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Abstract—When compared to fundamental B-mode
imaging, coherence-based beamforming, and harmonic
imaging are independently known to reduce acoustic clut-
ter, distinguish solid from fluid content in indeterminate
breast masses, and thereby reduce unnecessary biopsies
during a breast cancer diagnosis. However, a systematic
investigation of independent and combined coherence
beamforming and harmonic imaging approaches is nec-
essary for the clinical deployment of the most optimal
approach. Therefore, we compare the performance of
fundamental and harmonic images created with short-lag
spatial coherence (SLSC), M-weighted SLSC (M-SLSC),
SLSC combined with robust principal component anal-
ysis with no M-weighting (r-SLSC), and r-SLSC with
M-weighting (R-SLSC), relative to traditional fundamental
and harmonic B-mode images, when distinguishing solid
from fluid breast masses. Raw channel data acquired from
40 total breast masses (28 solid, 7 fluid, 5 mixed) were
beamformed and analyzed. The contrast of fluid masses
was better with fundamental rather than harmonic coher-
ence imaging, due to the lower spatial coherence within
the fluid masses in the fundamental coherence images.
Relative to SLSC imaging, M-SLSC, r-SLSC, and R-SLSC
imaging provided similar contrast across multiple masses
(with the exception of clinically challenging complicated
cysts) and minimized the range of generalized contrast-
to-noise ratios (gCNRs) of fluid masses, yet required
additional computational resources. Among the eight coherence imaging modes compared, fundamental SLSC
imaging best identified fluid versus solid breast mass contents, outperforming fundamental and harmonic B-
mode imaging. With fundamental SLSC images, the specificity and sensitivity to identify fluid masses using the
reader-independent metrics of contrast difference, mean lag one coherence (LOC), and gCNR were 0.86 and 1,
1 and 0.89, and 1 and 1, respectively. Results demonstrate that fundamental SLSC imaging and gCNR (or LOC if
no coherence image or background region of interest is introduced) have the greatest potential to impact clinical
decisions and improve the diagnostic certainty of breast mass contents. These observations are additionally
anticipated to extend to masses in other organs.

Index Terms— Breast imaging, coherence-based beamforming, harmonic imaging, ultrasound.

I. INTRODUCTION

ULTRASOUND imaging is a safe, portable, low-cost,
noninvasive imaging modality commonly employed in

multiple in vivo applications, including fetal imaging [1],
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kidney stone detection [2], gall bladder imaging [3], breast
imaging [4], and suspicious mass detection throughout the
body [5]. Although applications of ultrasound imaging con-
tinue to expand and advances in image quality are ever-
evolving, the persistent low-contrast of soft tissues, the
presence of acoustic clutter, and the similar appearance
of different mass types limit even greater usage of ultra-
sound imaging in biomedical applications [6], [7], [8],
[9], [10]. Multiple methods have been implemented to
decrease acoustic clutter and improve ultrasound image
quality, including harmonic imaging and coherence-based
beamforming.

Harmonic imaging is based on the principle of nonlinear
propagation of acoustic waves inside biological tissues.
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Highlights
• Fundamental and harmonic B-mode, SLSC, M-SLSC, r-SLSC, and R-SLSC imaging of breast masses and four

objective metrics to distinguish solid from fluid contents were comprehensively compared.

• Fundamental SLSC imaging generally has the best qualitative and quantitative performance with enhanced
performance over harmonic B-mode imaging when distinguishing complicated cysts from solid masses.

• As an objective metric for potential reader-independent mass content evaluation, gCNR generally provided the
greatest sensitivity and specificity, relative to LOC, contrast, and contrast difference.

The nonlinear distortion of transmitted waves leads to the
generation of ultrasound waves with frequencies that are
integer multiples of the transmitted (i.e., fundamental, f 0)
frequency [11]. Typically, resulting waves with 2 f 0 frequency
are utilized to form the harmonic images and the higher
harmonics are ignored because of the limited bandwidth of
the ultrasound transducer and the low signal-to-noise ratio
(SNR) of higher harmonics. When compared to fundamental
B-mode imaging, harmonic B-mode imaging improves organ
visualization by decreasing reverberant echoes, suppressing
side and grating lobes, and reducing acoustic clutter in the
images. In addition, the narrow beamwidth associated with the
harmonic signal improves the lateral resolution of harmonic
B-mode images relative to fundamental B-mode images
[12], [13].

Coherence-based beamforming (e.g., short lag spatial coher-
ence, or SLSC, imaging) has demonstrated remarkable
improvements in thyroid imaging [14], lesion detection [15],
endocardial border detection [16], [17], [18], fetal imaging
[19], [20], liver imaging [21], and breast imaging [22], [23],
[24]. SLSC imaging is implemented by computing the spatial
correlation between received signals at various element sep-
arations (or lags), then summing across values calculated at
these spatial lags to generate the final output image. Therefore,
whereas traditional B-mode imaging relies on the magnitude of
received signals, SLSC imaging relies on the spatial coherence
between signals received by different transducer elements in
the array.

Over the past decade, multiple variations of SLSC imaging
have been developed and tested for various applications.
Adaptation of SLSC to harmonic imaging has been shown to
improve SLSC images due to decreased reverbration clutter in
harmonic compared to fundamental signals [16], [25]. There-
fore, harmonic SLSC imaging has the potential to improve
contrast compared to fundamental SLSC images. To balance
the higher spatial resolution incorporated in higher spatial
lags with the improved contrast observed at lower spatial lags
[26], Nair et al. [27] applied a weighting scheme (known as
M-weighting) across different spatial lags prior to forming the
final coherence image. Robust principal component analysis
(RPCA) [28], [29] was additionally employed to decrease
noise by rejecting coherence outliers. The combination of
M-weighting with RPCA led to the development of the Robust
SLSC (R-SLSC) beamformer, which offers improved contrast-
to-noise ratio (CNR) and SNR when compared to SLSC
images [27]. R-SLSC imaging can also be implemented
without M-weighting, which we introduce and define as r-
SLSC herein.

Our group recently introduced the first known demonstra-
tions of coherence-based beamforming to distinguish solid
from fluid breast masses [22], [23], [24]. In addition, Wiacek
et al. [30] demonstrated that including R-SLSC images along-
side B-mode images would have decreased the percentage
of unnecessary biopsies from 43.3% to 13.3%, due to the
improved diagnostic certainty of breast ultrasound images
when assessed by five board-certified radiologists in a random-
ized reader study. Sharma et al. [31] and Kokumo et al. [32]
combined harmonic imaging with R-SLSC imaging and SLSC
imaging, respectively, to assess additional potential benefits
of these combinations. Despite these advances, variations
among radiologists were observed when diagnosing breast
masses during the reader study noted above, highlighting the
importance of reader-independent metrics to distinguish solid
from fluid masses [23], [30], [33]. Contrast difference [22],
[30], lag one coherence (LOC) [33], [34], coherence length
[33], and generalized contrast to noise ratio (gCNR) [31],
[35] were previously introduced and investigated as objective
metrics for reader-independent distinction of solid and fluid
breast masses.

Although multiple imaging modes and metrics have the
potential to differentiate solid from fluid breast masses, these
various demonstrations were performed with independent sets
of breast data, which limit direct comparisons across studies
[22], [23], [30], [31], [32]. A systematic, comparative investi-
gation applied to a single dataset is required to determine the
relative benefits and limitations. Therefore, the purpose of this
article is to systematically compare the performance of eight
coherence imaging modes relative to traditional fundamental
and harmonic B-mode images to determine the best option
to distinguish solid from fluid masses in breast ultrasound
images from the same dataset. Extending our previous work,
in which we compared fundamental and harmonic R-SLSC
images of 18 masses and introduced the potential of gCNR as
a reader-independent breast content classification metric [31],
this article includes 40 masses and independently demonstrates
the effects of harmonic imaging, M-weighting, and RPCA
on coherence-based images to determine the most suitable
beamformer to distinguish solid from fluid masses. In addition,
previous work [30], [31], [33] independently identified contrast
difference, LOC, and gCNR as the most promising metrics
for the clinical task of distinguishing solid from fluid breast
masses. These metrics are compared herein to determine the
most suitable objective, reader-independent metric for clinical
deployment.

The remainder of this article is organized as follows.
Section II describes our methods and materials, includ-
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TABLE I
PATHOLOGY RESULTS, CLASSIFICATION, AND AXIAL DISTANCE BETWEEN THE CENTER OF THE MASS ROI AND THE

ULTRASOUND PROBE FOR THE 40 MASSES INVESTIGATED

ing details about our patient population, data acquisition,
beamforming techniques, and quantitative evaluation methods.
Section III shares our results and their relevance to our study
goals. Section IV discusses key insights based on our results,
and Section V summarizes our major conclusions.

II. METHODS AND MATERIALS

A. Study Population
Thirty-one patients scheduled for ultrasound-guided aspi-

ration or core needle biopsy of at least one breast mass
were enrolled in our study. Patients ranged from 24 to 91 y
in age, with a mean age of 55 y. Raw ultrasound radio-
frequency (RF) channel data were acquired from these patients
after receiving informed consent and approval from the Johns
Hopkins Medicine Institutional Review Board (Protocol No.
IRB00127110). Forty in vivo hypoechoic masses, including
four incidentally noted simple cysts, were scanned and pro-
cessed offline to form matched fundamental and harmonic
B-mode and coherence images.

Simple cysts were classified as cysts without aspiration
or biopsy because of clinical B-mode ultrasound features
matching a simple cyst. Aspiration was performed on masses
that appeared fluid in nature, and the masses that were

successfully aspirated were designated as fluid masses. For the
remaining masses, the pathology results of each core-needle
biopsy served as the ground truth for mass classification.

The 40 masses total consisted of seven fluid-filled (four
simple and three complicated cysts), five complex solid and
fluid (hereafter referred to as mixed), and 28 solid (22 benign
and 6 malignant) masses. Table I provides the pathology
results and corresponding mass classification (i.e., simple
cyst, complicated cyst, mixed solid and fluid, benign solid,
malignant solid) of these 40 masses. The depth of each mass
reported in Table I corresponds to the axial distance from the
center of the mass to the surface of the ultrasound probe.

B. Data Acquisition

An Alpinion ECUBE12R research ultrasound scanner
(Alpinion, Seoul, South Korea) connected to a 128-element
L8-17 probe with 64 receive elements, a center frequency
of 12.5 MHz, and a sampling frequency of 40 MHz was
employed to acquire raw ultrasound RF channel data with
256 receive scan lines per image. Each mass was insonified
with a pulse-inversion harmonic imaging sequence, transmitted
with a center frequency of 6 MHz. The focus of transmit-
ted beams was located within 0–1 cm of the mass center,
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as selected by one of our board-certified radiologist coauthors
(specialized in breast radiology) performing the scan (E.O.,
K.M., or E.A.). Fundamental channel data were formed with
echoes received from the normal pulse, and harmonic channel
data were formed with summed echoes from the normal
and inverted pulses. The acquired fundamental and harmonic
channel data were delayed offline to account for time-of-arrival
differences prior to implementing additional beamforming then
post-processing steps to display or evaluate the final results.

C. Image Formation
1) B-Mode Images: Matched fundamental and harmonic

B-mode images were created by applying a conventional
delay-and-sum (DAS) beamformer to the fundamental and
harmonic channel data, respectively, as follows:

SDAS =

N∑
i=1

si (n) (1)

where si (n) is the time-delayed, zero-mean signal received
at element i from depth n, and N is the number of receive
elements in the ultrasound probe. Equation (1) was repeated
for each scan line, SDAS, to form a single beamformed image.
Each DAS-beamformed image was then envelope detected,
normalized to its maximum value, and log compressed prior
to being displayed as a B-mode image with 60-dB dynamic
range.

2) SLSC Images: SLSC-based beamformers rely on the spa-
tial coherence of delayed backscattered echoes received across
the transducer aperture to form coherence-based images.
Spatial coherence, R̂, was calculated by normalizing the
spatial covariance of time-delayed signals recorded by equally
spaced elements (i.e., spatial lags) by the variance of each
time-delayed signal [14]

R̂(m) =
1

N − m

N−m∑
i=1

∑n2
n=n1

si (n)si+m(n)√∑n2
n=n1

s2
i (n)

∑n2
n=n1

s2
i+m(n)

(2)

where m is the spatial lag (expressed as the number of element
separations), and the axial correlation kernel, k, spans depths
n1 to n2, centered on depth n. The value of the SLSC pixel was
generated by summing the resulting spatial coherence function
up to a specific short-lag value, M

Rsl =

∫ M

1
R̂(m)dm ≈

M∑
m=1

R̂[m]. (3)

To create the final SLSC image, (2) and (3) were repeated
in succession for each lateral and axial SLSC pixel position
and all negative SLSC pixels were set to zero (based on
the rationale that these small negative pixels adversely affect
image quality and contrast measurements [27]).

3) M-SLSC Images: M-weighted SLSC (M-SLSC) images
[27] were formed by applying a linearly decreasing weighting
as a function of M to the SLSC images to incorporate higher
lag values in the final images. At these higher lag values,
the spatial resolution is generally improved, but the spatial
coherence across the entire image (containing primarily tissue)

generally decreases, which decreases the contrast of masses in
the image. Therefore, the applied weights enable the inclusion
of important boundary information provided by increased
spatial resolution, without causing the resultant decrease in
contrast typically observed when SLSC images are formed at
higher spatial lags [26]. The M-SLSC pixel value was obtained
as follows:

Rmsl =

M∑
m=1

(
1 −

m − 1
M

)
Rsl[m] (4)

which corresponds to the linearly decreasing weightings of 1
and (1/M) at lags 1 and M , respectively. Negative pixels were
set to zero prior to applying this weighting.

4) r-SLSC Images: RPCA was previously implemented to
denoise SLSC images by taking advantage of the sparse,
high spatial frequency information present at higher lags.
This step was previously coupled with M-weighting [27], and
we evaluate its impact independently by vectorizing each lag
image (i.e., the SLSC images generated at each lag value up
to lag value M) and stacking the vectors to create lag as the
second dimension of a 2-D matrix. RPCA was implemented
on this vectorized matrix, D, using the augmented Lagrangian
multiplier (ALM) method [29], which solves for the minimum
of the Lagrangian L(A, E, Y, µ) of the problem defined by

L(A, E, Y, µ) = ∥A∥∗ + λ∥E∥1 + ⟨Y, D − A − E⟩

+
µ

2
∥D − A − E∥

2
F (5)

where A is the desired low-rank ground truth matrix, E is a
sparse error matrix, Y is a matrix of Lagrange multipliers,
λ is the sparsity penalty parameter that can be varied to
smooth tissue texture, µ is a positive scalar representing a
reconstruction error equal to 1.25/∥D∥2 (as recommended in
[29]), ∥·∥∗ is the nuclear norm, ∥·∥1 is the L1 norm, ∥·∥F
is the Frobenius norm, and ∥·∥2 is the dual norm of ∥·∥∗.
After implementing RPCA (using the MATLAB inexact ALM
solver based on [29] and hosted at [36]), the resulting denoised
matrix A was summed across the lag dimension, vectorization
was reversed, and the negative r-SLSC pixels were set to
zero to yield the r-SLSC image, consisting of denoised pixel
values, Rrsl.

5) R-SLSC Images: R-SLSC images [27] combine the
RPCA step with the M-weighting step, resulting in images
formed by applying the following equation to the r-SLSC
pixel, Rrsl, as follows:

RRsl =

M∑
m=1

(
1 −

m − 1
M

)
Rrsl[m]. (6)

6) Coherence Parameter Selection and Post-Processing:
Coherence images typically include the short-lag region rang-
ing between 1% and 30% of the receive aperture width [14].
To balance the trade-off between poor resolution and contrast
at lower and higher M values, respectively [14], [26], funda-
mental and harmonic SLSC images were formed with M = 7,
which corresponds to 10% of the receive aperture. A similar
fixed approach to assigning M values in r-SLSC, R-SLSC,
and M-SLSC images was implemented, which differs from
the dynamic approach previously implemented to match tissue
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SNR (with M values ranging 15–30) for three reasons. First,
tissue SNR does not provide information about mass contents,
which is the focus of this article. Second, R-SLSC contrast
(which does provide information about mass contents) was
previously shown to be stable at higher lag values (e.g., ≥20)
[22]. Third, the maximum possible M-SLSC, r-SLSC, and
R-SLSC resolution exists when incorporating spatial lags as
large as 30% of the receive aperture [22], [26]. Therefore, the
fundamental and harmonic M-SLSC, r-SLSC, and R-SLSC
images herein were formed with M = 20, which corresponds
to 30% of the receive aperture width.

In simulations, Hyun et al. [37] and Bell et al. [26] showed
that slightly increasing the kernel length beyond the typical
value of one wavelength causes a linear increase in contrast
and a minimal decrease in the axial resolution. Therefore,
the coherence images were analyzed with a kernel length of
five samples which corresponds to 1.56 times the wavelength
associated with the center frequency of the ultrasound probe
and is the same value used in our previous studies [22], [30].
In the r-SLSC and R-SLSC images, the sparsity parameter was
λ = 1.

Each coherence image was normalized to its maximum
value. To enhance the distinction between solid and fluid
masses, the normalized coherence images were log com-
pressed prior to being displayed with 60 dB dynamic range,
as implemented in previous work [14], [22], [27]. This log
compression enabled direct comparison with metrics reported
in dB, while also presenting images with similar tissue bright-
ness to B-mode images and simplifying the scaling process
that would otherwise be necessary to achieve similar results
with a linear display method [18], [21].

D. Quantitative Evaluations
1) ROI Selection: Regions of interest (ROIs) within the

mass and tissue were manually selected from fundamental
B-mode images. First, an elliptical area within the mass was
chosen as the mass ROI. Then, an elliptical region of the same
size and at the same depth as the mass ROI, with its nearest
edge located at a lateral distance of 0.9–8.2 mm from the
nearest edge of the mass ROI, was chosen as the tissue ROI.
In images with a mass that spanned the majority of the lateral
field of view (nine masses total), the tissue ROI was selected
from a tissue region at a depth <5 mm from the nearest
edge of the mass ROI. For each mass, the same mass and
tissue ROIs were implemented when calculating the following
performance metrics for each beamforming method described
in Section II-C.

2) Contrast and Contrast Difference: As contrast is an
accepted and widely used metric in radiology [35], [38], [39],
the contrast of each mass relative to its background tissue was
computed to compare image quality and determine the ability
of each beamforming technique to locate the mass. Contrast
was measured as follows:

Contrast = 20 log10

(
µmass

µtissue

)
(7)

where µmass and µtissue are the mean beamformed signals
(i.e., after envelope-detection for B-mode images, prior to
normalization and log compression for B-mode and coherence

images, with no dynamic range alterations that could affect
contrast) within the mass and tissue ROIs, respectively. Based
on previous reports [22], [30], contrast is expected to be
higher in coherence-based images of fluid-filled masses when
compared to amplitude-based images, whereas in solid masses,
contrast is expected to be lower in coherence-based images
when compared to amplitude-based images. Therefore, the dif-
ference between the contrast in B-mode and coherence images
(i.e., contrast difference) is a possible metric to distinguish
solid from fluid masses [22]

Contrast Difference = ContrastB-mode − ContrastCoherence.

(8)

The contrast difference of a fundamental coherence image
was calculated by subtracting the contrast of the fundamen-
tal coherence image from the contrast of the corresponding
fundamental B-mode image created from the same raw data.
Similarly, the contrast difference of a harmonic coherence
image was calculated by subtracting the contrast of the
harmonic coherence image from that of the corresponding
harmonic B-mode image created from the same raw data.
As demonstrated in previous work [22], a positive contrast
difference indicates that the mass is fluid, whereas a negative
contrast difference indicates that the mass is solid.

3) Lag One Coherence: The mean coherence value within
the mass ROI of a SLSC image created with lag M = 1 is
referred to as the mean LOC [33], where LOC is empirically
determined by evaluating (2) at M = 1 [34]

LOC =

〈
1

N − 1

N−1∑
i=1

∑n2
n=n1

si [n]si+m[n]√∑n2
n=n1

s2
i [n]

∑n2
n=n1

s2
i+m[n]

〉
.

(9)

The mean LOC was previously reported to achieve a sensitivity
of 1 and a specificity of 1 when used as an objective metric to
distinguish solid from fluid masses [33]. Therefore, the mean
LOC inside the mass ROI of each fundamental and harmonic
B-mode and coherence image was computed, using the same
kernel length described in Section II-C6.

4) gCNR: We recently proposed gCNR as an alternative
objective metric to distinguish solid from fluid masses [31].
Traditional image quality metrics like contrast, CNR, and SNR
are unbounded and sensitive to image manipulation techniques
like thresholding and dynamic range adjustments. Contrary
to these traditional image quality metrics, the gCNR is a
bounded metric resistant to dynamic range alterations and
can be applied to multiple types of images, units, and scales
[35], [40], [41], [42]. The gCNR of breast masses relative to
surrounding tissue is measured as follows:

gCNR = 1 −

N∑
j=1

min{hmass(x j ), htissue(x j )} (10)

where N bins centered at {x1, x2, . . . , xN } were defined to
derive histograms hmass and htissue of the beamformed signals
(after envelope-detection for B-mode images; prior to nor-
malization and log compression for B-mode and coherence
images) of signals within the mass and the surrounding breast
tissue ROIs, respectively, and j is the index of the bin.
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Fig. 1. Fundamental and harmonic B-mode, SLSC, M-SLSC, r-SLSC, and R-SLSC images of a simple cyst (i.e., mass number 1 in Table I). Images
are displayed with 60-dB dynamic range.

Although a fixed or data-driven approach to selectingN can be
used to compute the histograms [42], [43], [44], we relied on a
previously reported approach [45] (validated in the Appendix
of [42]) that uses the data-based method described by Wand
[46] (resulting in 19 ≤ N ≤ 304).

5) Statistical Analysis: Sensitivity and specificity are two
common statistical metrics to evaluate and compare the per-
formance of a classifier. The sensitivity and specificity of fluid
mass detection were measured as the fraction of fluid masses
correctly identified as fluid and the fraction of solid masses
correctly identified as solid by the given metric, respectively,

Sensitivity =
TP

TP + FN
(11)

Specificity =
TN

TN + FP
(12)

where the definitions of true positive (TP), false negative
(FN), true negative (TN), and false positive (FP) are based on
previously reported mean LOC, contrast difference, and gCNR
thresholds of 0.28 [33], 0 [30], and 0.73 [31], respectively,
when evaluating each metric independently. More specifically,
TP or FN was defined as a fluid mass with mean LOC
below or above 0.28, respectively, contrast difference above
or below 0, respectively, or gCNR above or below 0.73,
respectively. Similarly, TN or FP was defined as a solid
mass with mean LOC above or below 0.28, respectively,
contrast difference below or above 0, respectively, or gCNR
below or above 0.73, respectively. To avoid bias, we refrained
from re-calculating thresholds for each metric, as the reported
thresholds were previously calculated or determined using
a different set of in vivo breast images to those presented
herein. The LOC threshold was determined in [33] by plotting
a receiver operating characteristic (ROC) curve for LOC
values between −1 and 1, then finding the optimal threshold.
The contrast difference threshold was chosen as 0 based on
previous demonstrations [30] that a positive and negative
contrast difference indicates that the mass is fluid and solid,

respectively. The gCNR threshold was determined in [31] by
applying a linear support vector machine to gCNR values of
fundamental and harmonic R-SLSC images of solid and fluid
breast masses.

6) Signal Amplitude Analysis: To assess the amplitude
of harmonic relative to fundamental signals, the analysis
described in [10] was implemented for each breast mass. In
particular, regional variations in fundamental and harmonic
images were displayed as contour maps after applying a
low-pass filter to envelope-detected images (i.e., by convolving
the envelope-detected RF data with a rectangular kernel of
78 × 15 pixels, which corresponds to 1.5 × 1.5 mm in
the B-mode image). The pixel-wise ratio between the filtered
fundamental and harmonic beamformed B-mode signals (after
envelope-detection and prior to normalization and log com-
pression) was calculated and discretized into 3 dB intervals
ranging from −6 to 21 dB to display the contour map. The
mean signal reduction within each contour map was also
calculated.

III. RESULTS

A. Example Amplitude and Coherence Images

Fig. 1 shows fundamental and harmonic B-mode and
coherence-based images of an example simple cystic mass.
The mass can be distinguished from the background tissue in
the ten images. When compared to the B-mode fundamental
image, the B-mode harmonic image shows better boundary
delineation, reduced acoustic clutter, and improved contrast.
However, a decreased contrast in harmonic images (when com-
pared to corresponding fundamental images) is not observed
for the associated coherence-based images. When compared
to the harmonic coherence-based images, the corresponding
fundamental coherence-based images show better boundary
delineation and improved contrast. In addition, SLSC funda-
mental and harmonic images have lower coherence inside the
mass when compared to corresponding M-SLSC, r-SLSC, and
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Fig. 2. Fundamental and harmonic B-mode, SLSC, M-SLSC, r-SLSC, and R-SLSC images of a complicated cyst (i.e., mass number 6 in Table I).
Images are displayed with 60-dB dynamic range.

Fig. 3. Fundamental and harmonic B-mode, SLSC, M-SLSC, r-SLSC, and R-SLSC images of a benign solid mass (i.e., a fibroadenoma with
adenosis and cyst wall; mass number 16 in Table I). Images are displayed with 60-dB dynamic range.

R-SLSC images, demonstrating M-weighting and RPCA are
responsible for the decreased visibility of this simple cyst.

Fig. 2 shows example images of a complicated cyst, which
is generally distinguishable from the tissue background in fun-
damental and harmonic B-mode and coherence-based images.
Qualitatively, the harmonic B-mode image provides better
boundary delineation and improved contrast when compared to
the fundamental B-mode image. However, fundamental SLSC,
M-SLSC, r-SLSC, and R-SLSC qualitatively have better con-
trast when compared to matched harmonic images. In addition,
the mass is more clearly distinguishable in fundamental and
harmonic SLSC images when compared to fundamental and
harmonic M-SLSC, r-SLSC, and R-SLSC images.

Fig. 3 shows example images of a benign hypoechoic solid
breast mass (i.e., a fibroadenoma with adenosis and cyst
wall). Being hypoechoic with solid contents, the mass is
visible in fundamental and harmonic B-mode images with high

spatial coherence (similar to that of the surrounding tissue).
Therefore, in the fundamental and harmonic coherence-based
images, the mass blends with the background tissue and is less
discernible when compared to the B-mode images.

Fig. 4 shows example images of a malignant solid mass
(i.e., an invasive ductal carcinoma). Similar to Fig. 3, the
mass is visible as a hypoechoic structure in fundamental
and harmonic B-mode images and appears to be isocoherent
with the background tissue in the coherence images. As a
result, this solid mass is not clearly distinguishable from the
surrounding tissue in fundamental and harmonic coherence
images. In fundamental and harmonic SLSC images, dark
regions are visible at the boundary of the mass (and in other
areas of the tissue). These dark regions, representing areas
of low spatial coherence and previously identified as artifacts
[32], are more prominent in the fundamental coherence images
when compared to matched harmonic coherence images. These
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Fig. 4. Fundamental and harmonic B-mode, SLSC, M-SLSC, r-SLSC, and R-SLSC images of a malignant solid mass (i.e., an invasive ductal
carcinoma; mass number 36 in Table I). Images are displayed with 60-dB dynamic range.

dark-region artifacts are not unique to breast images, and they
typically appear in coherence images when bright, coherent
regions exist laterally to a less coherent region [18].

B. Example Spatial Coherence Functions
Fig. 5 shows the mean fundamental and harmonic spatial

coherence functions [i.e., calculated with (2)], displayed within
the short-lag region of selected ROIs (described in Section
II-D1) within the mass and tissue regions of the example
masses shown in Figs. 1–4. The spatial coherence within the
simple and complicated cysts rapidly decreases as a function
of spatial lag when compared to that of tissue in both fun-
damental and harmonic images. In the benign and malignant
solid masses, the decrease in coherence within the mass as
a function of spatial lag is similar to that of the tissue in
both fundamental and harmonic images. These differences in
coherence functions are responsible for cystic masses appear-
ing darker than the background in coherence-based images
and for solid masses appearing as isocoherent (i.e., blending
with the tissue background in coherence-based images). When
compared to fundamental coherence functions, the harmonic
coherence functions in Fig. 5 generally have increased spatial
coherence in both the mass and surrounding tissue. This
increase in harmonic spatial coherence when compared to
fundamental spatial coherence is more prominent inside the
mass rather than within tissue in the simple and complicated
cysts examples, particularly for lower spatial lags (i.e., M <

5). The observed increase in harmonic spatial coherence inside
the simple and complicated cysts is responsible for the lower
qualitative contrast of harmonic coherence-based images when
compared to fundamental coherence-based images.

C. Objective Assessment Metrics
Fig. 6 shows violin plots of the LOC of the 40 breast

masses imaged in this study. The white dot in each violin
plot indicates the mean LOC inside the mass. The dashed

Fig. 5. Mean coherence functions inside ROIs within masses and sur-
rounding tissue for fundamental and harmonic images of the (a) simple
cyst shown in Fig. 1, (b) complicated cyst shown in Fig. 2, (c) benign
solid mass shown in Fig. 3, and (d) malignant solid mass shown in
Fig. 4.

line indicates the threshold reported in [33] to distinguish
fluid from solid masses. The mean LOC of cystic masses is
generally lower than that of solid masses and is also below
the predetermined threshold indicated by the dashed line. The
mean LOC was lower with fundamental compared to harmonic
data in 6 out of 7 cystic masses. The mean LOC of mixed
masses spanned both sides of the threshold and was lower
in fundamental than harmonic images in each case. The mean
LOC in fundamental and harmonic images of the solid masses
was above the predetermined threshold in most cases.

Table II reports the LOC sensitivity and specificity of fluid
mass detection based on the indicated threshold as 1 and 0.89,
respectively, in fundamental data and 1 and 0.86, respectively,
in harmonic data. Mixed masses were not considered when
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Fig. 6. Violin plots of the distribution of LOC values of all pixels within each region of interest of each breast mass, labeled by the mass number
reported in Table I. For each mass number, a pair of results from fundamental (left) and harmonic (right) data is reported. The white dot within
each violin plot represents the mean LOC of the mass. The dashed horizontal line across the entire plot depicts the previously reported threshold
(i.e., 0.28) to distinguish fluid from solid masses [33].

TABLE II
SENSITIVITY AND SPECIFICITY OF MEAN LOC, CONTRAST DIFFERENCE, AND GCNR TO IDENTIFY FLUID MASS CONTENTS IN FUNDAMENTAL AND

HARMONIC DATA AND IN FUNDAMENTAL AND HARMONIC SLSC, M-SLSC, R-SLSC, AND R-SLSC IMAGES. MIXED SOLID AND

FLUID MASSES WERE NOT CONSIDERED WHEN CALCULATING SENSITIVITY AND SPECIFICITY

calculating the sensitivity and specificity as they generally
contain both solid and fluid content. Among the 28 solid
masses, the four masses incorrectly identified as containing
fluid content were the shallowest of the masses (i.e., mass
numbers 15, 29, 34, and 38 in Table I), highlighting one
limitation of LOC as a metric to identify superficial solid
masses (i.e., <5 mm from the transducer).

Fig. 7(a) shows box plots summarizing contrast values for
the five mass categories and ten imaging modes included in
our study. The contrast was better (i.e., more negative) in
simple cysts when compared to the fundamental and harmonic
B-mode images of the other masses. Otherwise, the contrast
of fundamental and harmonic B-mode images of complicated
cysts, mixed solid and fluid masses, benign solid masses,
and malignant solid masses were similar (i.e., range from
−22 to −10 dB). Turning attention to the eight coherence
imaging modes, the contrast of fundamental and harmonic
coherence images range from −50 to −8 dB for simple

and complicated cysts, with low negative or positive values
(i.e., >−7 dB) for benign and malignant solid masses. For
simple and complicated cysts, the contrast in fundamen-
tal SLSC, M-SLSC, r-SLSC, and R-SLSC images is better
(i.e., more negative) than their harmonic counterparts. For
mixed and solid masses, the contrast is similar in fundamental
and harmonic SLSC, M-SLSC, r-SLSC, and R-SLSC images.

Fig. 7(b) shows the contrast difference [see (8)] measured
for the 40 massess (grouped by mass category and stratified
by fundamental and harmonic coherence imaging mode). The
contrast difference is negative for benign and malignant solid
masses and for most mixed masses, which agrees with qualita-
tive observations that the contrast of hypoechoic masses with
solid content is better with B-mode imaging when compared
to coherence imaging (e.g., Figs. 3 and 4). Conversely, the
contrast difference is consistently positive for the hypoechoic
complicated cysts. This contrast difference distinction between
solid and fluid masses generally persists for fundamental
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Fig. 7. Box plots showing the distributions of objective metrics for the 40 breast masses reported in Table I, stratified by the five mass classifications
reported in Table I. (a) Contrast in fundamental and harmonic B-mode, SLSC, M-SLSC, r-SLSC, and R-SLSC images. (b) Contrast differences
between fundamental or harmonic B-mode images and corresponding SLSC, M-SLSC, r-SLSC, or R-SLSC images. (c) gCNR in fundamental and
harmonic B-mode, SLSC, M-SLSC, r-SLSC, and R-SLSC images. The horizontal line within each box and the top-to-bottom box edges represent the
median and interquartile range, respectively, per imaging mode per classification stratification. The vertical lines extending from each box represent
the minimum and maximum values per imaging mode per classification stratification (excluding outliers, defined as values exceeding 1.5 times the
interquartile range, which are represented as the circles). The dotted horizontal line extending across the plots in (b) and (c) shows the previously
reported thresholds to distinguish fluid from solid masses (i.e., 0-dB contrast difference [30] and 0.73 gCNR [31], respectively).
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Fig. 8. Box plots showing the gCNR distributions of the simple cysts,
complicated cysts, and solid (benign and malignant) masses included in
Fig. 7(c), as a function of imaging mode (i.e., fundamental or harmonic
B-mode, SLSC, M-SLSC, r-SLSC, or R-SLSC). The dotted horizontal
line shows the previously determined 0.73 gCNR threshold [31].

coherence images of simple cysts, for which the contrast dif-
ference is mostly positive. Otherwise, the contrast difference is
mostly negative for the harmonic coherence images of simple
cysts. The sensitivity and specificity of contrast difference to
distinguish fluid from solid masses is reported in Table II. Of
the eight coherence modes, only fundamental R-SLSC imaging
yields a sensitivity and specificity of 1. Mixed masses were
not considered for this analysis.

Fig. 7(c) shows box plots of the alternative gCNR met-
ric, which is possible to deploy independently on coherence
images alone (unlike contrast difference). This metric is
reported for the same 40 masses stratified by the same mass
categories and imaging modes as that in Fig. 7(a). In B-mode
images, gCNR is generally higher for simple cysts (median of
0.90 and 0.93 in fundamental and harmonic images, respec-
tively) when compared to the remaining mass types. Minimal
variations in the range of gCNR values are also observed
between fundamental and harmonic B-mode images for the
same mass types, which is particularly true for complicated
cysts. However, in the coherence images, gCNR is generally
higher for simple and complicated cysts and lower for benign
and malignant solid masses. Fundamental SLSC imaging best
provides this distinction when considering the wider range
of gCNR values (including outliers) across both benign and
malignant solid masses obtained with other coherence imaging
modes. To further demonstrate this optimal gCNR distinction
provided by fundamental SLSC imaging, Fig. 8 consolidates
the information in Fig. 7(c) to more directly compare the
gCNR range of solid masses (benign and malignant) against
the gCNR ranges of the fluid masses, as a function of imaging
mode (with mixed masses excluded).

As reported in Table II, the sensitivity and specificity of
gCNR to provide an objective, reader-independent metric
to distinguish solid from fluid masses (with the predefined
threshold of 0.73 [31]) is 1 and 1, respectively, for six of
the eight coherence imaging modes (excluding mixed masses).
This result is supported by the stark differences in gCNR
values between fluid and solid masses observed in Figs. 7(c)
and 8. For the remaining two coherence imaging modes
(i.e., harmonic M-SLSC and R-SLSC imaging), although
gCNR sensitivity remained as 1, gCNR specificity was reduced
to 0.96, as reported in Table II, due to an outlier benign solid

Fig. 9. Contour plot of signal reductions in the harmonic relative to
fundamental signals associated with the simple cyst images shown in
Fig. 1. The white outline delineates the observed cyst boundary.

mass (i.e., mass number 33 in Table I). However, as observed
in Figs. 7(c) and 8, a threshold that is determined indepen-
dently for each coherence imaging mode will result in a
gCNR specificity of 1 for the eight modes while maintaining
a sensitivity of 1.

D. Comparison of Fundamental and Harmonic Signal
Amplitudes

Fig. 9 shows a contour plot of the ratio of harmonic to
fundamental signals associated with the example simple cyst
shown in Fig. 1. There are regional harmonic amplitude signal
reductions (e.g., greater reduction near the transducer surface
and within the mass), with a mean reduction of 9.5 dB across
the entire image. Across the 40 breast masses included in our
study, the mean signal in harmonic images was 7.6–13 dB
lower than that of fundamental images (mean ± one standard
deviation reductions of 10.3 ± 1.4 dB), which is consistent
with previous reports [10], [47]. In addition, there is qual-
itatively less acoustic clutter (e.g., Fig. 1) and quantitatively
improved (i.e., more negative) contrast with harmonic B-mode
images relative to fundamental B-mode images, particularly
for complicated cysts, as reported in Fig. 7(a). These results
collectively provide evidence that the harmonic imaging imple-
mentation utilized in our study produces amplitude results that
are consistent with existing reports achieved with multiple
ultrasound scanners [47], [48], [49].

IV. DISCUSSION

This article is the first to demonstrate that multiple modes
of fundamental and harmonic coherence-based images can
successfully distinguish solid from fluid masses (relative to
traditional fundamental and harmonic B-mode images), with
two key insights. First, out of the eight coherence modes inves-
tigated, fundamental SLSC imaging generally offers the best
qualitative and quantitative performance for the proposed task,
particularly providing enhanced performance over the widely
accepted harmonic B-mode imaging approach for complicated
cysts (which represent a clinically problematic category of
fluid-filled masses [50]). Therefore, previous indications that
unnecessary procedures for fluid breast masses (e.g., com-
plicated cysts) can be reduced with R-SLSC imaging [30]
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are now supported by new evidence pointing to fundamental
SLSC imaging as the best option to maximize this clinical
impact. Second, to address known challenges with associated
reader variability [23], [30], [33], our comparison of promising
objective metrics (i.e., LOC, contrast, contrast difference, and
gCNR) highlight gCNR as the most optimal choice. This
insight is based on quantitative comparisons of the same linear
(rather than log-compressed) data, with no additional image
manipulation implemented or required.

Although harmonic B-mode images are known to decrease
clutter and improve contrast when compared to fundamental
B-mode images [11] [also supported by Figs. 1, 2, and 7(a)],
the coherence functions in Fig. 5 reveal increased coherence
in fluid masses in harmonic images when compared to funda-
mental images. This increased coherence likely occurs because
of the reduced incoherent clutter inside fluid masses (see
Fig. 9), resulting in reduced coherence differences between
fluid masses and surrounding tissue, leading to worse con-
trast in harmonic relative to fundamental coherence images,
as observed qualitatively (Figs. 1 and 2) and quantitatively
[Figs. 6 and 7(a)]. Images of simple and complicated cysts
(Figs. 1 and 2, respectively) demonstrate improved mass
detection and boundary delineation in fundamental SLSC,
M-SLSC, r-SLSC, and R-SLSC images when compared to
their harmonic image counterparts. Similarly, the lower LOC
(Fig. 6) and improved contrast [Fig. 7(a)] in fundamental
coherence images of fluid masses contributes to better discrim-
ination of these masses from solid masses (when compared to
harmonic coherence images). Therefore, we provide new and
foundational empirical evidence to demonstrate both qualita-
tively and quantitatively that fundamental coherence imaging
is better than harmonic coherence imaging when detecting
fluid mass contents.

The conclusion that fluid masses have lower spatial coher-
ence with fundamental relative to harmonic SLSC imaging is
quantitatively supported by Figs. 5–7(a) and by the following
additional evidence. First, similarly lower fundamental relative
to harmonic spatial coherence functions were achieved in
earlier reports (see Fig. 5 in [25]). Second, we achieved
expected harmonic imaging benefits (Section III-D) and asso-
ciated signal amplitude reductions (Fig. 9), indicating that
our conclusions are not limited to our specific ultrasound
scanner. Third, given that nonlinear acoustic propagation is
underdeveloped in the near-field region of the transducer [51],
with additional consideration that the depth of a breast mass
(e.g., 1–2 cm) is generally less than that of a fetus or liver,
the positive effects of harmonic SLSC imaging compared
to fundamental SLSC imaging seem to be more prominent
in fetal [19], [52] and liver [25] imaging relative to breast
imaging. However, the contrast gains with in vivo harmonic
SLSC liver imaging were marginal (e.g., 0.1 dB increase from
8.9 to 9 dB) or worse (e.g., 2 dB mean decrease from 11.08 dB
to 9.18), when compared to corresponding fundamental SLSC
images [21]. This combined evidence supports the superiority
of fundamental SLSC imaging (relative to harmonic amplitude
and coherence imaging) for the proposed clinical task.

From a clinical perspective, traditional B-mode imaging is
generally suitable for identifying simple cysts [4], [38], which
is supported by the gCNR results in Fig. 7(c). The negative

contrast differences measured from the harmonic coherence
images of simple cysts [Fig. 7(b)] may seem unexpected and
counterintuitive given that the identification of simple cysts is
not a clinical challenge. However, this observation is supported
by the generally better (i.e., quantitatively more negative) con-
trast of fundamental coherence images relative to fundamental
B-mode images and the generally worse (i.e., quantitatively
less negative) contrast of harmonic coherence-based images
when compared to harmonic B-mode images of simple cysts,
as shown quantitatively in Fig. 7(a) and qualitatively in Fig. 1.

As opposed to the easily identifiable anechoic simple cysts,
complicated cysts are typically hypoechoic in comparison,
causing increased difficulty for radiologists to confidently
distinguish complicated cysts from masses containing solid
content with B-mode images alone [38], [50], [53], [54].
As a result, complicated cysts are currently among the
most difficult to distinguish with fundamental or harmonic
B-mode imaging alone, necessitating additional procedures or
follow-up visits to diminish uncertainty [50]. This difficulty
and uncertainty is highlighted with the contrast measurements
in Fig. 7(a), given the contrast similarity among fundamental
and harmonic B-mode images of complicated cysts, mixed,
and solid masses. Evidence of this difficulty is also present
(albeit to a lesser extent) among the B-mode gCNR results in
Figs. 7(c) and 8. The improved contrast of complicated cysts
qualitatively (Fig. 2) and quantitatively [Fig. 7(a)] achieved
with fundamental and harmonic coherence imaging when
compared to corresponding B-mode images is supported by
the consistently positive contrast difference for complicated
cysts [Fig. 7(b)], whereas consistently negative contrast dif-
ferences were obtained for solid masses. Note that these
consistencies were achieved with direct quantitative contrast
comparison across image domains without implementing his-
togram matching recommendations [44], [55], which are not
always feasible to implement [56]. Aside from the generally
low sensitivity reported in Table II (with the exception of
fundamental R-SLSC imaging), one drawback of the contrast
difference metric is the requirement to beamform both B-mode
and coherence images, followed by the required selection of
both mass and background ROIs for analysis of both the
B-mode and coherence images (whereas LOC only requires
a coherence computation and a single ROI selection within an
indeterminate mass and gCNR only requires analysis of the
coherence image).

Given the limitations of contrast difference noted above and
in Table II, when considering the most suitable alternative
objective, reader-independent metric to discriminate mass con-
tents, there are multiple trade-offs between LOC and gCNR.
First, LOC provides the advantage of only requiring users to
identify the mass ROI. When using LOC and the associated
threshold that was previously determined [33], fluid masses
were correctly identified as fluid (i.e., specificity of 1). How-
ever, among the 28 solid masses imaged, four masses were
incorrectly identified as fluid in harmonic images and 3 out
of those 4 were incorrectly identified as fluid in fundamental
images. A deeper analysis revealed that these four masses were
present at a depth of <5 mm from the skin surface, which is
likely responsible for the lower LOC, as spatial coherence is
generally lower in the near-field region [14], [33]. Therefore,
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the specificity of LOC was 0.89 for fundamental and 0.86 for
harmonic imaging, as reported in Table II. It is promising
that the sensitivity and specificity of gCNR outperformed both
LOC applied to fundamental and harmonic data and contrast
difference applied to fundamental and harmonic SLSC images.
However, gCNR has the disadvantage over LOC of requiring
users to identify the background ROI along with the mass
ROI. Traditional or deep-learning-based image segmentation
methods [57] have the potential to assist with ROI selection
if a more automated approach is desired.

In addition to considering objective performance, the prac-
tical considerations of computational implementation fur-
ther dictate preferences among the proposed methods. For
example, RPCA is a computationally expensive step, and
the results in Figs. 6 and 7(a) indicate that the required
computational power and time to obtain r-SLSC and
R-SLSC images outweigh the qualitative benefits shown in
Figs. 1–4 (notwithstanding additional parameter optimization
that can potentially be implemented to further improve results
[22], [27]). Aside from the reduction of dark region artifacts,
it is otherwise not clear that M-weighting offers the originally
anticipated benefits, either when combined with RPCA or
when implemented independently of RPCA, based on the
generally similar performance between M-SLSC and R-SLSC
images in Fig. 7 (e.g., similar gCNR in complicated cysts,
similar contrast and gCNR with the remaining masses). These
observations provide additional support for fundamental SLSC
imaging as the preferred choice to distinguish solid from fluid
masses (among the eight coherence imaging modes compared
in this work). Therefore, our future clinical development of
this application will be dedicated to the fundamental SLSC
imaging approach, including novel deep learning [58] and real-
time [59] solutions.

One limitation of our study is the focus on fluid versus
solid mass distinction. However, there is some indication in
Fig. 7(c) that gCNR combined with fundamental or harmonic
M-SLSC or R-SLSC imaging has the potential to objectively
distinguish complicated cysts from mixed solid and fluid
masses, which is another clinically challenging task with
B-mode imaging alone [53]. In addition, we understand that
the ability to distinguish malignant from benign (solid or
mixed) breast masses will provide additional clinical value.
However, our coherence-based approach to address unneces-
sary biopsies of previously uncertain fluid breast mass contents
has the potential to redirect clinical resources and future engi-
neering efforts to improve the breast cancer detection process
overall. In addition, although breast masses were presented
and compared in this study, coherence-based imaging has the
potential to distinguish solid from fluid content in suspicious
masses found in other organs (e.g., liver [60], [61], pancreatic
[62], or testicular [63] masses). Therefore, the results of our
study are likely applicable to areas that extend well beyond
breast imaging.

V. CONCLUSION

This article presents a comparative, systematic study of
fundamental and harmonic coherence-based imaging methods
previously reported to distinguish fluid from solid breast mass

contents. Eight coherence imaging modes (i.e., fundamental
and harmonic SLSC, M-SLSC, r-SLSC, and R-SLSC imaging)
were investigated qualitatively and quantitatively with four
objective metrics (i.e., LOC, contrast, contrast difference, and
gCNR) to provide a comprehensive summary of the advan-
tages and limitations of these various metrics and imaging
modes, with fundamental and harmonic B-mode images as
the baseline. Results indicate that SLSC imaging is better
at distinguishing fluid masses than M-SLSC, r-SLSC, and
R-SLSC due to better contrast and fewer processing steps
required (which inevitably reduces computational complexity
and associated processing times). In addition, fundamental
SLSC imaging was determined to be more suitable than
harmonic SLSC imaging due to the lower coherence and better
contrast of fluid masses (i.e., simple and complicated cysts),
which is particularly true relative to solid or mixed masses.
As an objective metric of fluid versus solid mass contents
for potential for reader-independent mass evaluation, gCNR
generally provided the greatest sensitivity and specificity, rel-
ative to LOC, contrast, and contrast difference. These insights
establish a clinical path forward to improve the diagnostic
certainty of breast mass contents at the time of an initial
ultrasound exam.
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