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Abstract—For high-frame-rate ultrasound imaging,
it remains challenging to implement on compact systems
as a sparse imaging configuration with limited array chan-
nels. One key issue is that the resulting image quality
is known to be mediocre not only because unfocused
plane-wave excitations are used but also because grat-
ing lobes would emerge in sparse-array configurations.
In this article, we present the design and use of a new
channel recovery framework to infer full-array plane-wave
channel datasets for periodically sparse arrays that oper-
ate with as few as one-quarter of the full-array aperture.
This framework is based on a branched encoder–decoder
convolutional neural network (CNN) architecture, which
was trained using full-array plane-wave channel data
collected from human carotid arteries (59 864 training
acquisitions; 5-MHz imaging frequency; 20-MHz sampling
rate; plane-wave steering angles between −15◦ and 15◦ in
1◦ increments). Three branched encoder–decoder CNNs
were separately trained to recover missing channels after
differing degrees of channelwise downsampling (2, 3,
and 4 times). The framework’s performance was tested
on full-array and downsampled plane-wave channel data
acquired from an in vitro point target, human carotid arter-
ies, and human brachioradialis muscle. Results show that
when inferred full-array plane-wave channel data were
used for beamforming, spatial aliasing artifacts in the
B-mode images were suppressed for all degrees of channel downsampling. In addition, the image contrast was
enhanced compared with B-mode images obtained from beamforming with downsampled channel data. When the
recovery framework was implemented on an RTX-2080 GPU, the three investigated degrees of downsampling all
achieved the same inference time of 4 ms. Overall, the proposed framework shows promise in enhancing the quality
of high-frame-rate ultrasound images generated using a sparse-array imaging setup.

Index Terms— Channel data recovery, convolutional neural network (CNN), high-frame-rate ultrasound, sparse-array
imaging.
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I. INTRODUCTION

ULTRASOUND is currently in the midst of two promising
innovation drives: one toward high-frame-rate ultrasound

and another in the direction of more compact, inexpen-
sive systems [1]. High-frame-rate ultrasound uses unfocused
transmissions to perform acquisitions with high temporal reso-
lution, and clinical devices that monitor dynamic physiological
events with this technology are beginning to be produced [2].
Concurrently, advances in transducer manufacturing, trans-
mit/receive circuitry, and signal processing algorithms have
paved the way for the development of more inexpensive and
compact ultrasound scanners [3]. This endeavor has led to
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Highlights
• A deep-learning-based channel recovery framework has been devised to infer full-array plane-wave channel data

from a sparse array that operates with as few as one-quarter of the full aperture.

• B-mode images with limited artifacts were successfully generated in vitro and in vivo from channel datasets inferred
from the proposed branched encoder–decoder CNN.

• The proposed framework can effectively enhance ultrasound image quality in sparse imaging setups that operate
with a reduced number of receiving channels.

increased uptake of ultrasound not only within hospital settings
but also in prehospital, austere, and remote environments [4],
[5]. Integration of high-frame-rate ultrasound techniques into
these compact and inexpensive systems can enable its more
widespread use in the healthcare system, thereby improving
access to the imaging paradigm.

High-frame-rate-operable ultrasound systems are difficult
to make compact and inexpensive due to their system-level
requirements. In particular, receiving radio frequency (RF)
data for high-frame-rate acquisitions requires: 1) front-end
receiving electronics for all the channels in a system and
2) high bandwidth data links between a system’s front-end
and back-end [6]. These requirements result in an increase in
system complexity and form factor as the number of receiving
channels grows. To reduce the hardware complexity of a high-
frame-rate system, a possible design choice that can be made is
to reduce the number of receiving channels. However, an ultra-
sound system must include enough receiving channels to span
a sufficient aperture for image formation, while keeping the
system’s pitch small enough to avoid imaging artifacts due
to the emergence of grating lobes in the ultrasound field
profile.

Several techniques have been proposed to prevent the
expected image degradation in ultrasound systems that oper-
ate with reduced sets of receiving channels. For instance,
microbeamforming can be performed at the transducer
front-end to send grouped data from multiple elements
together on one channel [7]. Alternatively, channel multi-
plexing [8], [9] can be used to receive a full set of RF
channel data over multiple transmissions. In addition, sparse
arrays with optimized layouts [10], specialized image forma-
tion algorithms [11], [12], [13], [14], and postbeamforming
artifact reduction methods [15] can be used to form high-
frame-rate ultrasound images with fewer receiving channels
than a fully populated array. Nevertheless, these methods are
inherently incompatible with imaging algorithms that operate
on prebeamforming RF channel data. For the task of raw
RF recovery in high-frame-rate imaging scenarios, there has
been active research aimed at recovering RF signals after
subsampling [16], [17]. However, the existing methods are
not designed for the task of channel data recovery after
channelwise subsampling, so they cannot be applied to a
system with a reduced number of receiving channels.

Methods that can enable high-frame-rate receiver channel
reduction with capability to recover missing raw RF data
would help integrate high-frame-rate techniques into compact

ultrasound systems. Indeed, our group has previously devel-
oped a deep-learning-based RF recovery system that can
recover a full set of plane-wave RF channel data from only half
of receiving channels [18]. This framework can enable a sys-
tem to operate with fewer receiving channels, while providing
access to a full set of data during ultrasound image formation.
However, it uses a static convolutional neural network (CNN)
architecture that is not applicable when less than half of
receiving channels are available. Furthermore, extension of
the architecture toward higher degrees of channel reduction
is a nontrivial task due to: 1) the spatial nonuniformity of
missing channels at downsampling degrees beyond two times
(2×) and 2) the increase in recovery difficulty associated
with highly sparse receiving scenarios. These challenges also
apply to other deep-learning-based high-frame-rate channel
recovery frameworks [19]. As a potential alternate solution,
compressed-sensing-based channel recovery techniques may
be extended to any degree of channel reduction. However,
when applied to high-frame-rate synthetic aperture data, these
techniques show in vitro image degradation at channelwise
downsampling degrees beyond 2× and there is no demon-
strated feasibility for higher degrees of channel recovery with
in vivo data [20], [21]. Despite these challenges, techniques
that allow higher degrees of RF recovery are desired, as they
can be implemented in systems with greater improvements
in portability and cost. For example, a downsized system
such as the US4R-Lite (us4us Ltd., Warsaw, Poland) would
benefit from a framework that is capable of higher degrees of
channel data recovery, as it receives on one-quarter of available
channels for a given transmission [22]. Accordingly, there is
a need for additional innovation in RF recovery to enable
its actualization in compact and inexpensive high-frame-rate
ultrasound platforms.

This article presents a novel computational solution for
facilitating plane-wave channel data recovery at downsampling
degrees beyond 2×. Our solution is based on the design of
a branching encoder–decoder CNN architecture that can be
trained to infer the RF data of decimated array channels
in scenarios with less than half of the array channels in
operation. We hypothesize that the branching encoder–decoder
CNN architecture can leverage similarities in the time-delayed
reflections that each channel receives to infer missing channel
data from downsampled subsets. Given a uniformly down-
sampled set of input channels, each branch of the recovery
framework outputs an equal number of uniformly downsam-
pled output channels; the number of output branches can
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Fig. 1. Proposed recovery framework. Downsampled prebeamformed RF subsets are placed into an RF image and fed into a CNN. Outputs from
the network correspond to offset subsets of prebeamformed RF data, which are interleaved with the network input to recover a full set of RF data.
This recovered set of RF data can then be beamformed using standard DAS beamforming. In this figure, the RF images and the DAS beamformed
image are logarithmically scaled for visualization purposes.

then be increased to accommodate higher degrees of down-
sampling. This work is readily distinguished from previous
attempts at high-frame-rate RF channel recovery. Specifically,
it represents the first demonstration of the feasibility of in vivo
RF recovery at channelwise downsampling rates beyond 2×.
It also is the first investigation to introduce a deep learning
architecture that can be generalized to any degree of channel-
wise downsampling.

II. THEORETICAL PRINCIPLES

A. CNNs for RF Recovery

A CNN-based approach was taken to enable RF recovery
from channelwise downsampled sets of RF data. Direct down-
sampling of a system’s receiving channels will cause spatial
aliasing if the sampling pitch of the array elements exceeds
half an acoustic wavelength λ/2 [23], causing spatial aliasing
artifacts in a beamformed image. This loss of image clarity is
a product of the beamforming process, and the information
losses that channel reduction imposes on the raw RF data
may be less severe. Neighboring channels should receive
similar time-delayed signals from a given reflector during
an imaging event, resulting in shared information between
channels that can be used to predict the received signals from
omitted channels [18]. CNNs are capable of learning from
this type of spatiotemporal data [24], and we have previously
shown that an encoder–decoder architecture can effectively
produce omitted RF channel data from half of a received
set [18].

To facilitate larger degrees of RF inference, we have devel-
oped novel CNN architectures that contain a more complex
encoding stage followed by a branched decoding segment
that produces multiple outputs. These networks encode the
received RF subset into a compact feature representation, and
then decode this compressed representation into additional sets
of RF data. As will be explained in Sections II-B and II-C,
the branching output is easily generalized to multiple levels
of channelwise downsampling, and the CNN architecture is
designed to be capable of RF recovery from high degrees of
downsampling.

B. Generalized Uniform RF Recovery Framework
A branched recovery scheme was constructed to facilitate

RF recovery from multiple levels of uniform downsampling.
The overall framework is shown in Fig. 1, where N corre-
sponds to the number of samples received on each channel,
C is the number of channels in the full receiver array,
and D is the degree of channelwise downsampling. First,
a set of uniformly downsampled, prebeamformed RF data
from a steered plane-wave transmission are placed into an
N × (C /D) × 1 matrix. In this matrix, each column contains
the RF data received from a given channel. This arrangement
can be viewed from an image processing perspective and will
be referred to as an RF image. After this preprocessing step,
the input RF image is passed into an encoder–decoder CNN
that branches to provide sets of output RF images, where
each output RF image corresponds to a missing set of RF
channels. Each set of RF channels output from a given branch
has equal pitch to the original input set, but they correspond
to a missing set of channels that is offset from the original
input. The number of branches is dependent on D, where D
− 1 branches are needed to recover a full set of RF data.
The framework’s number of branches can be easily adjusted
to accommodate different degrees of uniform downsampling,
where the only requirement is that the full number of channels
C is divisible by the desired downsampling degree D. When
this requirement is not met, extra channels can be omitted
from the recovery process and optionally added back during
the framework’s interleave step. After inference, the branched
output sets of RF data can be interleaved together to produce
the full set of RF data. From here, the RF data can be used
for any desired image formation or analysis. In this work,
the focus is on image formation with delay-and-sum (DAS)
beamforming and coherent plane-wave compounding.

C. Branching Encoder–Decoder CNN Architecture
By performing the RF inference step, the branching

encoder–decoder CNN is the key component that enables
operation of the RF recovery framework. A detailed diagram of
this CNN architecture is given in Fig. 2, and the key features
of the network are described in Sections II-C1–II-C3.
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Fig. 2. Encoder–decoder architecture used for RF inference. Convolutional operations, activations, and concatenations are shown by the color-
coded arrows. Filter sizes used for convolutions are given above the operation. If there is no filter size given, the filter size from the previous
operation is used. Feature maps are represented by blocks, with their dimensions indicated below each block (with an exception in the branched
region where the label is between branches). Feature map dimensions for concatenated maps refer to the convolutional output only. Note that the
RF images are logarithmically scaled for visualization purposes.

1) Network Input—Downsampled RF Image: The RF image
input to the CNN only contains the received RF chan-
nels, arranged side by side. If downsampled RF channels
are selected with a uniform sampling scheme, each column
is separated by an equal pitch and there is no need to
encode information on missing channel location with addi-
tional columns in the RF image.

2) Network Depth, Filters, and Nonlinearity: The depth, fil-
ter sizes, and filter depths of the architecture were chosen
to balance computational cost and network complexity. The
encoder segment for each network uses seven layers, with
strided convolutions used to compress the features in the
vertical direction (along each channel). The earlier layers
use a filter size of 5 × 5 to capture a large receptive
field [25] early, and later layers use a filter size of 3 ×

3 to reduce computational cost. This architecture results in
a lateral receptive field of 25 channels at the output of each
network’s encoder. By design, the transducer coverage of the
CNN’s receptive field naturally increases with greater degrees
of downsampling. This increased coverage is caused by the
increased effective pitch of the subsampled array at greater
degrees of downsampling. If RF data are being inferred for a
128-element probe, this means that the compressed features
output by an encoder segment have a receptive field that
covers 38% (49/128 elements) of the transducer width for
2× downsampling, 58% (74/128 elements) for 3× down-
sampling, and 77% (99/128 elements) for 4× downsampling.
The expanding coverage of the receptive field acts to bolster
a network’s inference ability in the face of larger degrees

of downsampling. To increase the complexity of features
learned throughout the networks, nonlinear activations are used
after convolutional operations, using leaky rectified linear unit
(leaky ReLU) activations [26] with α = 0.01. Feature depth
is grown from 1 to 64 throughout the encoder segment to
gradually increase the number of learned features alongside
their complexity. After encoding, the decoder segments of
each network use an additional seven layers to infer RF sets
from these encoded features. Filter sizes/depths are constructed
in a pattern that mirrors the encoder, and strided transpose
convolutions are used to upsample the network in the vertical
direction.

3) Network Outputs, Branching Decoders, and Feature Shar-
ing: A branching scheme is used in the decoder segment to:
1) output RF sets with the same dimensions as the input and
2) provide each output RF set with specialized upsampling
and inference filters. With the branching scheme, the path
from the input RF set to an individual branch’s output RF
set forms a symmetrical encoder–decoder CNN. Orientation
of the CNN in this manner enables the inputs to the CNN to
only include the downsampled channels, while also enabling
symmetrical sharing of encoder/decoder features via concate-
nating skip connections. This feature sharing restores some of
the information lost in the encoding scheme of the network,
and it also promotes more stable training by enabling direct
pathways for the gradient back through the network [27].
The network’s branching point is placed midway through the
decoder segment to enable feature sharing between outputs
during the first half of the decoder while still allowing each
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TABLE I
DATA ACQUISITION PARAMETERS

individual output RF set to be decoded with its own set of
specialized upsampling/inference filters. In accordance with
the overall framework, the number of branches is dependent
on the downsampling degree and is given by D − 1. At the
end of each branch, the output sets of RF data are attained
through a final convolution followed by a linear activation,
allowing positive and negative RF values as outputs.

III. EXPERIMENTAL METHODS

To effectively evaluate the recovery framework at multiple
levels of channelwise downsampling, CNN architectures were
created for downsampling levels of 2×, 3×, and 4× (D = 2,
3, and 4). This involved the creation of CNNs with one, two,
and three branches, respectively. In contrast to our previous
work [18], the CNNs were trained using data that were subject
to a cleaning process, and the mean-absolute-error (MAE) loss
function was used instead of the mean-squared error (MSE)
for optimization. Details related to the training and evaluating
of the recovery framework are described as follows.

A. Dataset Acquisition, Cleaning, and Preprocessing

A dataset of in vivo carotid artery scans from a SonixTouch
research scanner (SonixTouch; Analogic Ultrasound; Peabody,
MA, USA) was used to train the RF recovery architectures.
This dataset was acquired for our previous work [18] and
it consisted of 67 299 steered plane-wave acquisitions from
seven healthy volunteers (age: 25.9 ± 4.9 years). The research
scanner was programmed to acquire batches of 31 steered
angles from −15◦ to 15◦, with a −0.5◦ transmission used
instead of 0◦ due to an inability of the scanner to transmit
on all the elements simultaneously. A total of 67 299 separate
training frames were acquired for the networks, where each
frame’s RF values ranged between –2048 and 2047 with 12-bit
resolution. The acquisition was performed with a 128-element
L14-5 probe (C = 128); the system operated with a 5-MHz
transmission frequency, 2-pulse transmissions, a 10-kHz pulse
repetition frequency, and a 20-MHz sampling rate. A summary
of acquisition parameters can be found in Table I. Acquired
data were transferred to a computer server (SYS-4028-TRT;
Super Micro, San Jose, CA, USA) with a Xeon E5-2620
central processing unit (Intel, Santa Clara, CA, USA) to be
preprocessed in MATLAB (ver. 2020b; MathWorks, Natick,
MA, USA).

Fig. 3. CNN training dataset preprocessing pipeline. Data were
cropped, cleaned to remove heavily clipped frames, normalized, and
parsed by channel for different downsampling scenarios. Note that the
RF images are logarithmically scaled for visualization purposes.

The acquired dataset was cleaned and preprocessed to
facilitate a stable and effective training process, with steps
shown in Fig. 3. First, the initial 196 samples of each channel
were removed to reduce the number of near-field reflections
present in training RF images and to conform the input
height to a multiple of eight. Ensuring a multiple of eight
on input height allowed the three strided convolutional layers
in the network’s encoder segment to be performed without
the need to zero pad the signal. This cropping resulted in
N = 1304 samples per channel, where all the training samples
covered a depth of 11.4–61.6 mm. Second, the dataset was
cleaned by removing RF frames that had an excess of clipped
samples. Training frames with more than 50 samples valued at
2047 (the maximum output value of the Sonixtouch’s analog-
to-digital converter) were removed from the training dataset.
The data cleaning resulted in 59 864 training frames being
retained (90% of the original acquired set) while reducing the
potential negative impact of clipped samples on the training
data. This subset of training data was then normalized to be
between −0.5 and 0.5 prior to being input into the network.

Network inputs and outputs were formed by selecting
uniformly spaced channels from an RF frame and plac-
ing them into smaller RF images. For 2× downsampled
data, odd-numbered channels were selected as inputs with
even channels selected as network outputs (each sized as
N × C /D = 1304 × 64). For 3× downsampled data, three
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sets of uniformly spaced channels with two-element separation
were formed (N × C /D = 1304 × 42), with the middle set
as a network input and the remaining sets as output. The
first and last channels of the full RF set were discarded to
ensure a uniform downsampling scheme where inputs and
outputs to the network all had the same size (C = 126 for 3×

downsampling). Finally, for 4× downsampled data, four sets
of uniformly spaced channels with three-element separation
were formed (N × C /D = 1304 × 32), with the first set
as network inputs and the remaining three sets as network
outputs.

B. CNN Training
Networks for each downsampling level were developed and

trained in Python (ver. 3.6.7), using TensorFlow-GPU (ver.
1.12.0) with the Keras (ver. 2.1.6) application user interface.
The training of the networks was facilitated using a GTX
1080 graphical processing unit (GPU; Nvidia, Santa Clara,
CA, USA). Network weights were initialized according to
a He-uniform distribution, and then the Adam optimization
algorithm [28] was used for training; each network used a
learning rate of 0.001, a batch size of 32, and 50 total epochs.
For training, the MAE was used to reduce the impact that
clipped RF samples had on the training process. The MAE
from each branch’s output was added together with equal
weighting to form the overall loss function. About 90% of
the cleaned dataset was used for training with the remaining
10% used for validation of each network. The loss curves
from the individual branches for the three investigated degrees
of downsampling are shown in Fig. 4. The validation loss
closely follows the training loss for all the branches, and the
overall loss in different branches increases as the downsam-
pling degree is increased. The comparatively higher loss for
branch 2 (channels 3, 7, 11, . . . ) in the 4× downsampling
case occurs because the channels composing this branch are
two pitch-lengths away from the input RF (channels 1, 5,
9, . . . ) set, while channels composing branches 1 (channels
2, 6, 10, . . . ) and 3 (channels 4, 8, 12, . . . ) are only one
pitch-length from channels on the input RF set.

C. Recovery Performance Assessment
The effectiveness of the RF recovery framework was

assessed using both raw RF signal analysis and quality com-
parisons of DAS beamformed images. For image analysis,
images were beamformed with: 1) only the downsampled
subset of RF channels; 2) the downsampled RF channels
and CNN-inferred RF channels; and 3) the full original set
of RF channels. The image quality improvement provided
by CNN-inferred RF data was then assessed by comparing
images that were beamformed from each of these three sets
of channels.

1) Evaluation Scenarios: Additional RF datasets were
acquired from several different imaging scenarios to evalu-
ate the recovery framework’s success. First, nine additional
carotid/thyroid scans from nine volunteers separate to the train-
ing set were acquired to evaluate RF reconstruction success
for different in vivo tissue types, namely, the hyperechogenic

Fig. 4. Loss curves for each branch at the three investigated degrees of
downsampling. (a) Loss curve for the 2× downsampling case. (b) Loss
curves for each branch in the 3× downsampling case. (c) Loss curves
for each branch in the 4× downsampling case.

carotid wall and the homogeneous, less echogenic thyroid.
These in vivo datasets were acquired with approval from
the Clinical Research Ethics Committee of the University
of Waterloo (Protocol No. 31694). Second, an in vitro scan
of a point target phantom was acquired for an interpretable
evaluation of RF inference success along a hyperbola. Finally,
an in vivo plane-wave brachioradialis acquisition from the
Challenge on Ultrasound Beamforming with Deep Learning
(CUBDL) [29] Task 1 data was used to test the gener-
alizability of the network to a new imaging scenario and
a new ultrasound system. All the acquisitions were taken
using imaging parameters from Table I, with the exception
of the CUBDL acquisition, which used a Verasonics Vantage
256 with a transmit frequency of 7.5 MHz and a sampling
frequency of 25 MHz [29]. All the scenarios were evaluated
at downsampling/recovery levels of 2×, 3×, and 4×.

2) Evaluation Data Preparation: The testing RF data were
cropped to have a length of 1304 to ensure they could be fed
into the trained CNN. Each set of RF data was cropped to
ensure that the beamformed B-mode image contained regions
of interest for image quality assessment. RF data were normal-
ized and partitioned in the same manner as the training data,
and input RF images were then fed into the trained networks to
recover a full set of RF data for each level of downsampling.

3) Image Formation Pipeline: For subsequent image anal-
ysis, RF data were first bandpass-filtered between 3 and
7 MHz and converted into an analytic signal with the Hilbert
transform. The analytic data were then DAS beamformed
with an F# of 1 and rectangular apodization, and envelope
detection was performed by taking the absolute value of the
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TABLE II
IMAGE BEAMFORMING PARAMETERS

beamformed analytic signal. The final step in the ultrasound
image formation procedure was to then logarithmically scale
the beamformed envelope values. The key parameters from the
beamforming process are summarized in Table II.

4) Beamformed Image Quality Metrics: Beamformed images
were assessed through a combination of contrast evaluation
and full-reference image quality measurement. The contrast
ratio (CR) and the generalized contrast-to-noise ratio (gCNR)
[30] of the carotid artery lumen to the surrounding tissue
regions were taken to evaluate the reduction in spatial aliasing
artifacts. For each gCNR calculation, probability density func-
tions were estimated using a 256-bin histogram that covered
the image’s full dynamic range. To evaluate the overall image
quality restoration with a full reference metric, the structural
similarity measure (SSIM) [31] was used. For SSIM calcula-
tion, pixel values from the DAS operation were logarithmically
scaled and clipped to values within the displayed dynamic
range. Images beamformed with a full set of receiving RF data
were used as reference. As performed in the original SSIM
paper, windows of size 11 × 11 were used for SSIM window
calculations [31], and the overall SSIM was calculated using
the entire beamformed image.

5) RF Characterization and Recovery Metrics: The root
mean squared (rms) and normalized root MSE (NRMSE) were
used to compare RF data characteristics and RF data recovery
success for different tissue types. The rms allows for evalua-
tion of overall RF magnitude when characterizing reflections
from different regions of interest. In addition, the NRMSE
metric allows RF recovery comparison between multiple tissue
types, despite potentially differing overall amplitudes due to
each tissue’s varying depth and echogenicity characteristics.

6) Compounded Image Quality Evaluation: The compat-
ibility of the recovery framework with the plane-wave
compounding process was evaluated by tracking image metric
changes as beamformed images were compounded. Images
were compounded by adding 1◦ transmissions sequentially,
starting from the centermost −0.5◦ acquisition. Therefore, the
compounding pattern went as follows: one-angle: −0.5◦; two-
angle: −0.5◦, 1◦; three-angle: −1◦, −0.5◦, 1◦; four-angle: −1◦,
−0.5◦, 1◦, 2◦; etc.

D. Inference Speed Evaluation

To evaluate the inference speed of RF channel inference, the
recovery framework was timed using Python’s time module.
The same system as described in Section III-B was used,
except that an RTX-2080 GPU (Nvidia) was used for infer-
ence instead of the GTX-1080 GPU. Total inference time

over 2500 RF frames was calculated and averaged for the three
investigated degrees of downsampling.

IV. RESULTS

A. Image Structure Is Recovered When CNN-Inferred
RF Data Are Used for Beamforming

Images beamformed with CNN-inferred RF data showed
suppression of spatial aliasing artifacts in multiple imaging
scenarios and at multiple levels of downsampling. As shown
in Fig. 5, the underlying structures in beamformed images of
a −0.5◦ point target phantom acquisition [Fig. 5(a)], a −0.5◦

carotid artery/thyroid acquisition [Fig. 5(b)] and a 0◦ bra-
chioradialis muscle acquisition [Fig. 5(c)] became harder to
discern when channels are removed during the receiving pro-
cess [Fig. 5(d)–(f)]. Only the 3× downsampling case is shown
for the sake of brevity, but the spatial aliasing artifacts would
be less obtrusive for the 2× case and more prominent in the
4× case. Highlighted by the point target image Fig. 5(d), the
most obtrusive artifacts are caused by the strongly echogenic
structures in the image. Beamforming with CNN-inferred RF
data resulted in a reduction in these artifacts at all the levels of
downsampling [Fig. 5(g)–(o)]. This artifact reduction revealed
the underlying image structure, as the point targets are visible
and isolated, the carotid lumen is revealed, and the brachioradi-
alis muscle fibers can be distinguished. The artifact reduction
was accompanied by a slight degradation in image quality,
quantified with the reduced SSIM values as downsampling
degrees are increased. In addition to the improvement in image
quality, the recovery framework achieved an average inference
speed of 4 ms for the three investigated degrees of downsam-
pling, corresponding to an average speed of 250 frames/s.

B. Inclusion of CNN-Inferred RF Data Increases Contrast
of Beamformed Images

The suppression of spatial aliasing artifacts resulted in an
increased contrast of the carotid artery when CNN-inferred RF
data were used for beamforming. Using the hand-segmented
reference regions on the carotid artery given in Fig. 6(a),
the single-transmit images beamformed from 31 steered
plane-wave acquisitions experienced CR improvement when
CNN-inferred RF data were used [Fig. 6(b) and (c)] across all
the transmit steering angles. The CR was improved when both
the hyperechogenic carotid wall was used as a reference and
when the less echogenic, homogeneous thyroid was used as a
reference. Relatively higher recovery in contrast was achieved
when the hyperechogenic carotid wall was used as a reference,
and this is reflected in the images of Fig. 5(h), (k), and (n),
as some thyroid content is lost at higher levels of downsam-
pling. The gCNR of the images followed a similar trend when
the carotid wall was used as a reference [Fig. 6(c)], but when
the thyroid was used as a reference the downsampled cases
see higher gCNR than the fully sampled and recovered cases
for some positive transmission angles [Fig. 6(d)]. These higher
gCNR values in the purely downsampled acquisitions can be
explained by the increasingly negative CR values for these
transmission angles [Fig. 6(c)], since the gCNR will increase
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Fig. 5. Single-angle B-mode images. All the images are displayed with a dynamic range of 50 dB. (a)–(c) B-mode images beamformed with
all the original receiving channels for a −0.5◦ point target phantom acquisition, a −0.5◦ carotid artery acquisition, and a 0◦ brachioradialis
acquisition, respectively. (d)–(f) B-mode images beamformed with only 1/3 of receiving channels. (g)–(i) B-mode images beamformed with
1/2 original channels + 1/2 inferred channels. (j)–(l) B-mode images beamformed with 1/3 of receiving channels + 2/3 inferred channels.
(m)–(o) B-mode images beamformed with 1/4 of receiving channels + 3/4 inferred channels.

Fig. 6. Contrast evaluation of a carotid artery over multiple trans-
mission angles. (a) Segmented regions for contrast assessment.
A 31-angle compounded image was used to choose reference regions.
(b) and (c) CR evaluations using the carotid wall and thyroid as a tissue
reference points, respectively. (d) and (e) gCNR evaluations using the
carotid wall and thyroid as tissue reference points, respectively.

as the separability between tissue regions increases, regardless
of the direction of separation.

Evaluation of the carotid CR and gCNR on the rest of
the acquisitions in the test set indicated a similar trend to

the acquisition in Fig. 6. Fig. 7 shows box plots for the CR
[Fig. 7(a) and (b)] and gCNR [Fig. 7(c) and (d)] of 31-angle
carotid acquisitions from nine separate volunteers (9 × 31 =

279 total transmissions). Relatively higher recovery in CR
and gCNR was achieved when the carotid wall was used as
reference compared with the thyroid at all the downsampling
degrees. Similar to Figs. 6(d) and 7(d) is skewed to have
higher gCNR for the downsampling cases due to the increas-
ingly negative CR values [Fig. 7(b)].

C. Successful RF Inference in Hyperbolic Regions of RF
Images

Relatively higher RF recovery success was seen across all
the downsampling degrees when hyperechogenic data were
being inferred. The hyperechogenicity of the carotid wall in
region 1 of Fig. 8(a) manifested itself in the hyperbolic reflec-
tions in region 1 of Fig. 8(b). Conversely, the homogeneous,
less echogenic thyroid in region 3 of Fig. 8(a) did not provide
hyperbolic structure in region 3 of Fig. 8(b). Consequently, the
NRMSE values [Fig. 8(c)] at each level of downsampling were
>2× lower for inferred RF from the hyperechogenic carotid
region compared with the homogeneous, less echogenic thy-
roid region.

The accuracy of inference was not directly dependent on
higher amplitudes that are associated with hyperechogenic
reflections, but the hyperbolic RF structure that is due to the
scattering properties of these regions. Reflections from region
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Fig. 7. Contrast evaluation of multiple carotid arteries over multiple
transmission angles. (a) and (b) CR evaluations using the carotid wall
and thyroid as tissue reference points, respectively. (c) and (d) gCNR
evaluations using the carotid wall and thyroid as tissue reference points,
respectively.

2 had lower rms values compared with region 3, but they
still experienced a considerably lower NRMSE for inference
compared with region 3. This success can be associated with
the low-amplitude hyperbolic reflections that are clearly visible
in region 2 of Fig. 8(b). The scattering properties of the
region’s reflectors resulted in a clear hyperbola in the RF
image, and consequently, there was a NRMSE that is >2×

lower than the homogeneous, less echogenic thyroid (region 3)
for each level of downsampling.

Relatively higher RF inference accuracy was also achieved
on hyperbolic tissue types that were different from the CNNs’
training set. The examination of a single channel’s inference
from an in vitro point target phantom is shown in Fig. 9,
where a >2× reduction in NRMSE was seen in the region
that contains hyperbolas from the point target. This distinction
was present at all the levels of downsampling. The recovery
framework was not trained on any in vitro acquisitions, but
the trend of higher hyperechogenic RF recovery success was
present for this type of data as well.

D. Coherent Compounding of Images Beamformed With
CNN-Inferred RF Data Further Improves Image Quality

The contrast and SSIM of images beamformed with
CNN-inferred RF data were further improved with coherent
plane-wave compounding. The compounding process of the
carotid artery in Fig. 5(b) is shown in Fig. 10, where com-
pounding resulted in a progressive improvement of contrast
and SSIM for all the beamforming scenarios. Similar to
the single-angle case, the inclusion of CNN-inferred data in
the beamforming process enabled improved image quality
compared with when only the subset of receiving channels

Fig. 8. In vivo RF reconstruction evaluation for different regions of a
carotid artery. (a) Highlighted tissue regions on a B-mode image. 1 is
the hyperechogenic carotid wall, 2 is a lower amplitude hyperechogenic
region, and 3 is the homogeneous, less echogenic thyroid. The B-mode
image is displayed with a dynamic range of 50 dB. (b) RF reflections
from each highlighted tissue region. The region # is shown below its
yellow bounding box, and the rms of the region is shown above the box.
The RF image is logarithmically scaled and displayed with a dynamic
range of 40 dB. (c) NRMSE for the CNN-inferred RF data from each
region.

were used. First, both the CR and gCNR between the lumen
and carotid wall were enhanced beyond the case with all the
receiving channels when CNN-inferred RF data were used
in beamforming. Second, both the CR and gCNR between
the thyroid and the lumen were consistently improved when
CNN-inferred data were included during beamforming, despite
the less hyperbolic RF data provided from thyroid reflec-
tions. Finally, while the SSIM of all the beamformed images
improved at higher degrees of compounding, higher resultant
SSIMs were achieved when CNN-inferred RF data were
included during beamforming.

The recovery-attributed enhancement of compounded image
quality can be observed in Fig. 11, where seven-angle-
compounded images are displayed. While the compounding
of images formed with downsampled RF data [Fig. 11(e)–(g)]
resulted in a higher quality image compared with the
single-transmit case [Fig. 5(e)], the images were still
obstructed by spatial aliasing artifacts. The visibility of the
carotid structure was enhanced when CNN-inferred data were
also used in beamforming [Fig. 11(b)–(d)]. This increased
carotid visibility was seen over the carotid test set, as shown
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Fig. 9. In vitro RF reconstruction evaluation for a point target phantom.
(a) B-mode image of the point targets being examined, displayed with a
50-dB dynamic range. (b) RF image of the point target with the channel
examined highlighted in yellow, and the start of the hyperbolic point
target reflections denoted in green. The RF image is logarithmically
scaled and displayed with a dynamic range of 40 dB. (c)–(e) Comparison
of the original RF data to the inferred RF data for downsampling levels
of 2, 3, and 4, respectively. The NRMSE is given for the prehyperbolic
region and the hyperbolic region.

by the box plot images that summarize the contrast of the
seven-angle compounded images for each carotid in the test
set (Fig. 12).

V. DISCUSSION

A. Summary of Contributions
Each receiving channel in an ultrasound system imposes

a tangible increase in the system’s complexity, whether it
is through an increased data transfer bandwidth, or through
the requirement of additional receiver electronics such as
analog-to-digital converters or low-noise amplifiers. To enable
high-frame-rate ultrasound systems with lower channel counts
and lower system complexity, we have developed an RF
recovery framework (Fig. 1) that can be applied to uniformly
channelwise downsampled RF data. Our framework leverages

Fig. 10. Changing carotid artery image quality metrics throughout
the compounding process. Regions used for contrast evaluation are
highlighted in Fig. 6. (a) Wall to lumen CR. (b) Thyroid to lumen CR.
(c) Wall to lumen gCNR. (d) Thyroid to lumen gCNR. (e) SSIM.

novel branching encoder–decoder CNN architectures (Fig. 2)
to directly recover RF channels that were omitted during the
receive process. This novel CNN architecture is an improve-
ment upon the static nature of our previous framework [18],
and its generalizability to multiple degrees of downsampling
provides higher flexibility for its implementation in high-
frame-rate ultrasound systems with differing specifications.
Furthermore, the inference time of the framework was found
to be held constant at 4 ms regardless of the downsampling
degree (Section IV-A). Correspondingly, the proposed frame-
work achieved a throughput speed of 250 frames/s for each of
the three investigated degrees of downsampling with a RTX-
2080 GPU. Further improvements in the processing throughput
can be expected with the use of more advanced microprocessor
technology [32].
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Fig. 11. Seven-angle compounded images of a carotid artery.
All the images are displayed with a dynamic range of 50 dB.
(a) Beamforming performed with all the receiving channels.
(b)–(d) Beamforming performed with 1/2 received + 1/2 inferred
channels, 1/3 received + 2/3 inferred channels, and 1/4 received + 3/4
inferred channels, respectively. (e)–(g) Beamforming performed with 1/2
received channels, 1/3 received channels, and 1/4 received channels,
respectively.

Note that our CNN’s constant inference time may seem
counterintuitive since, in principle, the complexity of the
architecture is increased due to the addition of decoder
branches at higher degrees of downsampling. Nevertheless, the
impact of the increased CNN complexity is practically offset
because higher degrees of downsampling naturally result in
fewer input channels for the CNN’s inferencing operations.
As such, it is feasible for our branched CNN to restore, with
a constant inference time, a full set of RF channel data from
a downsampled subset.

Our experiments with DAS beamforming showed that
including CNN-inferred channels in the beamforming process
improved image quality (Fig. 5). These improvements from

Fig. 12. Contrast evaluation of seven-angle compounded carotid
arteries. (a) and (b) CR evaluations using the carotid wall and thyroid as
tissue reference points, respectively. (c) and (d) gCNR evaluations using
the carotid wall and thyroid as tissue reference points, respectively.

our framework were generalizable to multiple imaging medi-
ums, namely, in vivo carotid arteries, an in vitro point target,
and an in vivo brachioradialis muscle. These improvements
were also generalizable across two imaging systems, namely,
a SonixTouch research scanner and a Verasonics scanner, and
they were achieved with different center/sampling frequen-
cies from the training acquisitions. Furthermore, inferred RF
channels provided similar improvements when the network’s
inputs were from varying transmission angles (Figs. 6 and 7).
This angle independence of the framework’s inputs enables
its use with more advanced RF-processing techniques; when
inferred RF data from steered transmissions were used for
coherent plane-wave compounding, progressive image quality
improvement was also achieved (Figs. 10–12). Overall, the
DAS improvements yielded by the inferred RF data indicate
the proposed framework’s feasibility for RF recovery. This
feasibility was demonstrated for recovery from downsampling
degrees beyond 2×, surpassing the in vivo recovery rates
demonstrated in our previous work [18], and by other high-
frame-rate channel recovery techniques [19], [20], [21].

B. Spatial Aliasing Artifact Reduction Stems From Strong
Hyperbolic RF Inference

The image quality improvements that CNN-inferred RF
data provided to DAS beamformed images can be attributed
to a reduction in spatial aliasing artifacts. The inhibiting
features present in the downsampled images of Fig. 5 are
the spatial aliasing artifacts that hide the imaging region’s
underlying structure. The strong reduction in these aliasing
artifacts is expected due to two reasons. First, the most preva-
lent artifacts stem from insufficient spatial sampling of the
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hyperechogenic structures in the imaging medium [highlighted
by the point target artifacts in Fig. 5(d)]. Second, reflections
from more echogenic scatterers manifest themselves in RF
image hyperbolas, enabling higher accuracy in RF inference
(Figs. 8 and 9). Therefore, the RF samples provided by the
inference framework are expected to be highly effective at
suppressing the most prominent spatial aliasing artifacts in a
medium. This reduction in aliasing artifacts is visible in the
images of Fig. 5, as the spatial aliasing artifacts are minimal
in the images beamformed with recovered RF data.

A lack of hyperbolic RF structure results in a more diffi-
cult RF inference scenario. The spatial aliasing artifacts are
suppressed in Fig. 5(h), (k), and (n); however, there is a
notable loss in thyroid content, quantified by the decrease
in contrast in Figs. 6 and 7. This loss in image quality
can be explained by the difficulty inferring reflections from
the nonhyperbolic RF structure of the thyroid (Fig. 8). Less
accurate RF inferences will have a less coherent sum during
DAS beamforming, and as higher portions of the beamformed
samples are provided by inference, the beamformed signal will
be more subdued. This effect had a significant impact on SSIM
measures, as any inconsistencies in speckle amplitudes caused
a large degradation of the SSIM, even if the overall image
structure was captured. Due to the different degrees of RF
recovery success for different types of tissues, there is not
a well-defined limit to the amount of CNN-based recovery
that can be achieved, as it will depend on the medium being
imaged.

When imaging a more challenging medium with less
echogenic scatterers, the quality of beamformed images can
be improved with plane-wave compounding (Fig. 10). In addi-
tion, images beamformed with CNN-inferred RF data had
greater degrees of enhancement compared with those beam-
formed with only a subset of channels (Figs. 10–12). The
image quality improvements observed indicate a general
coherence between pixels beamformed with CNN-inferred RF
data, allowing progressive image quality improvement through
the compounding process.

C. Implications on System Design
Using a CNN-based solution for RF recovery, the proposed

framework is well-suited for integration into a compact sys-
tem’s signal processing pipeline. Convolutional operations are
easily parallelized using GPUs, and recent innovations have
seen significant downsizing of this technology in products such
as the NVIDIA Jetson platform [33]. The ability for the GPU
to execute convolutional operations complements other known
capabilities of the GPU, such as the parallelization of comput-
ing tasks in an ultrasound processing pipeline (beamforming
being a pertinent example). With these technical advances, the
GPU is well-poised as a strong candidate to be included in
modern ultrasound scanners [34].

D. Perspectives for Future Work
With feasibility of the RF recovery framework demon-

strated within the context of plane-wave acquisitions on 1-D
arrays, additional research should be pursued for extending the

framework to additional imaging schemes. The appearance of
hyperbolic structure in RF images is not exclusive to plane-
wave acquisitions; therefore, it is expected that similar results
would be seen when applying the proposed framework to other
imaging schemes such as synthetic aperture imaging [35].
In addition, the demonstrated feasibility of 4× RF recov-
ery raises the question of whether the framework could be
extended toward 2-D matrix arrays, since 2-D sparse arrays
typically require a larger reduction in channel count to ade-
quately reduce system complexity [36], [37]. This extension
could be through a row/columnwise application of the frame-
work to a downsampled matrix array, or through the use of
3-D convolutional kernels to infer reflections from 3-D hyper-
bolic structure in RF matrices. Finally, the system-agnostic
channelwise RF recovery and cross-system generalizability
beyond the examples provided with two imaging systems
remains to be fully explored. Techniques such as transfer
learning [38] could be used to tune the proposed framework
to different acquisition parameters and alternative acquisitions
systems.

VI. CONCLUSION

An effective receiver channel recovery scheme can facili-
tate the uptake of high-frame-rate ultrasound techniques into
compact ultrasound systems. To this end, we have devised
a CNN-based channel recovery scheme and demonstrated its
ability to recover a full set of RF data given multiple degrees of
channelwise downsampling. The channel recovery framework
is expected to improve beamformed image quality in high-
frame-rate ultrasound systems that operate with a reduced
number of receiving channels. This work can thus aid the
adoption of high-frame-rate principles into compact ultrasound
systems, extending the imaging paradigm into more remote
and austere healthcare environments.
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