
IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 60, no. 9, September 2013 1935

0885–3010/$25.00 © 2013 IEEE

Simulation of Ultrasonic Array Imaging  
of Composite Materials With Defects
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Abstract—Ultrasonic transducer arrays are extensively used 
for the nondestructive evaluation of materials for aerospace 
and other applications. However, their use with composites 
requires some technique development because of reflections at 
the layer boundaries and the effects of attenuation. When used 
in full matrix capture mode, algorithms such as the total focus-
ing method (TFM) must be applied to obtain the image. In 
composite materials, improvement to the algorithm is required 
to include the effects of material anisotropy (affecting wave 
speed) and optimum aperture limits to optimize the signal-to-
noise ratio and location detection for a defect in the material. 
This paper presents simulations of the ultrasonic array signals 
in multilayer anisotropic materials with and without a simu-
lated defect. A kernel model for plane wave propagation in the 
material is combined with an angular spectrum decomposition 
(for finite transducer elements) and transducer frequency re-
sponse, to model the full array signals. Inclusion of the defect 
is through its far-field scattering response. The model facili-
tates the study of imaging algorithm development by identi-
fication of the effects of anisotropy, signal-to-noise ratio, and 
aperture limit. An analytical method for the calculation of the 
effective group velocity in the composite at low frequency is 
demonstrated, permitting rapid calculation of time delay laws 
in practice.

I. Introduction

The increasing use of ultrasonic phased arrays in the 
inspection and testing of composite materials brings 

with it the importance of developing ultrasonic signal pro-
cessing techniques that will achieve better imaging and 
inspection performances by maximizing efficiencies and/
or minimizing computational requirements while improv-
ing resolution and image quality. Holmes et al. [1] and 
Drinkwater and Wilcox [2] have developed several signal 
processing techniques for ultrasonic array imaging in met-
als, including the use of full matrix capture (FMC) and 
the total focusing method (TFM), an algorithm for ob-
taining images at optimum resolution. However, the appli-
cation of such techniques in composite materials is more 
challenging, because of their multi-layered structure and 
their anisotropic and inhomogeneous properties. To apply 
the TFM technique for planar multilayer composites, it is 
necessary to make some modifications, such as the use of a 

directionally-dependent velocity to account for anisotropy, 
and an aperture angle limit to eliminate some contribu-
tions from reflections at ply boundaries. These modifica-
tions have been explored experimentally and are reported 
in a previous paper [3]. The need arises to simulate the 
propagation of ultrasonic signals in composites, not only 
to validate and confirm the results shown in [3], but also 
to study and analyze, using computational models, the 
behavior of ultrasonic array signals in such anisotropic 
multilayer composite materials, and to inform future algo-
rithm development.

A variety of approaches are reported in the literature 
for the simulation of ultrasonic signals in composites, or 
other anisotropic multi-layered materials. A ray-tracing 
technique has been implemented using homogenization to 
account for the layered character of the material by Dey-
dier et al. [4]. This has the advantage of being applicable 
to nonplanar geometries, but does not show the structural 
reflections from plies. An alternative technique proposed 
by Huang et al. [5] uses multi-Gaussian beams to propa-
gate through the structure, accounting for changes to the 
beams at ply interfaces, and simulating the signal from 
finite transducer array elements by several such multi-
Gaussian beams. The method can be used for planar or 
nonplanar composites, but is computationally intensive. 
An alternative is to constrain the problem to planar ma-
terials, to exploit the highly efficient plane-wave models 
established in the seismology literature [6]–[15]. These are 
able to account for reflection and refraction at layer inter-
faces, mode conversion, and anisotropic material proper-
ties, and have been optimized for speed and accuracy. As 
such, they offer an ideal basis for the simulation of trans-
ducer array signals. These methods have been adopted by 
Mienczakowski et al. [16] with some success, but with a re-
striction to normal incidence signals. Pialucha and Cawley 
[17] also implemented a plane wave model, combining it 
with the angular spectrum method to simulate transduc-
er signals. However, their model considers only isotropic 
materials. In the current work, we have adopted a plane 
wave model for anisotropic materials as the kernel of the 
simulation, together with the angular spectrum method to 
simulate the finite beams from array elements.

Acoustic plane waves in multilayer media are usually 
studied using matrix methods. Thomson [6] and Haskell 
[7] have developed the transfer matrix method, which is 
considered the classical way of solving such problems. 
An alternative is the global matrix method developed by 
Knopoff [8], which solves the instability problems of the 
transfer matrix especially for large frequency/thickness 
( fd ) products. The transfer matrix for general anisotropic 
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media was developed by Nayfeh [9], [10]. Lowe [11] has 
published a review of the different matrix techniques in 
multilayer media. More recently, Wang and Rokhlin [12]–
[15] introduced the recursive stiffness matrix method, in 
which a recursive algorithm uses individual layer stiffness 
matrices to form a global stiffness matrix for the whole 
material. This method achieved stable results with the 
same efficiency as the transfer matrix method. Hosten and 
Castaings [18] used a similar technique to develop a recur-
sive surface impedance matrix. For the purposes of this 
study, a model for the plane waves in generally anisotropic 
multilayer media was developed using the recursive stiff-
ness matrix technique. The stiffness matrix method will 
be used throughout this paper to carry out plane wave 
calculations.

The plane wave solution for multilayer media does not 
accurately reflect real situations in which the transducers 
used for transmitting/receiving the ultrasonic waves are 
of finite dimensions, and hence bounded beam acoustic 
signals, rather than plane waves which extend infinitely 
along the interfaces, must be considered. Different meth-
ods can be used to model diffraction of bounded beams; 
the angular spectrum method is one of them. This method 
states that the fields (stresses or displacements) anywhere 
in the considered space can be defined uniquely and com-
pletely by the sum of an infinite number of plane waves 
in different directions [19], [20]. As an example, Rehman 
et al. [21] used the angular decomposition of plane waves 
to calculate the reflection profile of bounded beams from 
anisotropic multilayer media.

Modeling localized defects in such multilayer composite 
materials has also been considered. To study the response 
of a specific defect or scatterer to acoustic waves, it is nec-
essary to calculate the diffraction of waves from the trans-
mitting transducer through the material to the defect and 
from the defect back to the receiving transducer, and, fur-
thermore, to combine that with a defect scattering model, 
which describes how the defect interacts with the incident 
acoustic waves [22]. Side-drilled holes (SDHs) have been 
considered in this study because they are the standard 
type of scatterers used to evaluate ultrasonic nondestruc-
tive testing techniques.

Many authors have developed techniques to study the 
scattering of acoustic waves from different kinds of defects 
in different types of materials. Lopez-Sanchez et al. [23] 
have considered a pulse–echo measurement system model 
for an SDH embedded in a single isotropic layer. In this 
work, two methods have been used for the scattering mod-
el: the separation of variables solution and the Kirchhoff 
approximation. The Kirchhoff approximation is only valid 
at high frequencies or for large SDHs (i.e., when ka > 1, 
where k is the wavenumber and a is the SDH radius). Nik-
lasson and Datta [24] have developed solutions using the 
separation of variables to the scattering from an infinite 
transversely isotropic cylinder in a transversely isotropic 
medium. The special cases in which the cylinder is an 
isotropic material or a cavity were also considered. Ana-
lytical solutions for the scattering behavior of SDHs at dif-

ferent angles in general anisotropic material have not yet 
been developed, to the our knowledge, and they have only 
been studied using numerical methods such as the finite 
element (FE) method [25]–[27]. For scatterers in multilay-
er systems, Zhang et al. [27] have provided a hybrid model 
that uses ray-based calculations for the system model and 
FE measurements for the scattering model. In this work, 
the layers in which the SDH lies have been modeled as 
a single effective homogeneous medium—an assumption 
that holds for low-frequency acoustic waves (i.e., high 
wavelength-to-thickness ratios, λ/d) [28], [29]. For many 
applications, such as the calculation of group velocities 
or modeling of SDHs in composite, such an assumption 
is very useful. Backus [30] has developed formulas for the 
calculation of the equivalent homogeneous properties for 
isotropic or transversely isotropic layers, and these can be 
easily adapted to generally anisotropic layers, as has been 
done by Milton [31].

This work reports simulations of full transducer array 
data for planar composite materials with anisotropic prop-
erties, including embedded defects in the form of an SDH. 
The simulations combine several modeling techniques 
to achieve this end, adopting highly efficient plane-wave 
models originally developed for seismological purposes, 
together with angular spectrum decomposition to model 
the finite beams produced by transducer array elements, 
and combining these with the scattering characteristics of 
a defect. A method for estimating the effective properties 
of a layered structure has also been used for the calcula-
tion of group velocities through the composite at low fre-
quency. The results of the simulations have been used to 
evaluate proposed image processing algorithms for FMC 
data sets obtained from composites. Two such examples of 
imaging improvements are explored in this paper; they are 
the use of an angle-dependent group velocity to estimate 
time delays between transducer array elements and imag-
ing points, and the application of an aperture angle limit 
to improve the signal–to–coherent-noise ratio for defect 
detection.

II. Modeling Waves in Multilayer  
Anisotropic Media

A. Plane Wave Model in Multilayer Media

This section summarizes the kernel plane wave model, 
based on the work of Wang and Rokhlin [12]–[15], imple-
mented as Matlab code (The MathWorks Inc., Natick, 
MA) by M. Castaings and B. LeCrom of the University of 
Bordeaux 1. Let us assume that a plane wave is incident 
on a planar multilayer structure which consists of n homo-
geneous, anisotropic layers and is of infinite extent in the 
directions normal to the through-thickness direction (Fig. 
1). The structure is bounded by two semi-infinite regions, 
which are labeled layer 0 and layer n + 1 and consid-
ered to be homogeneous anisotropic materials, with the 
specific example of a nonviscous fluid (i.e., water) being 
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considered as a special case. A plane wave is assumed to 
be traveling in the upper half-space and enters the system 
at the origin of the global coordinate axes system [x ≡ 
(x1, x2, x3)] having an incident angle of θ with the x1-axis; 
its wavevector projection on the x2-x3 plane is assumed 
to have an arbitrary angle of ϕ with the x2 axis. A har-
monic solution for plane wave propagation in each homo-
geneous layer is defined by a displacement field of the form  
exp [j(k · x − ωt)], where k is the wavevector, ω is the 
angular frequency, and t is the time. Applying continuity 
of normal displacement at the layer interfaces implies that 
the components of the wavenumber in the plane of the 
interfaces (k2 and k3) must be equal throughout the struc-
ture. This is equivalent to the application of Snell’s law. 
Thus, k2 and k3 are the same in all layers, and equal to the 
components of the incident wave vector. The remaining 
component of the wave vector in a layer, k1 is determined 
by the Christoffel equation, which relates the wave speeds 
to the elastic properties of the medium, expressed by the 
stiffness tensor cijkl:

	 ( ) ,c k k Pijkl j k il l− =ρω δ2 0 	 (1)

where ρ is the density, δil is the Kronecker delta, and the 
letters i, j, k, and l, which each will have the value 1, 
2, or 3, correspond to the Cartesian coordinate system 
(x1, x2, x3). This equation also defines the polarization vec-
tor components, Pl, for the various wave modes: one pseu-
do-longitudinal (p = 1) and two pseudo-shear (p = 2, 3) 
of different polarizations and speeds. For each mode, two 
solutions exist for k1 with the real parts of opposite sign, 

one propagating upwards through the layer and the other 
propagating downwards. Simplification is achieved by the 
assumption that k2 and k3 are real, which is valid if the 
incident bounding layer is a lossless medium. We will also 
need to calculate the group velocity which is given (for 
elastic media, i.e., real stiffness) by

	 v v c P Pki ijkl k l jg =
1
ρ

ˆ ,	 (2)

where the circumflex denotes the unit vector and v is the 
phase velocity determined from the Christoffel equation. 
Thus, the displacement in layer m can be written as a sum 
over the modes denoted p in the form [10]
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where am,p+/− are the amplitudes of the down/up waves, 
respectively, of mode p in layer m. The coordinate xm1  is 
local to layer m, taking the value 0 at the top and dm at 
the bottom of the layer.

We wish to determine the reflected and transmitted 
signals in layer 0 and layer n + 1. The solution proceeds 
as follows. The constitutive equation
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where e is the strain, can be used for any layer m to relate 
the stress components on any plane normal to x1, i.e., σ1i

m, 
to the local displacement components uim, where i = 1, 2, 
and 3. A layer stiffness matrix Sm is defined, [12] which 
relates the stress and displacement at the top and bottom 
of the layer m:
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The elements of Sm can be derived from (4) with (3). 
By applying boundary conditions at each interface within 
the structure (continuity of stress and normal displace-
ment), a combined stiffness matrix SM that relates stresses 
and displacements for the top m layers (i.e., layers 1 to m) 
can be derived
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where SM is shown in (7), on next page.
Applying this equation to the whole structure, together 

with the continuity conditions on stress components at the 
top and bottom boundaries, results in the solution
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,	 (8)Fig. 1. Configuration of the layered structure modeled by the plane wave 
model.
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with the additional continuity condition on normal dis-
placement u1

1 0( ) = u1
0 and u dn n1( ) = un1 1+ , and where SN is 

the combined stiffness matrix for the top n layers (i.e., 
layers 1 to n). Because the incident wave amplitudes are 
known, and the stress in the bounding layers 0, n + 1 can 
be related to the known incident wave displacements, this 
equation can be solved for the unknown reflected and 
transmitted wave amplitudes. The procedure depends on 
the type of bounding layer. The previous model [12] uses 
water bounding layers, but here we also consider the case 
of homogeneous, anisotropic, viscoelastic bounding layers. 
More detail on this process is given in the subsequent sec-
tions.

1) General Case: Anisotropic Bounding Layers: In the 
general case, assuming incidence from layer 0, with known 
amplitudes for the incident (downward waves), a0,p+, 
there are three unknown reflected wave amplitudes a0,p−, 
and three unknown transmitted wave amplitudes in layer 
n + 1, an+1,p+. Alternatively, if incidence is from layer  
n + 1, with known incident amplitudes an+1,p−, there are 
three unknown reflected mode amplitudes an+1,p+ in layer 
(n + 1) and three unknown transmitted wave amplitudes 
a0,p− in layer 0. Hence, whether incidence is downward 
from layer 0, or upward from layer n+1, the unknowns 
are the upward displacement in layer 0 and the downward 
displacement in layer n+1.

Because the equation set (8) consists of six equations, 
only six unknowns can be resolved. In this general case, we 
have six unknown wave amplitudes, but also the unknown 
displacement in the plane of the interface in the first and 
nth layers, u2

1 0( ), u 3
1 0( ), u dn n2( ), u dn n3( ). To solve this general 

case, then, an additional boundary condition must be ap-
plied, taken here as the no-slip condition on the boundary 
0–1 and n–(n + 1). Thus, we apply the condition u2

1 0( ) = 
u2

0, u 3
1 0( ) = u 3

0, and similarly for the bottom interface, 
u dn n2( ) = un2 1+ , u dn n3( ) = un3 1+ . Then, the equation becomes

	 σ
σ

1
0

1
1

0

1
i

i
n

N i

i
nS u
u+ +












= ⋅












.	 (9)

The known and unknown parts of the displacement are 
separated by writing the displacement as a sum of down-
ward- and upward-traveling waves uim = uim+ + uim− so 
that the unknown terms are ui0− and ui

n( ) ,+ +1  and the stress 
can be written as

	 σ1i
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i
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i
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These new S matrices are not the same as the original 
layer stiffness matrices, but relate only to upward and 

downward modes separately. Inserting into (9) and rear-
ranging leads to
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where S0+/− are the up/down matrices defined for layer 0, 
whereas SN is the combined stiffness matrix for all layers 
1–n.The unknown displacements are on the right hand 
side of this equation. Terms on the left hand side are 
known and some may be zero, e.g., if incidence is from 
layer 0, ui0+ are known, and ui

n( )+ −1  are zero. The equation 
can then be solved for the unknown displacements, which 
can be expressed as reflection and transmission coeffi-
cients. The solution for general anisotropic bounding lay-
ers has been implemented by the current authors as an 
extension to the plane wave model implemented by 
Castaings and LeCrom, which assumes water fluid bound-
ing layers, as considered in the next section.

2) Water Bounding Layers: One special case is relevant 
for NDT applications, and simplifies the solution for re-
flected and transmitted amplitudes; that is when the 
bounding layers (0 and n + 1) are water (or other fluid), 
assumed to be nonviscous and lossless (real wave number). 
This is the case reported previously [12]–[15]. In this case, 
no shear wave modes exist in the bounding layers, and the 
shear stress components are zero. Thus, a0,2+ = a0,2− = 
a0,3+ = a0,3− = 0, σ12

0  = σ13
0  = 0, and similarly for layer n 

+ 1. The incident amplitude of the longitudinal wave 
mode is assumed to be known, leaving a single reflected 
longitudinal mode amplitude and a single transmitted lon-
gitudinal mode amplitude to be determined, a0,1− and 
an+1,1+. Because there are only two unknowns in this case, 
it is possible to avoid the additional application of the no-
slip boundary condition, and instead retain the in-plane 
displacement components in layers 1 and n at the top and 
bottom interfaces. Hence, we solve (8) with the continuity 
of normal displacement u1

1 0( ) = u1
0 and u dn n1( ) = un1 1+ , re-

taining u2
1 0( ), u 3

1 0( ) u dn n2( ), and u dn n3( ) as unknowns, in ad-
dition to the unknown amplitudes a0,1− and an+1,1+ which 
we require. The polarization of the incident and transmit-
ted longitudinal waves are parallel to the wavevector and 
of unit amplitude, .̂k  Because the bulk modulus for a non-
viscous fluid is given by ρω2/k2, the stress component at 
the upper interface is given by
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and similarly for the lower bounding layer, relating to the 
transmitted wave. This is the only nonzero term of the S0+ 
matrix, and the corresponding term in the S0− matrix has 
the opposite sign. Taking the instance of the top bounding 
layer being water, the solution can be obtained from (11) 
by replacing ui0− by ( , ( ), ( ))u u u1

0
2
1

3
10 0−  and ui0+ by ( , , ).ui0 0 0+  

This is possible because of the simple form of the stress 
terms in a nonviscous fluid. The solution may also be ob-
tained more directly from (8).

B. Angular Spectrum Method

Having obtained the response of the anisotropic multi-
layered structure to monochromatic plane waves with a 
given incident wave vector k, its response to finite beams, 
such as might be expected from transducer array elements, 
is now constructed using the angular spectrum method. 
The method uses a Fourier decomposition to relate spatial 
and wavevector variation, thus permitting finite beams to 
be modeled by summing over different incident wavevec-
tors with different amplitudes, relating to the directivity 
of the transducer elements. Because an incident wave of 
wavevector k of unit amplitude at the top bounding layer 
results in a reflected wave of wavevector k− (which has the 
k1 component reversed), the response at the top bounding 
layer is denoted GTT(k, k−, ω), which corresponds to the 
wave mode amplitudes obtained in the previous section 
(Section II-A). The transducer elements are characterized 
by a directivity function, D. The angular spectrum model 
then defines the amplitude of the receiving array element 
response at position x and frequency ω by

	 F x k k k k k k x( , ) ˆ ( ) ( ) ( , , ) .ω ω= − − ⋅∫
−

D D G e k k kj
t r TT d d d1 2 3 			

		  (13)

The value of k1 is fixed by k2 and k3 and the wavespeed 
in water, so that the integration is only over two com-
ponents. The subscripts t and r denote transmitter and 
receiver, respectively.

For a 1-D linear array, in which the array elements are 
long in the x3 direction, each element can be considered as 
a modified line source, with directivity pattern

	 D
W

t sinc(ˆ)
sin

,k =








π θ
λ 	 (14)

where the angle θ = tan−1(k2/k1), λ is the wavelength (in 
the bounding layer which is in contact with the array ele-
ment), and W is the width of the element. This configura-
tion corresponds to the constraint k3 = 0 (Fig. 1).

This general formulation of the angular spectrum meth-
od thus allows any finite beam to be analyzed using the 
plane wave model as the kernel response. The final step 
in obtaining the time-domain response for the transducer 
array is to apply the Fourier transform to the frequency-
domain response, multiplied by the frequency response of 
the transducer elements, H(ω), in the usual way

	 f ,t H H e j t( ) ( ) ( ) ( , ) ,x F x= ∫ −
t r dω ω ω ωω

1 	 (15)

where F1(x,ω) is the component of displacement normal 
to the transducer element i.e., in the direction ˆ .x1

The simulations are greatly simplified by the assump-
tion that all array elements are identical, both in directivi-
ty pattern, and in frequency response, as demonstrated by 
[32]. Using the angular spectrum method, and the plane 
wave model, it is possible to simulate the full data set of 
received signals for a transducer array interrogating both 
homogeneous and inhomogeneous material such as a com-
posite laminate.

C. Equivalent Homogeneous Properties

At low frequency (long wavelength), the response of 
the layered structure approaches that of a homogeneous 
medium, whose properties are termed the equivalent ho-
mogeneous properties (EHP). In this frequency region, 
the reflections from individual layer boundaries are not 
seen, and propagation appears to be undisturbed by the 
interfaces. The equivalent homogeneous properties for a 
composite structure can be estimated and used to model 
the structure as a single layer of homogeneous material. 
The total focusing algorithm used for ultrasonic array 
imaging adopts such an assumption, attributing travel 
time delays between locations in the specimen and array 
elements based on uniform specimen properties. Various 
methods have been reported in the literature to obtain 
the equivalent homogeneous properties, including inver-
sion of time-of-flight measurements in composites at a 
variety of propagation directions, using the Christoffel 
equation to determine the stiffness properties [33]–[37]. 
Alternatively, averaging techniques can be used to esti-
mate stiffness matrix elements, such as those developed 
in the context of seismological studies by Postma [38] and 
Backus [30], and adopted in the composites literature, for 
example [31].

We have used the Backus method for homogenization, 
which relies on the assumption of constant or slowly vary-
ing normal stress and in-plane strain components. These 
components are continuous at each layer boundary (stress 
continuity and no-slip condition), and according to classi-
cal lamination theory, are also constant through each lay-
er. Thus the components, σ1j, e22, e33, and e23 are all con-
stant (Backus assumes only that they are slowly varying) 
through the thickness of the structure. The constitutive 
equation (4) is rearranged such that the constant terms 
are on the right-hand side multiplying the stiffness terms, 
and the varying stress and strain components are on the 
left-hand side. A thickness-weighted averaging through 
the thickness direction, then leads to the averaged stiff-
ness matrix properties. Rearrangement back to the consti-
tutive equation format allows the averaged stiffness values 
to be identified. Using Voigt notation, the stiffness matrix 
is defined as a set of submatrices:
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with D = AT. The equivalent homogeneous properties are 
obtained by averaging combinations of the submatrices as 
follows

	 A AE E* = 〈 〉〈 〉− − −1 1 1	 (17)

	 B AE E E D B AE D* = + −〈 〉〈 〉 〈 〉 〈 〉− − − − −1 1 1 1 1 	 (18)

	 E E* = 〈 〉− −1 1	 (19)

	 D E E D A T* * .= =〈 〉 〈 〉− − −1 1 1 	 (20)

This set of equations can be used to determine the 
equivalent homogeneous properties (stiffness) of a com-
plete composite sample or part of it, and thus to simulate 
the ultrasonic propagation at low frequency. In this work, 
the EHP have been used for the whole composite to es-
timate values of group velocity for imaging purposes (see 
Section II-F), and also as part of a model of a defect em-
bedded in composite which is reported in the next section.

D. Scattering From an SDH

To model the transducer array signals for an SDH em-
bedded in a composite material, it is first necessary to 
consider the scattering from such a hole in a homogeneous 
medium, and then to combine this scattered field with 
the propagation through the layered structure. The first 
of these steps follows the findings of Huang et al. [39]–[40] 
who used the Kirchhoff approximation to study the scat-
tering of elastic waves from SDHs in homogeneous aniso-
tropic materials in pulse–echo mode (i.e., backward scat-
ter). They demonstrated that the leading edge received 
scattered signal was identical to that from the same SDH 
in an isotropic medium which has the properties of the 
original medium at the corresponding angle of incidence. 
This implies that the dominant scattered signal can be 
successfully modeled using isotropic embedding material, 
but choosing the properties of the isotropic material ap-
propriate to the angle of incidence.

The scattering from the SDH was then modeled using 
the separation of variable results from Lopez-Sanchez et 
al. [23] for an isotropic embedding medium with a planar 
longitudinal incident wave of unit amplitude in displace-
ment, giving a scattered longitudinal-mode amplitude of
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at an angle α between the incident and scattered wavevec-
tors. Here, the longitudinal and shear wavenumbers of the 

isotropic embedding medium are denoted kl and ks, re-
spectively, b is the radius of the SDH, δ0q is the Kronecker 
delta, and the coefficients Aq are
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and Hqi( ) denotes the Hankel function of the first and sec-
ond kind, respectively, for i = 1, 2. For incident plane wave 
direction k̂ and scattered direction ˆ ,k′  the scattering angle 
is given by α = θ ′ − θ, where θ and θ ′ are the angle of the 
incident and scattered waves with the x1-axis, respectively.

E. SDH Embedded in Composite

To model the ultrasonic signals for an SDH in a com-
posite material, we have combined the scattered radiation 
profile for an SDH with the model for transducer array 
signals in layered composites. This has been achieved by 
treating the SDH as a source or transmitter, with a direc-
tivity given by the scattered field reported in the previous 
section. This is combined with the response of the layered 
structure using the plane wave model, in two stages—from 
the top to the bottom (SDH location), and from the SDH 
location to the top. Fig. 2 shows the configuration adopt-
ed in the model for the embedded SDH in the multilayer 
structure [Fig. 2(a)]. The region containing the defect 
(SDH) is modeled as a single semi-infinite homogeneous 
medium [see Fig. 2(b)], which acts as the lower bounding 
layer of the structure; its properties are obtained using 
the equivalent homogeneous properties defined in Sec-
tion II-C. The top of the lower bounding layer is located 
some distance above the SDH, because the scattering co-
efficients (Section II-D) define the far-field response. The 
upper bounding layer is water.

For an incident plane wave of unit amplitude and wave-
vector k from the top bounding layer, the transmitted 
wave in the lower bounding layer has wavevector ki which 
is incident at the defect. Although the polarization vector 
in the anisotropic bounding region is not parallel to the 
wavevector, the incident direction for the scattering at 
the defect is taken as ki because we are using an isotropic 
embedding medium approximation for the scattering. The 
field scattered by the defect in a direction ko (in the lower 
bounding layer) is transmitted through the layered struc-
ture to the upper bounding layer, emerging with wavevec-
tor k′. Thus the response for incident wavevector k and 
output wavevector k′ can be written

	 G G Gi i o o
TT TB BT( , , ) ( , , ) ( , ) ( , , ),k k k k k k k k′ ′=ω ω ωΓ 	 (25)
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where the subscripts TB, BT, and TT on the response 
functions denote top-to-bottom, bottom-to-top, and top-
to-top layer responses, respectively. The plane wave re-
sponses are derived from the results in Section II-A for the 
appropriate bounding layer properties. The angles used 
to calculate the scattering function are defined by θ = 
tan−1(k2/k1). The angular spectrum method can then be 
applied to this system response for all combinations of 
input and output wavevectors, to determine the overall 
system response, thus

	 F x k k k kk k k x( , ) ( ) ( , , ) ( ) .ˆ ( )ω ω= ′ ′ ′′ + ⋅′∫∫ D G D e k kj
t TT r d d2 2 			

		  (26)

Integration is now only over the second component of the 
wavevectors, because k3 = 0 using a 1-D linear array.

Whereas in the absence of a defect, the number of cal-
culations in the model for the system response scales with 
Nk log Nk (the number of k-vectors chosen for the Fourier 
transform), here (with defect) it scales with N Nk k

2 log . 
Thus, the defect-in-composite model is likely to be consid-
erably slower than the defect-free model. To achieve a 
more efficient calculation, an alternative, approximate 
model was constructed. In this case, the angular spectrum 
is applied to the top-to-bottom response to obtain an ef-
fective amplitude at the defect. The incident wave at the 
defect is assumed to be planar in the direction of the 
straight path between transmitter and defect, (Fig. 3) us-
ing the component of the amplitude in that direction. 
Similarly the bottom-to-top responses for all wave direc-
tions from the bottom layer are combined in the angular 
spectrum method, to determine the amplitude in the di-
rection of the straight path between defect and receiver. 
These two response amplitudes are combined with the 
scattering function for the defect, taking the two straight-
path directions to define the scattering angles. Because 
two sets of angular spectrum calculations are carried out, 
the model scales with Nk log Nk, offering a potentially con-
siderable decrease in computation time. The relevant 
equations for the consecutive angular spectrum calcula-
tions and the combination with the scattering function are

	 F x k k k k k x
TB t TB d( , ) ˆ ( ) ( , , )ω ω= ⋅∫ i i jD G e k2	 (27)

	 F x k k kk k x
BT BT r d( , ) ( , , ) ( )ˆω ω= ′ ′ ′ ⋅∫ G D e ko j oo

2 	 (28)

	 F x k k k( , ) ˆ (ˆ , ˆ ) ,ω = DR TB TD DR BTF FΓ 	 (29)

where FTB and FBT are the components of the displace-
ments FTB and FBT in the direction of the straight path 
from transmitter to defect and defect to receiver, respec-
tively. The displacement amplitudes are all as a propor-
tion of the incident (unit) amplitude, and are therefore 
dimensionless.

These models for the response of a defect in a layered 
structure are, to our knowledge, novel. They permit the 
investigation of improved imaging algorithms for defect 
detection in composite materials.

F. Image Generation From Array Signal Data Set

Thus far, we have reported models which can simu-
late the data set obtained using a transducer array in 
FMC mode (in which each element acts consecutively as 
transmitter, while recording the received signals on all el-
ements). In post-processing such data to produce an im-
age of the cross-section of the material, the time delays 
between each array element pair to each point on a grid 
in the material must be calculated. By summing the re-
ceived signals with the appropriate time delays, the signal 
received from any particular point in the material can be 
determined, resulting in an image of the material. The 
method relies on the response of the structure being simi-
lar to an equivalent homogeneous medium, in which the 
travel times are related to the angle-dependent group ve-
locity in the material.

An empirical way to measure the anisotropic group 
velocity in composite is to use the arrival times of the 
back wall echoes in either simulated or experimental FMC 
signals. This method is time consuming for simulation 
and not always practical experimentally (for example, if 
the specimen does not have a flat back wall parallel to 
the inspection surface). For both simulations and experi-
ments, the whole FMC data must be measured first and 

Fig. 2. Configuration for modeling a side-drilled hole in a layered com-
posite material. (a) Side-drilled hole (SDH) embedded in the multilayer 
structure and (b) model representation of the SDH in the multilayer 
structure. 

Fig. 3. Configuration for experiment and simulation showing 1-D linear 
ultrasonic transducer array with homogenous or composite material, and 
an embedded defect. 
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then used to calculate the group velocities. An alterna-
tive, simple method is to use the equivalent homogeneous 
properties of the whole composite (see Section II-C) to 
obtain the relevant group velocities using (2), and hence 
time delays. All images and post-processing of simulated 
or experimental FMC data have been processed in this 
way in this work.

The array aperture used to form the image at each 
point is chosen so that only rays that propagate within 
a specified angular range are considered. In other words, 
the ratio of the depth to the aperture (i.e., f-number) is 
constant so that the angle subtended by the aperture at 
each image point is kept constant.

G. SNR for SDH Response

In defect detection for nondestructive testing, one key 
parameter is the SNR for a defect. In the configuration 
under consideration here, the signal relates to the re-
sponse from the defect (a SDH), and the noise is in fact 
structural noise, resulting from reflections at the layer in-
terfaces. The SNR has been calculated from the images 
produced using the TFM algorithm, based on the group 
velocities from the EHP, obtained from simulated FMC 
data. Two FMC data sets were simulated: (a) without the 
SDH, using the full layered composite structure and (b) 
with the SDH, using the models described in Sections II-D 
and II-E. The latter results, (b) are denoted signal FMC 
and the former, (a) are used to represent noise FMC (un-
wanted signal resulting from structural effects). Both data 
sets are transformed using TFM to produce a correspond-
ing amplitude image. The signal in the SNR is defined as 
peak amplitude in the signal image from (b) caused by the 
defect, and the noise as the root mean square signal in the 
noise image obtained from (a) in the immediate vicinity 
of the defect location (with the defect signal absent). The 
region was defined as a rectangular section of depth 1 cm 
and width 2 cm centered on the defect location.

III. Materials and Methods

The configuration of the system is shown in Fig. 3, 
with the transducer array in contact with the material 
through a coupling gel. Two arrays have been used in ex-
periment and simulation: array A has a center-frequency 

of 5 MHz, pitch p = 0.63 mm, and element width W = 
0.53 mm, whereas array B has 2.5 MHz center frequency, 
p = 0.5 mm, and W = 0.35 mm. Further experimental 
details are given in [3]. Simulations were carried out in 
Matlab.

Two materials have been used in simulation and experi-
ment: aluminum (a homogeneous, near-isotropic materi-
al), and a carbon-fiber reinforced composite (CFRC). The 
stiffness and density for the materials are given in Table I. 
For aluminum, the material is assumed to be purely elas-
tic, implying that the attenuation is zero [41]. A 30-mm-
thick plate of aluminum was tested using the 5-MHz array.

Two samples of CFRC have been used; these were sup-
plied by one of the project partners, who also provided 
details of the lay-up and ply thickness. For the purposes 
of the model, the CFRC plate is assumed to consist of 
unidirectional, homogeneous, anisotropic layers of fiber/
resin bounded by homogeneous isotropic resin layers. The 
stiffness matrices for the layers were not provided and it 
was not possible to measure them directly. Instead, val-
ues for a typical fiber/resin material (with fiber orienta-
tion of 0°) were taken from [42] and for resin layers from 
[43]; these are listed in Table I. In this case, the stiff-
ness values are complex, indicating a viscoelastic compo-
nent which causes attenuation of the ultrasonic signals. 
Sample A is 16 mm thick, having 128 plies, each 120 μm 
thick, with 5-μm resin layers. Sample B is 19 mm thick, 
with 82 plies of 225 μm thickness and 5 μm resin thick-
ness. In this sample, a 1.5-mm-diameter SDH is located 
at depth d = 10 mm (to its center) from the top surface 
in part of the sample. For both samples, the ply lay-up 
was taken as 0°/45°/−45°/90°, in a repeated sequence and 
tests and simulation were carried out with the 2.5-MHz 
transducer array, this frequency having been used success-
fully in experimental studies on such materials [3]. These 
two samples provide validation with different layer thick-
nesses and with or without a defect. For modeling the 
defect response, the top of the lower bounding layer (the 
equivalent homogeneous medium) is located at a distance 
of 2 mm from the top of the hole. All experiments were 
carried out with the transducer array in contact with the 
material using a gel couplant. It is assumed that the gel 
does not support shear tractions, hence the array elements 
are assumed to apply normal stresses only. This is consis-
tent with the boundary conditions for a water layer given 
in Section II-A; hence, simulations assume a water bound-

TABLE I. Stiffness and Density of Materials. 

Property
Aluminum 

[41]

Homogenized 
fiber-resin 

[42]
Resin 
[43]

C11, C22 (GPa) 110 14 (1 + 0.01j) 5 + 0.25j
C33 (GPa) 110 125 (1 + 0.01j) 5 + 0.25j
C12, C23 (GPa) 60 6.5 (1 + 0.01j) 2 + 0.1j
C13 (GPa) 60 8 (1 + 0.01j) 2 + 0.1j
C44, C55 (GPa) 25 5.5 (1 + 0.01j) 1.5 + 0.08j
C66 (GPa) 25 3.75 (1 + 0.01j) 1.5 + 0.08j
ρ (kg·m−3) 2780 1500 1100
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ing region to the material to represent the gel couplant. 
The response of a component to a finite-width gel-coupled 
array element can be obtained by superposition of the 
responses to incident planar longitudinal waves in water 
over all possible angles, as indicated by the integral in 
(13), the finite width of the element being accounted for 
in the D(k) factors.

IV. Results

A. Array Element Response

To characterize the frequency response for the trans-
ducer array elements, H(ω) (see Section II-B), the back 
wall echo was obtained, with element 1 of the array acting 
as both transmitter and receiver. The results for the alu-
minum plate (with the 5-MHz array) and the CFRC sam-
ple A with the 2.5-MHz array are shown in Fig. 4. This 
echo includes the combination of the transmission and 
reception responses of the transducer and of the propaga-
tion path to and from the back wall of the specimen. The 
transducer responses were obtained from echoes off a flat 
metal surface immersed in water; they are not shown here 
because they were similar to the responses given in Fig. 4.

B. FMC for Homogeneous Material  
and Layered Composite

Simulations of a set of transducer array signals based on 
the model described in Sections II-A and II-B have been 
carried out for both aluminum and CFRC samples. These 
have been compared with experimental measurements to 
establish the validity of the models. Use of an isotropic 
material (aluminum) allows the model to be validated for 
a simple case, confirming the correct mode conversion and 
arrival times, before validating with an anisotropic layered 
material (composite samples) in which the wave propaga-
tion is much more complex. For the aluminum plate, with 
a 5-MHz array, the simulated and measured time-domain 
signals are shown in Fig. 5 for transmission on element 1, 
and reception at several selected array elements.

In the experimental data [as shown in Fig. 5(a)], some 
electrical breakthrough can be seen near the origin of the 
time-axis on all receiving elements; this is absent in the 
simulated data [Fig. 5(b)]. However, the reflection from 
the front face of the sample can be seen in the simulated 
data for element 1 in Fig. 5(b) at a very short time after 
transmission. The next arrival received by element 1 is 
at around 10 µs and corresponds to the first longitudinal 
mode echo from the back wall. For the other receiving 
elements, the corresponding signal arrives later the more 
distant the element is from element 1. Its amplitude and 
arrival time is predicted accurately by the model. The 
second, small-amplitude signal, arriving between 15 and 
17 μs is a slower signal, which has undergone mode con-
version at either top or bottom surface. It corresponds to 
a combination of a longitudinal mode converted to shear 

at the back wall, and then back to longitudinal at the 
top surface, and a shear mode produced at the top sur-
face, converted to a longitudinal mode at the back wall. 
Because mode conversion does not occur for normal in-
cidence, this signal is absent from the first element re-
sponse. Waves transmitted from element 1 at angles away 
from the normal, because of its finite size, are capable 
of mode conversion, but are received primarily at other 
elements except for those angles extremely close to the 
normal which could be received at the same element. The 
contribution from these paths is likely to be very small, 
hence mode conversion is not seen when transmitting and 
receiving on the same element. However, the amplitude of 
the mode-converted signal increases as the incident angle 
increases (i.e., for receiving elements further from element 
1). The final received signal shown is the second longitudi-
nal mode back wall echo. Agreement between simulation 
and experiment is excellent for this homogeneous material.

Simulated and experimental array data are shown in 
Fig. 6 for the CFRC sample A using the 2.5-MHz center 
frequency array. In this case, there is a significant reduc-
tion in the amplitude of the back wall echoes arriving at 
around 11 μs, compared with the aluminum case (see Fig. 
4). For CFRC, we have shown only up to receiver number 
20, because those signals received further from the trans-

Fig. 4. Back wall echo signal, using transducer array element 1 as both 
transmitter and receiver (normal incidence). (a) time domain and (b) 
frequency domain, for aluminum plate (dashed line) and carbon-fiber 
reinforced composite (CFRC) plate A (solid line).
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mitter have such small amplitude. These losses are due 
to damping in the viscoelastic matrix of the composite, 
and to diffraction from the layer interfaces. The reflected 
signals from the layer interfaces can be clearly seen in the 
region 1 to 6 μs in both experimental and simulated data; 
these are absent in the aluminum case. The amplitude and 
arrival time of both back wall echoes and these structural 
signals are simulated well by the model. Any discrepancies 
can be attributed to the uncertainty in physical properties 
of the materials.

C. Group Velocity

The effective angle-dependent group velocity in the ma-
terials has been determined from the first arrival times 
of the back wall echo in the experimental data. A similar 
method has been applied to the simulated FMC data. Re-
sults for composite sample A with the 2.5-MHz transducer 
array are shown in Fig. 7. For aluminum, the propagation 
speed does not vary with angle, and the velocity obtained 
from experimental data was 6295.4 ± 18.8 m/s compared 
with a value of 6290 m/s calculated from the stiffness and 

density which were used in the model (Table I). For com-
posite, the group velocity has also been calculated from 
the equivalent homogeneous properties of the sample (see 
Section II-C), as shown in Fig. 7.

The results show excellent agreement for the longitu-
dinal mode between experiment and simulation, and also 
with the EHP estimate of the group velocity. The varia-
tion in speed is, in fact, very small up to around 20°, so 
that a simple isotropic time-delay algorithm would work 
satisfactorily in this range. Experimental data are avail-
able only up to 40° because of the attenuation of the back 
wall signal and array size constraints. The agreement with 
the EHP results demonstrates that the simple EHP cal-
culation could be used to calculate the appropriate angle-
dependent velocity (theoretically up to 90°) for obtaining 
time-delay laws for the imaging algorithms. This avoids 
the time-consuming experimental determination, or cor-
responding computational modeling. Fig. 7 also shows cal-
culations for the two pseudo-shear mode group velocities 
using EHP, values that cannot be calculated using experi-
mental FMC data because of their higher losses.

Fig. 5. Ultrasonic transducer array signals received on various array ele-
ments with element 1 as transmitter, for a 5-MHz center frequency array 
with a 30-mm aluminum plate: (a) experiment and (b) simulation.

Fig. 6. Ultrasonic transducer array signals received on various array 
elements with element 1 as transmitter, for a 2.5-MHz center frequency 
array with a 16-mm carbon-fiber reinforced composite (CFRC) sample 
with no defect (sample A): (a) experiment and (b) simulation.
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D. Defect in Composite

The scattered field from a 1.5-mm-diameter cylindrical 
hole in an isotropic medium is shown in Fig. 8, see Section 
II-D. The results are shown for different wave-numbers 
in the isotropic embedding medium (21), corresponding 
to the wave-numbers in the anisotropic, equivalent ho-
mogeneous medium of the composite, at the appropriate 
incident angle. Very little change in scattering pattern is 
seen up to 20° incident angle, consistent with the group 
velocity calculation. This field pattern is used as a direc-
tivity function associated with the SDH when it acts as a 
source in modeling (Section II-E).

We have simulated the response of the SDH defect in 
composite sample B using the two models described in 
Section II-E. A comparison of the time-domain response 
obtained using the two models is shown in Fig. 9 for a par-
ticular transmitter–receiver pair. The agreement between 
the two models is very good, both in phase and amplitude 
of the signals, although the approximate method gives a 
slightly reduced amplitude. The difference between them 
is strongly dependent on the nature of the scattering func-
tion and its degree of anisotropy, and on the angle be-
tween transmitting and receiving elements at the defect. 
However, these results demonstrate that the simpler, more 
efficient model makes a very good estimate of the response 
of the defect in the layered composite, and could be ap-
plied where greater speed of computation is required. For 
the investigations that follow, the results from the full 
angular spectrum method [(25) and (26)] were used.

To assess the accuracy of the TFM imaging algorithms, 
we have produced images from these simulated data sets 
and estimated the SNR for the defect as described in Sec-
tions II-F and II-G. The imaging algorithm was based 
on the group velocity determined from the equivalent ho-
mogeneous properties for the composite (Section II-C). 

The two images are shown in Fig. 10; the first shows the 
“noise” arising from reflections at layer boundaries, where-
as the second shows the “signal” received from the defect 
itself. The image algorithm used all available simulated 
array data, to the full aperture of the array. The two im-
ages were normalized using the back wall echo in the noise 

Fig. 7. Group velocity as a function of propagation angle for fiber/resin 
composite. Estimation from first arrival times of the back wall echo us-
ing experimental (black dots) and simulated data (crosses) are compared 
with the results from the equivalent homogeneous properties (solid lines) 
for the pseudo-longitudinal mode. The dashed and dotted lines show the 
group velocity calculated from the equivalent homogeneous properties 
for the two pseudo-shear modes.

Fig. 8. Scattering amplitude as a function of angle for longitudinal-lon-
gitudinal scattered fields for a 1.5-mm-diameter side-drilled hole (SDH) 
in an isotropic medium in which the wavenumber is the same as that at 
the given incident angle in the equivalent homogeneous medium for the 
composite. The plots have been rotated such that the plotted angle is 
relative to the incident direction, which is along the 0° axis in each case. 
The figure shows scattering amplitudes for incident propagation angles 
of 0° (solid line), 20° (dashed line), 40° (dotted line), and 60° (dash-dot 
line). The outer circle is an amplitude of 1.5 m0.5.

Fig. 9. Ultrasonic transducer array signals for transmission on element 
27, and reception on element 42, corresponding to a transmitted angle of 
11.3° and receiving angle of 24.2° to the normal. The results were calcu-
lated from the full angular spectrum model (solid line), [(25) and (26)] 
and from the approximated model (dotted line), [(27)–(29)]. The defect 
is a side-drilled hole of diameter 1.5 mm embedded in composite sample 
B at a depth of 10 mm.
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(defect-free) image (a). The defect, instead of appearing 
circular, is spread out over a much larger distance.

To investigate the effect of using an aperture angle limit 
in the imaging algorithm, as proposed experimentally in 
[3], the SNR has been calculated (Section II-G) from the 
simulated images, using different aperture angle limits. 
The results are shown in Fig. 11. As the maximum aper-
ture angle increases up to ~10°, the additional information 
included in the image improves the SNR. However, the 
SNR has a peak value at a particular angle, above which 
an increase in the maximum aperture angle degrades the 
SNR of the defect in the image; this is due to the contribu-
tion of structural noise (from the layer interfaces), which 
adds coherently. In contrast, the SNR in a homogeneous 
material such as aluminum has no maximum, because the 
noise adds incoherently, so increasing the maximum ap-
erture angle systematically improves the SNR. The simu-
lated SNR data support the conclusion, observed experi-
mentally, that use of an aperture angle limit leads to an 
improvement in image quality for composites [3].

V. Conclusion

Simulation of transducer array signals for composite 
materials is a potentially valuable tool for improving im-
aging algorithms. The models reported in this paper allow 
the simulation of full matrix array data for homogeneous 
or anisotropic layered composite materials such as CFRC. 
This has been achieved by the combination of a plane wave 

model to obtain the response to plane incident waves, and 
the angular spectrum method to simulate finite beams 
from transducer elements. In addition, a method for ob-
taining the equivalent homogeneous properties of a com-
posite has been exploited to estimate the angle-dependent 
group velocity through the composite, which can be used 
in imaging algorithms for calculating delay laws. In a nov-
el development, the scattering from an SDH defect has 
been introduced into the model of the layered composite 
system, to simulate the response of a defect in composite.

A comparison between the simulated and experimental 
transducer array data shows excellent agreement, both in 
time-domain responses, and in the effective angle-depen-
dent group velocity. Having validated the model in this 
way, two improvements to imaging algorithms which have 
been recently proposed [3] have been assessed. The first is 
the use of an angle-dependent velocity to calculate delay 
laws, which has been shown experimentally to improve im-
age quality [3]. Our results have shown agreement between 
the velocity obtained from simulated and experimental 
data using back wall echoes, and we have also validated an 
analytical method for obtaining those velocities from the 
equivalent homogeneous properties. This method allows 
the calculation of angle-dependent velocity for use in imag-
ing algorithms without resort to a complex computational 
model, or reliance on back wall echo experimental data. 
The second algorithm improvement is the use of a limited 
aperture angle, which has been shown experimentally to 
improve the SNR for a defect [3]. In the current work, that 
conclusion is supported by the finding of a maximum in 
the SNR as a function of the maximum aperture angle, 
based on simulations of the defect in composite. It is be-
lieved that this is due to the coherence of structural noise, 
i.e., signals from the reflections at layer interfaces, which 
does not decrease as the aperture increases (as it would for 
incoherent noise from a homogeneous material).

Fig. 10. Images from simulated array data for a 1.5-mm-diameter side-
drilled hole at a depth of 10 mm in composite sample B, using the 2.5-
MHz center frequency array. (a) the “noise” image: composite with no 
defect, and (b) the “signal” image: defect only (see Section II-G).

Fig. 11. Simulated SNR for simulated data for a 1.5-mm side-drilled hole 
(SDH) in composite sample B, as a function of aperture angle limit using 
the 2.5-MHz array.
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