric sensor 
was 1.98 ± 0.01. The thickness of an SRD was determined 
when the mold was filled with the uncured silicone rubber 
mixture. Because of the adhesive effect of the fluid, the 
thickness of the disk was not constant along the radius, 
with a small increase in the thickness at the boundaries of 
the sensor and the mold. The average thicknesses of the 
SG5x38, SG5x21, and SG5x11 disks were determined with 

the caliper to be 4.70 ± 0.05 mm, 4.75 ± 0.05 mm, and 
5.15 ± 0.05 mm, respectively.

The SG612 is a two-component addition-curing silicone 
rubber that vulcanizes at room temperature. The sam-
ples were created by mixing 4 parts of component A and 
2.5 parts of component B (A/B = 1.6). The mixture was 
stirred for 5 min and then poured into a mold, after which 
it was set to cure for 24 h. After curing, the mold was re-
moved by carefully cutting the mold into small parts. The 
mold was constructed using a Petri dish made of polysty-
rene with the piezoelectric sensor mounted in the center 
of the dish.

B. Measuring the Electrical Impedance Response  
of the SRD

The electric impedance of the sensor was measured us-
ing the network analyzer. The analyzer was configured to 
measure the real and imaginary parts of the impedance as 
a function of frequency. The measurements were carried 
out at room temperature with air as surrounding medium. 
The impedance was measured in the frequency range of 
100 to 250 kHz, where the piezoelectric sensor has its first 
radial resonance mode [14]. The impedance was measured 
with a 0.25 kHz frequency step resolution. The power in-
put to the sensor was set to −60 dB·mW to minimize 
system nonlinearity. The flat surfaces of the piezoelectric 
sensor and all sides of the SRD not in contact with the 
sensor were allowed to move freely by suspending the disk 
from a 0.1-mm fishing line that was attached to the outer 
periphery of the disk.

The measured data were corrected for instrumental 
scaling factors and parasitic inductances [14]. After com-

Fig. 8. Effect of the hyperelastic compensating function Φ(ω). Compen-
sated and uncompensated impedance responses for the SG5x21 sample. 
Plot: (filled red circles) compensated response, (filled blue circles) un-
compensated response, (open circles) the measured response. 

Fig. 9. The frequency response of the measured, and PSM calculated, 
impedance of the PZT-sensor in contact with a 5-mm-thick polyamide 
(PA6GPE) disk. The calculation was carried out with no hyperelastic 
compensating function. Plot: (open circles) measured response, (filled 
red circles) PSM calculated response. 
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pletion of the measuring sequences, the data were trans-
ferred to a desktop computer for post-processing.

IV. Results

A. Results of the Parameter Fitting Sequence

The results of the fitting procedure are tabulated in 
Tables V and VI. The results of the procedure to establish 
the initial elastic modulus value, Eini, are plotted in Fig. 
6. From the plot, the value Eini = 1.0 ± 0.05 GPa was 
found for the effective thickness equal to the measured 

thickness he = 4.75 mm for the SG5x21 sample. The same 
Eini value was also used for the SG5x38 and SG5x11 sam-
ples. In Fig. 10, the real and imaginary parts of the FDM-
modeled complex elastic modulus E ∗( )ω , with parameters 
from Table VI are plotted in the frequency range 100 to 
250 kHz for the SG5x38, SG5x21, and SG5x11 samples. 
The average value of the complex modulus for all samples 
were (0.97 + 0.009i) GPa at 100 kHz and (0.97 + 
0.005i) GPa at 250 kHz.

In Fig. 11, the hyperelastic compensating function Φ(ω) 
for each sample is plotted (right axis). The following val-
ues were set as initial values for the PTP: κ = 1.10, ω0 = 
700 kHz·mm, and dω = 50 kHz·mm. The hyperelastic 
compensating parameters and effective thicknesses are 

TABLE V. Results of the PSM and Fixed Values  
of the Baseline Tuning Stage for the Piezoelectric  

Sensor in the 100 to 250 kHz Frequency Range,  
With Estimated Uncertainty ∆u. 

Parameter1
Fixed  
value2

PTP  
value3 Δu

c11 [1010 N/m2] 13.2 ±0.05
c12 6.28 ±0.02
c13 7.75 ±0.03
c33 11.4
c44 2.16
e31 [C/m2] −3.09
e33 15.3
e15 8.85
ε11/ε0 916
ε33/ε0 783
η 0.002
ρs [kg/m3] 7750
1ε0 = 8.854 × 1012 F/m.
2Values acquired from external source [14].
3Values determined using the parameter tuning procedure PTP.

TABLE VI. Results of the PSM Parameter Fitting Procedures of the FDM and the Hyperelastic 
Compensating Function, Φ(ω), for the Silicone Rubber Samples SG5x38, SG5x21, and SG5x11  

With Estimated Uncertainties Δu in the 100 to 250 kHz Frequency Range. 

Parameter1
Fixed  
value2

PTP values3

Δu4SG5x38 SG5x21 SG5x11

FDM
  k 1.40 × 103 1.36 × 103 1.41 × 103 ±0.01 × 103

  α 0.655

  τc [ms] 10 10 10 ±4
  Eini [GPa] 1.00 1.00 1.00 ±0.05
  E∞ [GPa] 0.98 0.95 0.99 ±0.01
Φ(ω)
  κ 1.11 1.17 1.16 ±0.005
  ω0 [kHz·mm] 764 760 629 ±0.5
  dω [kHz·mm] 104 38.2 5.77 ±0.5
  he [mm] 4.72 4.75 5.15 ±0.01
  Δu6 <0.004 <0.003 <0.007
ν 0.49
ρe [kg/m3] 970
1The parameters k, α, and κ are all dimensionless numbers.
2Values acquired from external sources (Section II-B-1).
3Values determined using the parameter tuning procedure PTP.
4The estimated uncertainty has the same dimension as the corresponding parameter.
5Value determined from an assumption about α and the static elastic modulus see Section II-B-3.
6Error in the fit of Φ(ω) after the end of the iteration procedure.

Fig. 10. The real part, E′(ω), to the left, and the imaginary part, E′′(ω), 
to the right, of the elastic modulus versus frequency–thickness for the 
silicone rubber samples SG5x38, SG5X21, and SG5x11 calculated with 
the fractional derivative model parameters from Table VI.
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listed for each sample in Table VI. The calculated and 
measured frequency–thicknesses, fnh, used in the fitting 
procedures are listed in Table VII for each sample.

B. Results of the Calculated and Measured Impedance 
Response for Samples SG5x38, SG5x21, and SG5x11

The results are plotted in Fig. 11, where the transi-
tions between the standing Lamb wave modes are shown 
as peaks superimposed on the first radial resonance of 
the piezoelectric sensor. The effective thicknesses, he, of 
the samples were 4.70 mm for sample SG5x38, 4.75 mm 
for sample SG5x21, and 5.15 mm for sample SG5x11. 
The number of frequencies, n, and the relative deviation, 
Δn, between the calculated and the measured transitions 
in the impedance response were 12 and 0.7% for sample 
SG5x38, 8 and 0.6% for sample SG5x21, and 7 and 0.7% 
for sample SG5x11. The PSM failed to reproduce most of 
the transitions above the midpoint between the first radial 
and anti-radial frequency for any of the samples.

V. Discussion

The silicone rubber, SG612, used in this study can be 
used as a phantom for human soft tissue. As an example, 
reported values of the skin elastic modulus, measured in 
vivo, are 66 kPa along the axis, and 13 kPa perpendicular 
to the axis of the arm, measured on humans (63 peo-
ple) [32].

When emitting vibrations into a silicone rubber phan-
tom with frequencies in the 100 to 250 kHz range, as in the 
case of the tactile resonance sensor, the elastic modulus 
of the silicone rubber becomes complex, with a real and 
imaginary part. According to the determined FDM for the 
silicone rubber, Fig. 7, the real part of the elastic modu-
lus increases by more than 103 times when the rubber 
is vibrated with a longitudinal wave with a frequency of 

Fig. 11. The PSM calculated and measured electric impedance responses 
of the PZT-sensor in contact with the silicone rubber disks SG5x38, 
SG5x21, and SG5x11. (Open circles) measured response; (filled red cir-
cles) PSM calculated response. he is the effective thickness of the silicone 
rubber disk. Marked with arrows in each plot is the series of frequency–
thicknesses, fnh, used to calculate the relative deviation, Δn, for each 
sample. A complete list of all fnh in Table VII. For every sample, the 
hyperelastic compensating function Φ(ω) is plotted (right axes). 

TABLE VII. Measured and Calculated Frequency–Thicknesses, fnh, (in kHz·mm) Used  
in the Calculation of the Relative Deviation, Δn, for the Silicone Rubber Samples. 

fnh
SG5x38 SG5x21 SG5x11

Meas. Calc. Meas. Calc. Meas. Calc.

f1h 583.1 585.2 594.7 596.1 501.5 497.0
f2h 612.5 615.7 659.0 653.1 578.3 579.4
f3h 644.4 648.6 731.1 736.3 709.4 718.4
f4h 685.6 688.5 820.3 819.4 729.5 726.2
f5h 728.1 733.2 835.4 838.4 855.5 849.8
f6h 774.4 780.2 883.3 878.8 889.6 885.8
f7h 821.3 824.9 938.7 931.0 932.4 934.7
f8h 863.8 857.8 1030.7 1028.4
f9h 895.6 900.1
f10h 938.8 944.7
f11h 991.8 980.0
f12h 1047.5 1036.4
Δn 0.007 0.006 0.007

Δn = The relative deviation of n Lamb-wave transitions.
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100 kHz. The rubber, at that frequency, behaves almost as 
a glass, with the elastic modulus in the range of gigapas-
cals. The same effect can be achieved if the rubber is 
cooled to the glass transition temperature, as shown by 
the time–temperature superposition principle for thermo-
rheologigal simple materials [33]. The loss tangent in the 
rubber decreases from its maximum value of 1.6 at 3 Hz 
to 0.003 at 100 kHz. The analysis of the impact of vary-
ing the parameter α shows clearly that the real part E′ is 
fairly insensitive, whereas the imaginary part E′′ is very 
sensitive to variations in α within the frequency range of 
the calculations. This makes the determination of the time 
constant, τc, and α ambiguous because there must exist 
pairs of τc and α that would generate nearly the same 
result for E′ and E′′ in the frequency range of the cal-
culations. Because the variation of E′′ mainly affects the 
transition amplitudes in the frequency range of the finite 
element calculations, one way to determine α would be to 
fit the FDM to the amplitudes of the Lamb wave transi-
tions for the SG5x38 sample, where we have six transitions 
within a frequency range of 40 kHz. This approach to de-
termine α relies on optimal contact between the sensor/
vibrator and the SRD, because a bad contact would affect 
the amplitudes of the transitional peaks. A possible way 
to determine τc would be to measure the maximum phase 
of a longitudinal sinusoidal stress–strain configuration of 
the silicone rubber, sweeping the frequency to detect the 
frequency of maximum loss tangent. That would enable α 
to be separately determined from τc. The FDM was vali-
dated in the 100 to the 250 kHz frequency range, meaning 
that when drawing conclusions about the behavior of the 
complex modulus outside that frequency range, i.e., about 
the values of the FDM parameters, the values should be 
regarded as uncertain.

The peaks in the electric impedance frequency response 
that can be seen in the plots in Fig. 11 are the results of 
the switching of symmetric standing Lamb wave modes 
that can take place in the SRD as the frequency increases.

When determining the time-constant, τc, in the FDM 
model, the fitting procedure was based on fitting the am-
plitudes of the Lamb-mode transitions for the selected 
mode to the measured amplitudes. The measured ampli-
tudes are strongly correlated to the acoustical coupling 
between the sensor and the SRD. The cured silicone rub-
ber was very tacky, which improves the acoustic coupling. 
The amplitudes of the transitions were clearly affected 
when removing the sensor disk from a cured silicone rub-
ber sample and then putting the sensor back again. Put-
ting ultrasound gel on the contact surface improved the 
coupling, but it was never restored to the original condi-
tion. Fig. 12 shows a graph of the impedance responses 
of the SG5x38 SRD with the sensor removed and then 
remounted.

In the Payne effect [30], the complex elastic modu-
lus decreases with increasing periodic strain amplitudes. 
Payne discovered the effect when loading natural rubber 
with various proportions of carbon black. The rubber was 
then exposed to increasing amplitudes of periodic strain. 

A prerequisite for the Payne effect is the presence of some 
type of filler (crystallites or colloids). In the silicone rub-
ber case, colloids of platinum could be the explanation for 
the effect because a platinum catalyst is used in compo-
nent B of SG612, and it has been shown that colloids can 
be formed in platinum catalysts [34].

At the upper end of the frequency–thickness range, the 
calculated and measured impedance responses do not fit 
very well, which is true for all three samples. This indi-
cates that the hyperelastic compensating function, Φ(ω), 
is not suitable in the whole frequency range, especially 
above the mid-point between the minimum and maximum 
impedance frequencies of the first radial resonance. As 
seen in Fig. 11, the slope of Φ(ω) is correlated to the num-
ber of transitions in the impedance frequency response. 
It seems that the proposed Φ(ω) can handle the increase 
in the transition amplitudes, but not the subsequent de-
crease in the amplitudes. This also means that Φ(ω) lacks 
generality and can only be applied when the number of 
transitions and the transition frequencies are known. To 
be able to compensate for the effect while calculating the 
response for each frequency step, the constitutive equa-
tions of the SRD must be modified to take care of the 
hyperelastic effect.

VI. Conclusions

The results of the work in this paper show that: 1) the 
finite element model developed for the thick cylindrical 
piezoelectric element in contact with the silicone rubber 
disk is working and produces frequency responses of the 
electric impedance that can be validated against measured 
responses with excellent results up to the first radial reso-
nance of the sensor; 2) the complex elastic modulus of 
silicone rubber is determined, using an inverse method, in 
the frequency range 100 to 250 kHz, which is the work-
ing frequency range of the tactile resonance sensor—the 
determination of the modulus at other frequencies is ap-
proximate; and 3) the method used in this paper utilizing 
standing Lamb waves clearly has the potential to be a 

Fig. 12. The effect of removing and the remounting the sensor of the 
SG5x38 sample. Plot: (filled blue circles) measured impedance response 
with the sensor in its original position, (solid red circles) measured im-
pedance response with the sensor removed and then remounted with 
ultrasonic gel on its contact surface. 
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model system for detecting objects with deviating elastic 
modulus in a silicone rubber disk. Therefore, our next 
study will have its focus on this issue.

To our knowledge, the determination of the complex 
elastic modulus of silicone rubber disks using the method 
described in this paper is new and has not been done 
before.

Appendix

The piezoelectric and dielectric permittivity constants 
are denoted ekp and εik, respectively. The elastic stiffness 
constant, cpqD , at constant electric flux density, D, can be 
expressed as
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The inverted dielectric permittivity constant, βik
S , at 

constant strain S is
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