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Abstract—Vector Doppler is well regarded as a poten-
tial way of deriving flow vectors to intuitively visualize
complex flow profiles, especially when it is implemented
at high frame rates. However, this technique’s per-
formance is known to suffer from aliasing artifacts.
There is a dire need to devise real-time dealiasing
solutions for vector Doppler. In this article, we present
a new methodological framework for achieving aliasing-
resistant flow vector estimation at real-time throughput
from precalculated Doppler frequencies. Our framework
comprises a series of compute kernels that have
synergized: 1) an extended least squares vector Doppler
(ELS-VD) algorithm; 2) single-instruction, multiple-thread
(SIMT) processing principles; and 3) implementation on
a graphical processing unit (GPU). Results show that
this new framework, when executed on an RTX-2080
GPU, can effectively generate aliasing-free flow vector
maps using high-frame-rate imaging datasets acquired
from multiple transmit–receive angle pairs in a carotid
phantom imaging scenario. Over the entire cardiac cycle,
the frame processing time for aliasing-resistant vector
estimation was measured to be less than 16 ms, which
corresponds to a minimum processing throughput of
62.5 frames/s. In a human femoral bifurcation imaging
trial with fast flow (150 cm/s), our framework was found
to be effective in resolving two-cycle aliasing artifacts at
a minimum throughput of 53 frames/s. The framework’s
processing throughput was generally in the real-time
range for practical combinations of ELS-VD algorithmic
parameters. Overall, this work represents the first demonstration of real-time, GPU-based aliasing-resistant vector
flow imaging using vector Doppler estimation principles.

Index Terms— Dealiasing, extended least squares, graphical processing unit (GPU), multiple-thread (SIMT)
computing, real time, single instruction, vector Doppler.
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I. INTRODUCTION

H IGH frame-rate vector flow imaging is an emerging
ultrasound technique for visualizing complex and

transient in vivo flow dynamics in real time [1]. One
recognized way of realizing this technique is to perform
multi-angle Doppler estimation, where a set of plane wave
pulses are transmitted sequentially from multiple steering
angles [2]. For such an approach, which is often referred
to as vector Doppler, the flow vector at each pixel position
in the imaging view is derived via a two-step process. First,
for each steering angle, pulsed Doppler estimation is carried
out on every pixel position by individually processing the
corresponding slow-time ensemble. Second, at each pixel
position, the Doppler frequency values derived from different
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Highlights
• This paper showcases a new GPU-powered, extended least-squares vector Doppler estimation framework that is

resilient against multicycle aliasing artifacts.

• Real-time throughput of at least 53 frames/s can be achieved in vitro and in vivo in imaging scenarios with two-cycle
Doppler aliasing and a wide velocity dynamic range from 0 to 1.6 m/s.

• With GPU computing, vector Doppler images without aliasing errors can be generated in real time to enable more
intuitive visualization of blood flow in clinical diagnostics.

steering angles are used as the input to a least-squares
fitting operation that computes the resulting flow vector from
triangulation arguments and multiple instances of the Doppler
equation [3].

Although performing vector flow imaging via Doppler
principles has demonstrated robust estimation performance [4],
it is known to be susceptible to Doppler aliasing errors,
where, for any steering angle at a given pixel position,
the Doppler frequency estimate may not correspond to the
actual value induced by blood flow. The root cause for
the emergence of Doppler aliasing is insufficient slow-time
sampling, in which the pulse repetition frequency (PRF)
used to acquire slow-time ensembles is lower than two
times the maximum Doppler frequency induced by blood
flow [5], thereby violating the Nyquist–Shannon sampling
theorem. If left unaddressed, aliased Doppler frequency
estimates at certain steering angles would ultimately lead
to the derivation of spurious flow vectors due to erroneous
least-squares fitting. In turn, they would significantly distort
the appearance of the flow profile rendered in the imaging
view [1].

Aliasing is particularly prone to arise in live implemen-
tations of high-frame-rate vector Doppler due to various
physical and system-level constraints. From an imaging
physics standpoint, the effective PRF used for vector Doppler
processing is inevitably reduced by the use of multiple steering
angles for robust vector flow estimation [4], because the
time interval between frames with the same steering angle is
concomitantly increased. Another important PRF constraint is
the depth of the imaging target. Specifically, when performing
pulse-echo sensing, the PRF might need to be kept low to
allow sufficient time in between pulse firings, so that the
transmitted pulse can realize two-way propagation to and
from the maximum imaging depth. As such, aliasing artifacts
tend to emerge more easily when performing vector Doppler
mapping of fast blood flow in deep vessels, especially those
in stenosed arteries [6], the carotid bifurcation [7], the urinary
tract [8], and the heart [9]. From a system-level standpoint, the
maximum usable PRF may be constrained by the system’s raw
data streaming bandwidth [10] and computational power [11]
in some hardware implementations. In particular, it is known
that PRF directly scales the number of data samples acquired
by the array transducer [12]. If the PRF is too high, the size of
the acquired raw data volume may be beyond what the system
can stream in real time to the computing back-end and beyond
what the available on-board computing resources can handle

to execute beamforming and signal processing operations for
live imaging.

Resolving aliasing errors in vector Doppler is after all a
challenging task, particularly if it needs to be done in real
time. One solution is to resolve Doppler aliasing artifacts
from each steering angle independently through the use of
a dealiasing algorithm that is applied to every pixel position
in the image frame [13], [14]. Based on a similar anglewise
dealiasing approach, staggered transmissions [15], [16] and
dual-wavelength [17] processing strategies have also been
developed to resolve Doppler aliasing artifacts in cross-
beam flow vector estimation (the baseline implementation
of vector Doppler). Another approach to aliasing correction
for vector Doppler is to holistically take into account all
Doppler frequency estimates from all steering angles [18].
Transcending beyond these dealiasing approaches, an extended
least squares vector Doppler (ELS-VD) algorithm [19] was
introduced as a more robust dealiasing framework for vector
Doppler. It works by synergizing least squares fitting [4]
and speckle tracking via block matching [20] to effectively
identify and resolve aliased Doppler frequency estimates. This
solution has demonstrated efficacy in suppressing aliasing
artifacts from in vivo vector Doppler maps acquired from
the carotid bifurcation. However, the algorithm’s reported
processing throughput of 5 s per frame [19] is seemingly
inadequate for real-time realization. As ultrasound is typically
regarded as a real-time imaging modality that may be used
in point-of-care settings [21], excessive offline processing
would hinder clinical translation of vector Doppler as a potent
vector flow imaging technique that is resilient against aliasing
artifacts.

In this article, we present a new real-time dealiasing
framework for vector Doppler estimation performed on high-
frame-rate imaging datasets acquired from multiple plane wave
steering angles. In devising our framework, we have worked
with the guiding proposition that an effective dealiasing
algorithm with real-time feasibility can be developed by
harnessing the theoretical merit of the ELS-VD method
and reformulating its execution using parallel computing
principles and graphical processing unit (GPU) processing.
We have particularly sought to exploit the multidimensional
data independency inherent in the ELS-VD method to devise a
single-instruction, multiple-thread (SIMT) parallel computing
pipeline that can be readily executed with high processing
throughput on the GPU that has many compute cores in its
hardware. We shall demonstrate our framework’s real-time
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performance while reaping the theoretical benefits of ELS-
VD to achieve robust vector flow imaging via Doppler
principles. Through our algorithmic innovations, we aim
to bring reliable vector Doppler with expanded velocity
range closer to clinical application by resolving a prohibitive
computational bottleneck in its processing pipeline.

II. THEORETICAL PRINCIPLES

A. Background: Multi-Angle Doppler Estimation

The multi-angle Doppler estimation approach is generally
regarded as the prevailing way of deriving flow estimates
for high-frame-rate vector Doppler imaging [4]. For this
estimation technique, each flow vector v (i.e., a 2 × 1 velocity
vector estimate at a given pixel position) is computed as
the solution that yields the minimum mean-squared error to
an N -equations, two-unknowns algebra computation problem
that is formed from N instances of the Doppler equation
obtained from multiple transmit (Tx)–receive (Rx) angle pairs.
Specifically, for a set of N Tx–Rx angle pairs where the nth
Tx and Rx angles are denoted, respectively, as θn and φn , the
following set of Doppler equations can be obtained in matrix
form [4]: cos θ1 + cosφ1 sin θ1 + sinφ1

...
...

cos θN + cosφN sin θN + sinφN

[
vz

vx

]
= µ

 fD,1
...

fD,N


(1)

where vz and vx are the unknown axial and lateral flow
velocity components of the flow vector v, respectively, fD,n is
the Doppler frequency (normalized to the PRF) from the nth
Tx–Rx angle pair, and µ is a scaling factor of the following
form:

µ =
co fPRF

2 fo
(2)

for co, fo, and fPRF, respectively, denoting the speed of sound,
ultrasound frequency, and PRF. The N × 2 left matrix in (1) is
commonly referred to as the angle matrix A, while the right-
hand side is the N × 1 measurand vector µf. It is known that v
in (1) can be solved by the following pseudoinverse operation
that yields the least-squares solution [4]:

v = µ(AT A)−1AT f = µA†f (3)

where T , −1, and † superscripts, respectively, denote the
matrix transpose, square matrix inverse, and nonsquare matrix
pseudoinverse operations. Note that A†

= (AT A)−1AT .
In (3), v is known to be erroneous if aliasing has occurred

when obtaining the components of f. Specifically, the actual
Doppler frequency for the nth Tx–Rx angle pair f̂D,n may
exceed the maximum unaliased frequency by multiple folds
of the unaliased frequency range. In this case, the measured
Doppler frequency fD,n may differ from the actual value as
follows for a scenario with lD,n wraparound cycles at that
Tx–Rx angle pair:

fD,n = f̂D,n − lD,n (4)

where lD,n is an integer, and it may be different for other
angle pairs. As such, the objective of our new algorithmic
framework is to ensure that aliasing-resistant vector flow maps
with real-time processing throughput can still be derived in
the presence of Doppler aliasing. It achieves so by making
use of SIMT-based parallel computing principles, which form
the essence of GPU programming, to derive aliasing-corrected
velocity estimates via ELS-VD’s signal processing chain.

B. Overview of the ELS-VD Method
One important theoretical merit of the ELS-VD algorithm

is that it can in principle resolve aliasing artifacts with
higher aliasing orders (i.e., multiple wraparound cycles) [19].
Within this algorithm, a maximum aliasing order L (a natural
number) is specified, such that lD,n in (4) is assumed to be
within the range from −L to L for a given angle pair. This
algorithm then works to derive, for each pixel, a dealiased
velocity vector estimate through two computational stages,
which will be described in Sections II-B1 and II-B2. Note
that our methodological description is not intended to restate
all the theory behind the ELS-VD algorithm [19]. Instead,
a concise summary is provided here to facilitate the subsequent
description in Section III about our algorithmic innovations for
realizing real-time ELS-VD.

1) Derivation of Pen-Optimal Aliasing Correction Factor: This
first stage of ELS-VD seeks to identify, at each pixel, the
pen-optimal (i.e., almost optimal) aliasing correction vector
p with N entries based on the set of slow-time ensembles
acquired from all N Tx–Rx angle pairs [19]. Each entry of p
indicates the number of frequency unwrapping cycles (within
the integer range −L to +L) to be applied to the Doppler
frequency estimate (normalized to PRF) of a given Tx–Rx
angle pair. To perform this task, the raw Doppler measurand
vector f (with the normalized Doppler frequencies for all
N angle pairs) is first derived from conventional Doppler
processing. Subsequently, aliasing correction vector candidates
pk are formed, each of which is one combination of the set
of frequency unwrapping cycle values to be applied to N − 1
Tx–Rx angle pairs relative to the last Tx–Rx angle pair [19].
Note that, by deduction, the total number of aliasing correction
vector candidates K is equal to (2L + 1)N−1. For each instance
of pk , its fitting residue (i.e., squared error) rk in least-squares
velocity vector estimation is computed as follows:

rk = |Av − µ(f + pk)|2 (5)

where |x|2 = (xT x)1/2 is the l2 norm. The instance of pk with
the minimum fitting residue is then set as the pen-optimal
aliasing correction vector p. In other words

p = arg minpk
(rk). (6)

2) Computation of Optimal Velocity Vector: After obtaining
the pen-optimal aliasing correction vector p, the ELS-VD
algorithm proceeds to determine the optimal dealiased velocity
vector vopt using speckle tracking that is realized via a block
matching algorithm [19]. This task is operationalized via
multiple steps. First, since p covers the frequency unwrapping
cycle values for N − 1 Tx–Rx angle pair [19], a set of
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Fig. 1. Multilevel parallelization of our real-time ELS-VD framework. At the frame level, each pixel can be processed independently. Within each
pixel, the execution of the ELS-VD algorithm involves sequential execution of six compute kernels (see Table I for each kernel’s function). Within
each kernel, various matrix arithmetic and computational operations can also be parallelized.

2L + 1 dealiased velocity vector candidates are derived to
cover possible aliasing cases (spanning from −L to +L)
that may arise for the measured Doppler frequency of the
remaining Tx–Rx angle pair not covered in the previous ELS-
VD algorithmic stage. Modifying from (3), each dealiased
velocity vector candidate vl can be found from the least-
squares solution to the system of Doppler equations as

vl = µA†(f + ql) (7)

where ql is a candidate for the optimal aliasing correction
vector, and it is one instance of the pen-optimal vector p with
a specific frequency unwrapping cycle value (i.e., an integer
from −L to L) for the unaccounted Tx–Rx angle pair. In the
second step, for each dealiased velocity vector candidate,
interframe block matching [20] was performed to determine
the corresponding sum of absolute difference (SAD) value.
At last, the velocity vector candidate with the minimum SAD
is defined as the optimal velocity vector vopt for that pixel.

III. REAL-TIME ALIASING-RESISTANT VECTOR
DOPPLER FRAMEWORK DESIGN

A. Key Parameters of Interest

From a computational standpoint, real-time execution of
ELS-VD is bottlenecked by some major parameters, including
the following:

1) number of pixels C that requires ELS-VD to be
performed in each image frame;

2) number of Tx–Rx angle pairs N , since a larger N yields
more Doppler frequency measurands, each of which may
be prone to aliasing that needs to be rectified;

3) aliasing order L , because a larger L naturally creates
more instances of aliasing correction vector candidates
that need to be analyzed in the ELS-VD algorithm; and

4) spatial window dimension B and slow-time window size
M used for block matching, since larger window sizes

involve the processing of more samples during block
matching.

In our framework, various steps in ELS-VD’s processing
pipeline have been parallelized to reduce the computational
burden imposed by these major influencing parameters.
Specific parallelization strategies will be presented in the
following subsections.

B. Overall Parallelization Strategy
Recognizing the key ELS-VD parameters of interest, our

real-time computing framework has been organized in a three-
level (frame, pixel, and operation) hierarchy, as illustrated
in Fig. 1, to parallelize various ELS-VD computing stages.
On an image frame level, ELS-VD is concurrently applied
to estimate individual pixel position’s dealiased flow vector
estimate. Such a pixel-by-pixel parallel processing approach is
inherently executed without interpixel dependence. Note that
frame-based pixelwise parallelization itself is inadequate to
achieve real-time processing, as we have discovered in our in-
house preliminary tests. It is necessary to further parallelize
the computational tasks when processing the set of slow-time
ensembles for each pixel.

In our framework, pixel-level parallelization was achieved
by exploiting the concurrence of various steps within ELS-VD
when processing each pixel. Specifically, it is known that ELS-
VD involves two algorithmic stages [19], in which different
instances of the same computational operation are required
and some precalculated constants are repeatedly accessed.
As such, our framework has sought to achieve parallelization
by allocating multiple threads to handle different instances of
calculations and by making frequently accessed data values
conveniently accessible to all threads that need them.

The third level of parallelization in our framework pertains
to specific computational operations in the algorithm. For
instance, the execution of least-squares fitting calculations [4]
involves matrix operations that can be accelerated via
parallel computing. Accordingly, these operations have been
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TABLE I
KERNELS USED IN THE FRAMEWORK

parallelized through elementwise operations that can run
concurrently via an SIMT approach.

With three levels of parallelization, our framework for SIMT
has been structured into six compute kernels, each of which
leverages a hierarchical organization of threads to achieve
different parallel computation tasks. The function of each
kernel is summarized in Table I. Note that Kernels 1–3 focus
on handling the first algorithmic stage of ELS-VD, while
Kernels 4–6 address the second stage. Specific parallelization
strategies are discussed in Sections III-C and III-D.

C. Stage One: Parallelized Derivation of Pen-Optimal
Aliasing Correction Vector

In pursuit of a parallel implementation of (5) and (6),
we note from linear algebra [22] that rk is essentially equal to
the l2 norm of the product between the orthogonal projection of
A and the dealiased measurand vector (f + pk). This operation
can be mathematically expressed as

rk =
∣∣AP f + AP pk

∣∣
2 (8)

where AP is the N × N projection matrix that is equal to
(AA†

− I), with A† as defined in (3) and I being an identity
matrix (N × N ). Note that, in (8), AP and AP pk are the
algebraic quantities that remain constant for all pixels and can
thus be precalculated. In contrast, AP f is the only part of the
equation that needs to be calculated differently for each pixel.
Based on this notion, we have devised three SIMT compute
kernels in our framework to handle specific computational
tasks, as elaborated in Sections III-C1–III-C3.

1) CalculateAf Kernel: The compute kernel that we have
devised to perform the AP f operation for each pixel is
illustrated in Fig. 2(a). This kernel uses N 2 threads per
pixel to parallelize the prescribed computation process on an
elementwise basis. Specifically, each thread with a unique
identification (i , j) is responsible for calculating the product
between one matrix element and the corresponding element in

Fig. 2. Thread organization for the kernels in Stage 1 of the proposed
framework. For each kernel, the steps that require different thread
groupings are highlighted using colored pathways. (a) CalculateAf
Kernel: matrix-vector multiplication is performed between Ap and f to
form Apf. (b) Calculate Residues Kernel: summation of Apf and Appk,
and calculation of the fitting residue for each aliasing pattern candidate
pk. (c) FindBestP Kernel: minimization across the fitting resides to find
the pen-optimal aliasing correction vector.

the vector f as follows:

ψi, j = a P
i, j f j (9)

where (.)i, j denotes the element in the i th row and the j th
column in that matrix, while (.) j denotes the j th element
in the vector. Subsequently, N threads are used to form the
vector AP f, whose i th element is the result of the following
summation that is handled by the i th thread:

(AP f)i =

N∑
j=1

ψi, j =

N∑
j=1

a P
i, j f j . (10)

2) CalculateResidues Kernel: The output from the first
kernel is fed as an input into a second kernel [see Fig. 2(b)]
that aims to compute the fitting residue for all aliasing
correction vector candidates. The latter process involves a
parallelized solution to (8), whereby parallel addition of
AP f + AP pk and computation of the resulting l2 norm are
performed for each aliasing correction vector candidate. For
this computation, K threads per pixel are used to perform
the elementwise vector addition tasks needed to compute the
residue for all aliasing correction vector candidates. The kth
thread is specifically responsible for calculating the following
squared sum:

r2
k =

N∑
i=1

(AP f + AP pk)
2
i . (11)

Note that since finding the minimum rk is equivalent to find
the minimum r2

k , the square root operation is omitted after
obtaining (11) to reduce the computational burden.

3) FindBest P Kernel: Given the calculated residues, the
third kernel [see Fig. 2(c)] then proceeds to search for the
pen-optimal aliasing correction vector p that has the minimum
residue (among a set of K candidates). It achieves so by

http://dx.doi.org/10.1109/TUFFC.2023.3303349/mm1
http://dx.doi.org/10.1109/TUFFC.2023.3303349/mm1
http://dx.doi.org/10.1109/TUFFC.2023.3303349/mm1
http://dx.doi.org/10.1109/TUFFC.2023.3303349/mm1
http://dx.doi.org/10.1109/TUFFC.2023.3303349/mm1
http://dx.doi.org/10.1109/TUFFC.2023.3303349/mm1
http://dx.doi.org/10.1109/TUFFC.2023.3303349/mm1
http://dx.doi.org/10.1109/TUFFC.2023.3303349/mm1
http://dx.doi.org/10.1109/TUFFC.2023.3303349/mm1
http://dx.doi.org/10.1109/TUFFC.2023.3303349/mm1
http://dx.doi.org/10.1109/TUFFC.2023.3303349/mm1
http://dx.doi.org/10.1109/TUFFC.2023.3303349/mm1
http://dx.doi.org/10.1109/TUFFC.2023.3303349/mm1
http://dx.doi.org/10.1109/TUFFC.2023.3303349/mm1
http://dx.doi.org/10.1109/TUFFC.2023.3303349/mm1
http://dx.doi.org/10.1109/TUFFC.2023.3303349/mm1
http://dx.doi.org/10.1109/TUFFC.2023.3303349/mm1
http://dx.doi.org/10.1109/TUFFC.2023.3303349/mm1
http://dx.doi.org/10.1109/TUFFC.2023.3303349/mm1
http://dx.doi.org/10.1109/TUFFC.2023.3303349/mm1
http://dx.doi.org/10.1109/TUFFC.2023.3303349/mm1
http://dx.doi.org/10.1109/TUFFC.2023.3303349/mm1
http://dx.doi.org/10.1109/TUFFC.2023.3303349/mm1
http://dx.doi.org/10.1109/TUFFC.2023.3303349/mm1
http://dx.doi.org/10.1109/TUFFC.2023.3303349/mm1
http://dx.doi.org/10.1109/TUFFC.2023.3303349/mm1
http://dx.doi.org/10.1109/TUFFC.2023.3303349/mm1
http://dx.doi.org/10.1109/TUFFC.2023.3303349/mm1
http://dx.doi.org/10.1109/TUFFC.2023.3303349/mm1


NAHAS et al.: GPU-BASED, REAL-TIME DEALIASING FRAMEWORK 1389

performing tree-based parallel reduction with multiple threads.
Specifically, the set of K residue values is first partitioned
into equally sized subsets, and each thread is used to search
for the minimum of one subset. These local minima are then
repartitioned into another cluster of subsets, and parallelized
search for subset minima is again performed. This reduction
process is repeated until the global minimum is obtained as
per (6).

D. Stage Two: Parallelized Computation of Optimal
Dealiased Velocity Vector

In our framework, one compute kernel is devised for each of
the three steps involved in computing the optimal, aliasing-free
velocity vector vopt. Their specific operations are presented as
follows.

1) CalculatePotential Velocities Kernel: To derive the set
of dealiased velocity vector candidates vl , this kernel [see
Fig. 3(a)] first allocates a block of threads to execute all
2L + 1 instances of (7) on an elementwise basis. Given
the dimensions of the matrix and vectors in (7), 2N groups
of threads are assigned per pixel, each group of which is
responsible for handling the matrix multiplication between
one element of the 2 × N matrix A† and the corresponding
element in the N × 1 vector (f + ql). Each thread group is
allocated with 2L + 1 threads to parallelize the calculations
for all instances of (f + ql). Accordingly, the two elements
of the i th dealiased velocity vector candidate (i.e., its axial
and lateral velocity components) are found to equal to the
following sum of elementwise products corresponding to the
same matrix row of A†:

(vl)1 =

N∑
j=1

a†
1, j [ f j + (ql) j ] (12)

(vl)2 =

N∑
j=1

a†
2, j [ f j + (ql) j ]. (13)

2) Block Matching Kernel: This kernel [see Fig. 3(b)] takes
the 2L + 1 instances of dealiased velocity vector candidates
vl as an input to perform block matching to determine which
instance of vl yields the highest interframe flow speckle
similarity [19]. For each velocity vector candidate, the kernel
first calculates its corresponding interframe displacement
(equals to vl multiplied by interframe interval) across a
sequence of M consecutive flow speckle frames in a given
time window of interest (with M typically smaller than or
equal to the slow-time ensemble size used to calculate Doppler
frequencies). For each pair of adjacent frames, a block of B
× B pixels centered about the pixel of interest is formed
in the former frame, and the corresponding displaced block
location is identified in the latter frame. After that, the flow
speckle similarity is evaluated between the former frame’s B
× B block and the displaced B × B block in the latter frame.
This measure is calculated as the SAD of the two blocks, and
the cumulative SAD over all M − 1 adjacent frame pairs is
evaluated. Such a sequence of calculations for the entire set of
velocity vector candidates is handled in parallel by the kernel
via the use of B2 threads. The (i, j)th thread is responsible for

Fig. 3. Thread organization of the kernels in Stage 2 of
the proposed framework. For each kernel, the steps that require
different thread groupings are highlighted using colored pathways.
(a) Calculate Potential Velocities Kernel: matrix-vector multiplication
to form 2L + 1 velocity candidates from the pen-optimal aliasing
correction vector. (b) BlockMatching Kernel: flow speckle similarity score
computation via block matching for each velocity candidate. B × B
blocks across the flow speckle ensemble (length M) are formed based
on the interframe displacement due to the velocity vector. The SADl
between time consecutive blocks is computed as the flow speckle
similarity score for that velocity candidate l. (c) FindBestPVelocity
Kernel: minimization across flow speckle similarity score to identify
aliasing free velocity estimate.

finding the cumulative SAD of one pixel in the block [denoted
as 1l(i, j)] over all M − 1 adjacent frame pairs

1l(i, j) =

M−1∑
m=1

∣∣Sl
D,m+1(i, j)− Sm(i, j)

∣∣ (14)
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where Sm(i , j) denotes the (i , j)th block pixel in the former
flow speckle frame in the mth adjacent frame pair, while
Sl D,m

+1 (i , j) denotes the same block pixel in the latter frame’s
displaced block for the lth velocity vector candidate vl .
It follows that the SAD for the lth dealiased velocity vector
candidate (denoted as SADl) is given by

SADl =

B∑
i=1

B∑
j=1

1l(i, j). (15)

When calculating (14) and (15), nonflow pixels in the block,
as determined via power thresholding akin to power Doppler
imaging, are excluded from the SAD computation. Also, tree-
based parallel reduction, similar to what has been described
in Section III-C3, is implemented in the kernel to accelerate
the addition process in (14). Note that, in lieu of SAD, cross
correlation (i.e., sum of squares) may also be used to evaluate
interframe flow speckle similarity. Yet, it has not been used in
this kernel because it is more computationally intensive due to
the involvement of multiplications, and it has been suggested
that SAD outperforms sum of squares in block matching [23].

3) FindBestVelocity Kernel: This last kernel [see Fig. 3(c)]
in our real-time ELS-VD framework works to identify the
optimal velocity vector vopt that is ideally not subject to
aliasing. It achieves so by analyzing the 2L + 1 values of
SAD calculated for all dealiased velocity vector candidates.
vopt is then defined as the dealiased velocity vector with the
minimum SAD, which corresponds to the highest interframe
flow speckle similarity. Computationally, this task is similar
to the one in the FindBestP kernel (see Section III-C3). The
only difference is that the minimum SAD search process can
be executed trivially without the need to implement parallel
reduction strategies since L is typically not large.

E. Implementation of Real-Time ELS-VD
The compute unified device architecture (CUDA) platform

(NVidia, Santa Clara, CA, USA) was used in this investigation
to implement our parallelized ELS-VD framework. CUDA
is an application programming interface (API) developed for
general purpose computing on GPUs, and it relies on an
SIMT architecture. The ELS-VD framework was realized as
a standalone processing pipeline on a computing platform
that was equipped with a Xeon E5-2620 central processing
unit (Intel, Santa Clara, CA, USA) and an RTX-2080 GPU
(NVidia). Our framework was coded in C++ using the
CUDA API (ver. 8.0.60). It was compiled for use with
MATLAB (ver. 2020a; Mathworks Inc., Natick, MA, USA)
through the mexcuda function that was configured to invoke
the nvcc and Microsoft Visual C++ compilers, respectively,
for compiling parallelized and sequential C++ instructions.
This compilation approach generated a parallelized MATLAB
executable with dynamic memory allocation operations that
directly interfaced with the computing platform’s operating
system.

In implementing our real-time ELS-VD framework on
the GPU, we have optimized its computational operations
for single-floating point precision. Specifically, all variables
have been stored and processed as floats data type. Also,

we have leveraged CUDAs fast maths compilation setting
whenever possible to execute arithmetic operations, such as
division and power.

Besides optimizing the arithmetic operations, we have taken
into consideration various key features of the GPU when
implementing real-time ELS-VD. These features include the
following.

1) Each GPU is equipped with thousands of compute cores
(4352 on the GTX-2080 model) to facilitate concurrent
execution of multiple threads.

2) CUDA-based computing kernels are executed with
thread blocks (indexed in 2-D entities) that have access
to the GPU’s on-chip memory, whose access latency is
much shorter than the GPU’s off-chip global memory.

3) There is a maximum thread block size that is supported
by the GPU (1024 for the RTX-2080 model), beyond
which run-time overhead arises and it negatively impacts
the computing throughput.

4) GPU’s on-chip memory is limited in capacity; on the
RTX-2080 GPU, between a group of 64 threads, only
96 kB of on-chip memory (64-kB shared memory and
32-kB L1 cache) is available for sharing.

5) Texture memory is available on the GPU to cache
frequently accessed data in the GPU’s global memory.

F. Kernel-Level Computational Optimization Strategies

1) Fast Memory Access: Various kernels in our real-time
ELS-VD framework have suitably leveraged the GPU’s fast
on-chip memory by executing their SIMT computations on a
one thread block per pixel basis. For example, the CalculateAf
kernel (see Section III-C1) requires N 2 threads for each pixel
with N (number of Tx–Rx angle pairs) typically less than
32, so accordingly, an N × N thread block is allocated to
execute this kernel for each pixel. In doing so, the matrix
elements of AP and f, which are repeatedly accessed according
to (5), are copied to the GPU’s shared memory during run
time to significantly shorten the resulting data access latency.
A similar strategy for thread block organization is used in the
CalculatePotentialVelocities kernel (see Section III-D1) and
the FindBestVelocity kernel (see Section III-D3).

2) Optimization of the CalculateResidues Kernel: For com-
pute kernels that require more processing threads than the
maximum block size of 1024 threads, we have adopted
alternative implementation strategies to ensure that only one
thread block is allocated to process each pixel. Specifically,
for the CalculateResidues kernel (see Section III-C2) that
in principle uses K threads (where K is typically much
larger than 1024 as per Section II-B1), it has adopted a
min(1024, K ) thread block structure, so that the number
of threads per block would not exceed 1024. If K was
greater than 1024, the threads were instructed to compute (7)
for multiple instances of pk (with an even distribution
of computing load between threads). This implementation
strategy was chosen in lieu of initiating more thread blocks,
so that thread organization can be simplified to reduce the
number of read–write operations between the GPU’s global
memory and on-chip memory.
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3) Optimization of the FindBestP Kernel: For the FindBestP
kernel (see Section III-C3), depending on the actual values
of N and L , it is also prone to use more threads than the
maximum block size supported by the GPU. To alleviate
this issue, we have frontloaded parts of the minimum search
operation to the CalculateResidues kernel. In particular, since
each thread within CalculateResidues is already tasked to
calculate r2

k for multiple instances of pk , we have revised its
operation further, so that it would also directly identify the
instance with the minimum r2

k value within its subgroup. This
strategy is computationally effective, because the values for
multiple instances of r2

k already exist within the thread block’s
allocated on-chip memory. In turn, the number of memory
access operations is reduced to improve the processing
throughput, and the FindBestP kernel’s parallel reduction task
is naturally simplified. Note that, for the FindBestP kernel’s
minimum search among the remaining candidates, we have
divided them into subsets of 32, so that at most 32 subsets
can be processed by a single block of 1024 threads. The
key benefit of doing so is that the same thread block’s ON-
chip memory can be leveraged to effectively reduce memory
access latency of repeated r2

k value access requests during
the minimum search. Only the final global minimum result
would be copied back to the GPU’s global memory for further
processing.

4) Optimization of the BlockMatching Kernel: For the
BlockMatching kernel (see Section III-D2), there is repeated
access of flow speckle image values in the current frame when
executing (13), and some flow speckle pixels are common
between the spatial block matching window of adjacent pixels.
Accordingly, the kernel has been devised to copy these
frequently accessed flow speckle image values to the GPU’s
texture memory to reduce the data access overhead involved
in retrieving data from the GPU’s global memory. Note that
the number of threads required to compute (14) and (15)
depends on the size of the B × B spatial window used for
block matching. As such, give a maximum thread block size
of 1024, the window dimension B was limited to 32 or smaller,
so that a single thread block can be allocated to handle the
block matching calculations for one dealiased velocity vector
candidate.

IV. EXPERIMENTAL METHODS

A. Phantom Imaging Studies

Our framework’s ability to achieve real-time derivation
and seamless visualization of aliasing-resistant vector Doppler
images was first tested through a series of in vitro
phantom experiments. We used a wall-less carotid bifurcation
model with 50% stenosis, which was chosen because of
the prevalence of aliasing in stenosed conditions. It was
fabricated using a previously established investment casting
protocol [24]. Its tissue mimicking material was composed of
a mixture of 10% polyvinyl alcohol (341584; SigmaAldrich,
St. Louis, MO, USA), 3% graphite scatterers of particle
diameter less than 20 µm (282863; Sigma-Aldrich), and 0.3%
potassium sorbate preservatives (85520; Sigma-Aldrich). The
phantom was connected to a pulsatile flow pump that generated

TABLE II
IMAGING PARAMETERS USED IN THE EXPERIMENTS

carotid pulses with a peak flow rate of 5 mL/s and a pulse rate
of 72 beats/min. The flow rate was chosen to achieve one-cycle
aliasing artifacts that could be resolved through manual phase
unwrapping. The blood mimicking fluid was matched to the
acoustic and viscous properties of human blood. Details on the
fabrication of the flow pump and the blood mimicking fluid
have been reported elsewhere [24].

Our imaging platform was a research-purpose ultrasound
scanner (SonixTouch; Analogic Corporation, Peabody, MA,
USA) equipped with a linear array transducer (L14-5;
Analogic Ultrasound). It was configured for plane wave trans-
mission, and a prebeamformed data acquisition system [25]
was used to acquire the channel-domain radio frequency
(RF) data needed for processing. Imaging and system
parameters used in this experiment are shown in Table II.
In brief, transmission was performed with two steering angles
(−10◦, +10◦) and the raw data were then beamformed on
receive to form N = 7 Tx–Rx steering angle combinations.
This multi-angle Doppler configuration was chosen to
maintain a compromise between: 1) achieving robust flow
vector estimation, which is realized through the use of multiple
Rx angles for a given Tx angle; and 2) obtaining a kilohertz-
range effective PRF for each Tx–Rx angle pair, as can be
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TABLE III
IMAGING PARAMETERS USED IN THE IN VIVO DEMONSTRATION

achieved using a limited number of Tx angles (two in this
case). Note that a relatively low-effective PRF (3333 Hz for
each Tx–Rx angle pair) was used to maintain a fine Doppler
resolution for the detection of slow velocities during diastole.
These parameters have been similarly used in another Doppler
dealiasing investigation [19].

B. In Vivo Imaging Trial

In addition to phantom studies, an in vivo pilot experiment
was conducted to demonstrate our framework’s performance
in monitoring arterial hemodynamics with fast flow velocities.
This pilot trial, approved by the Clinical Research Ethics
Committee of the University of Waterloo (Protocol No.
31694), was in the form of an exercise intervention, where
a 25-years old healthy male volunteer was tasked to perform
a set of 20 consecutive body squats. A long-axis imaging scan
was then performed at the subject’s femoral bifurcation, which
is known to have flow characteristics with large variations
in flow velocity over a cardiac cycle [26]. Note that the
bodyweight squats effectively led to an acute increase in blood
flow velocities in the femoral bifurcation [27], [28], because
muscular contraction is known to induce active hyperemia
that increases blood flow in nearby arteries [29]. Accordingly,
the resulting vector Doppler images are particularly prone to
single- and double-cycle aliasing.

For this human imaging trial, raw vector Doppler data
were acquired using another ultrasound research scanner
(US4US; Warsaw, Poland) that was equipped with a linear
array transducer (SL1543; Esaote, Genoa, Italy). Plane wave
transmission was used and the prebeamformed data were
transferred to the computational platform for offline processing
in the same way as that described in Section IV-A. Table III
shows the system, transmission, and processing parameters
for the in vivo experiment. Parameters that are not listed
in Table III were identical to those in Table II. Note that a
narrower bandpass filter was used for the Doppler frequency

estimation to reduce spectral broadening, and a longer
ensemble size of 60 was used to improve Doppler resolution.

C. Data Processing and Dealiasing Performance
Analysis

All channel-domain RF data samples were acquired as
fixed-point values at 12-bit resolution. There were loaded
onto our computational platform, converted into floating-point
variables at the software level, and processed via a custom
MATLAB and CUDA-based pipeline for beamforming [30]
and Doppler processing [31]. Accordingly, Doppler frequency
measurands, flow detection maps, and flow speckle maps
were derived on a frame-by-frame basis, and they were used
as an input to analyze the efficacy of our real-time ELS-
VD framework. Sliding window processing (with one-sample
steps) was applied to each slow-time ensemble to derive
flow vector estimates on a pixelwise basis at different times.
Vector Doppler cineloops with dynamic projectiles [32] were
generated accordingly.

The vector Doppler maps obtained from our real-time
ELS-VD framework were copied back to the CPU for
visualization. Flow vector estimation was also performed using
the conventional least-squares vector Doppler estimator [4]
to determine the impact of aliasing on the resulting vector
flow images if these artifacts were not resolved. To facilitate
quantification of our framework’s efficacy in achieving
dealiasing, we have generated a set of reference flow vector
maps by performing inspection-based manual dealiasing on the
flow vector maps obtained via least-squares vector Doppler
estimation. The procedure for manual dealiasing has been
presented elsewhere [29] and was used to keep all parameters
identical between the reference and the output. The root-mean-
squared difference (RMSD) between the ELS-VD-derived flow
vectors and the manually dealiased flow vectors was then
calculated as a metric for our framework’s aliasing resistance
efficacy, especially for the image frames corresponding to flow
systole when fastest flow velocities emerged.

D. Throughput Analysis
The throughput of our real-time ELS-VD framework was

evaluated in terms of the processing time per frame under
different imaging resolutions and different parameters. Each
kernel’s execution time was tracked individually using CUDA
timers to identify the framework’s computational bottlenecks.
The measured time only considered the GPU processing time,
while the time for auxiliary operations (e.g., data transfer
between CPU and GPU, and CPU functions) was excluded
because the practical use of our framework would involve an
end-to-end GPU processing pipeline.

We specifically investigated the impact of the following
factors on processing time: 1) number of flow pixels being
processed C ; 2) maximum aliasing order L; 3) block matching
spatial dimension B; and 4) slow-time window size M used
for block matching. In a practical application, the number
of flow pixels processed depends on the imaging resolution
and the flow dynamics of the scene, making it an important
parameter to investigate. The maximum aliasing order L is a
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Fig. 4. Peak-systolic flow vector profiles obtained from a carotid
bifurcation phantom with 50% stenosis. Results are derived using
(a) least squares vector Doppler estimation, with aliasing artifacts
highlighted in white, (b) real-time ELS-VD framework, and (c) manually
dealiasing (shown for reference).

function of the imaging scenario, with faster flow conditions
requiring higher aliasing order. Moreover, this parameter has
a significant impact on the number of aliasing patterns to
investigate. The block matching parameters (B and M), which
influence the fidelity of the block matching analysis, may well
impact the processing time, and thus, their effects should be
analyzed.

V. RESULTS

A. Real-Time Aliasing-Resistant Flow Vector Mapping
Achieved in a Stenosed Carotid Bifurcation

Aliasing-resistant flow vector estimation was demonstrated
successfully in the in vitro stenosed carotid bifurcation

Fig. 5. Real-time feasibility of the proposed framework. (a) Frame
processing time and the number of flow pixels, shown over all
2775 frames in a single cardiac cycle. (b) Reference flow speed profile
in the white square denoted in Fig. 2(c).

phantom with real-time slow-motion playback of the acquired
high-frame-rate data. Fig. 4(a)–(c), respectively, shows the
peak-systolic flow vector maps derived using the least-squares
vector Doppler estimator, our real-time ELS-VD framework,
and manual dealiasing. The ELS-VD estimation results were
obtained for L = 1, B = 20, and M = 30. Note that,
in Fig. 4(a), the white-colored flow vectors indicate ones with
aliasing artifacts as determined from the manually dealiased
reference. The key observation to be noted from Fig. 4(a)
is that, during peak systole, aliasing expectedly emerged in
the carotid stenosis region because the narrowed lumen had
induced faster flow velocities. These artifacts have been largely
resolved by our real-time ELS-VD framework, as shown in
Fig. 4(b). Indeed, over the 371 systolic frames where aliasing
artifacts emerged, real-time ELS-VD merely yielded an RMSD
of 5 cm/s in the stenotic jet region with respect to the manually
dealiased flow vector reference maps that have a systolic jet
speed of 60 cm/s [as shown in Fig. 5(b)]. In contrast, the
least-squares vector Doppler estimator was found to yield
a significantly higher RMSD of 44 cm/s in the stenosis
zone.

Movie 1 shows the dealiasing performance of the
framework throughout the cardiac cycle. This cineloop shows
a slow-motion real-time playback of vector flow images with
dynamic visualization [8] rendered at a real-time display rate
of 25 frames/s for the least-squares vector Doppler estimator
(Movie 1a ), the GPU-accelerated ELS-VD (Movie 1b ),
and the manually dealiased reference (Movie 1c ). It can
be observed that after resolving the aliasing artifacts with
our framework, jet formation in the stenosed region and
flow recirculation in the carotid bulb can be more intuitively
visualized in the bifurcation phantom.

As a substantiation of the notion of the real-time playback
processing, Fig. 5(a) plots the frame processing time over one
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Fig. 6. Vector flow profiles obtained from a femoral bifurcation after exercise showing the common femoral artery (CFA) as it splits into the
superficial femoral artery (SFA) and deep femoral artery (DFA). Flow profiles are shown for peak systole (left) and start of diastole (right). Results
are derived using (a) and (d) least squares vector Doppler estimation, with aliasing artifacts highlighted in white, and (b) and (e) real-time ELS-VD
framework. A visualization of the Doppler frequency measurement from the (10◦, −10◦) Tx–Rx combination using color flow principles is shown in
(c) and (f) to emphasize the presence of two cycle aliasing due to elevated blood flow.

full cardiac cycle. For reference, the mean flow speed profile
is also plotted in Fig. 5(b) for the white square zone indicated
in Fig. 4(c). Note that the number of flow pixels per frame
varied between a minimum of 11 239 and a maximum of 12
731, with a mean of 11 971. It can be observed that real-time
processing throughput was achieved throughout the cardiac
cycle that spanned 2775 frames in this dataset. Specifically,
regardless of the cardiac cycle phase, the frame processing
time was under 16 ms, which corresponds to a minimum
processing throughput of 62.5 frames/s. The frame processing
time was found to vary slightly over different cardiac cycle
phases. During systole, more flow pixels emerged because of
flow-mediated dilation of the vessel lumen, and thus, ELS-
VD needed to be applied to more pixels to detect (and

possibly correct for) aliasing artifacts. Nonetheless, real-time
processing throughput was still achieved in this scenario.

B. In Vivo Demonstration of Real-Time
Aliasing-Resistant Flow Vector Mapping

In the exercise intervention imaging trial, our framework
was found to yield performance similar to the phantom
experiments in generating aliasing-resistant vector flow maps
at real-time processing throughputs. The corresponding in vivo
imaging results are shown in Movie 2 for the least-squares
vector Doppler method (Movie 2a ) and the proposed
framework (Movie 2b ). Note that two-cycle aliasing was
present in this scenario, as evident in the color Doppler image
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with 10◦ Tx steering and −10◦ Rx steering (Movie 2c ). The
proposed framework has resolved these aliasing artifacts and
has properly rendered the femoral bifurcation’s anterograde
flow pattern, whereas the original vector Doppler formulation
has erroneously depicted the presence of retrograde flow. This
key observation is summarized in Fig. 6, which shows the flow
visualization at two temporal snapshots (peak systole and start
of diastole) in the cardiac cycle.

The framework’s real-time processing performance in the
human imaging scenario is summarized in Movie 2d . These
results were obtained for L = 2, B = 20, and M = 30.
Throughout this dataset with 1690 frames, the compute time of
the proposed framework reached a peak of 19 ms (53 frames/s)
as the number of flow pixels processed per frame fluctuated
between 6581 and 9994 with a mean of 7079. Movie 2e
shows the flow speed profile for the sample volume marked
in Movie 2b . The systolic flow velocity in this scenario
was approximately 150 cm/s. Spurious velocity errors were
observed in the framework output during the transitory phases
of the cardiac cycle and near tissue regions.

C. ELS-VD Processing Throughput Influenced by
Multiple Parameters

For practical combinations of processing parameters, our
ELS-VD framework was generally found to be capable of
achieving real-time processing throughput (with at least a
video-range frame rate of 25 frames/s). Fig. 7 shows a series of
corresponding results. Specifically, Fig. 7(a) shows the frame
processing time as a function of the number of flow pixels
C being processed and the maximum aliasing order L (for
B = 20 and M = 30). This plot confirms that the frame
processing time expectedly increased when there were more
flow pixels or with the use of a larger aliasing order L . For an
aliasing order of L = 1, our ELS-VD framework can achieve
real-time performance for frames with just over 40 000 pixels
or an image grid of 200 × 200. In contrast, for an aliasing
order of L = 3, our framework can yield real-time throughput
for frames with 8100 pixels.

As additional insight into the real-time performance of our
ELS-VD framework, Fig. 7(b) shows the number of pixels C
that can be processed at a 25 frames/s throughput under
different block matching spatial window sizes B and aliasing
orders L (for M = 30). This plot shows that the use of a
smaller spatial window (i.e., smaller B) for block matching
tends to allow more pixels to be processed at real-time
throughput. Fig. 7(c) shows the pixel processing throughput
(with 25 frames/s rate) as a function of the slow-time block
matching window size M that sets the number of frames to
be included in each block matching operation (for B × B =

20 × 20 windows). As expected, the number of pixels C
that can be accommodated with real-time throughput was
decreased at larger slow-time block matching window sizes M .

D. Block Matching Is the Primary Computational
Bottleneck

As shown in Fig. 8, the BlockMatching kernel was found
to be the bottleneck in every tested configuration of our real-
time ELS-VD framework. In particular, Fig. 8(a) shows the

Fig. 7. Computing performance of the real-time ELS-VD framework
as a function of different parameters, including numbers of flow pixels
C, maximum aliasing order L, block matching window dimension B, and
slow-time block matching window size M. (a) Frame processing time as a
function of C for L = 1, 2, and 3 (with B = 20 and M = 30). (b) Number of
flow pixels that can be processed in real time (25 frames/s) for different
B × B block matching windows (L = 1, 2, and 3; M = 30). (c) Number of
pixels C that can be processed in real time (25 frames/s) as a function
of M (L = 1, 2, and 3; B = 20).

percentage of processing time occupied by each GPU kernel
as a function of slow-time block matching window size M for
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Fig. 8. Processing time for each kernel in the real-time ELS-VD
framework. Results are shown (in percentages) as a function of (a) slow-
time block matching window size M (L = 1 and B = 20), (b) block
matching spatial window size B × B (L = 1 and M = 20), and
(c) maximum aliasing order L (B = 20 and M = 20). Number of flow
pixels C was kept constant at 65 536 (256 × 256) in all cases.

L = 1 and B = 20. As the slow-time block matching window
size M increased to 30, the Blockmatching kernel apparently
dominated nearly 90% of the frame processing time. When
a smaller spatial window dimension B was used for block
matching, the Blockmatching kernel was found to occupy a
shorter fraction of the frame processing time, as shown in
Fig. 8(b) for L = 1 and M = 20. The only instance where
another kernel, CalculateResidues, was identified as a major
computational bottleneck was when using a high aliasing order
of L = 3. As shown in Fig. 8(c) (for B = 20 and M = 20),
in the case of L = 3, 98% of the frame processing time
was attributed to two kernels: CalculateResidues (51%) and
BlockMatching (47%).

VI. DISCUSSION

A. Summary of Contributions

There is significant interest in translating high-frame-rate
vector flow imaging toward use in the clinic to facilitate the

imaging of complex and transient phenomena [1], [33], [34].
Success in such a clinical translation drive can have
ramifications on cardiovascular health monitoring, especially
in the diagnosis of diseased conditions such as atherosclerosis
where complex hemodynamics are prone to emerge and are
known to contribute to disease progression [35], [36], [37].
For vector flow imaging to be favorably considered as a useful
clinical diagnostic tool, it is important for this modality to be
realized in real time without aliasing artifacts. In response to
such a technical need, we have sought to devise a GPU-based
ELS-VD framework (see Fig. 1) with a set of SIMT computing
kernels (see Table I) to derive aliasing-free velocity vector
maps at real-time processing throughput. This framework has
transcended beyond the original ELS-VD algorithm [19] by
introducing parallel computing principles to enable its real-
time realization. It has been implemented with the CUDA API
and has been executed on the latest generation of NVidia GPUs
(RTX-2080).

Experimental results have shown that our GPU-based ELS-
VD framework is effective in resolving aliasing artifacts
in an anthropomorphic carotid bifurcation phantom with
50% stenosis (see Fig. 4) with short frame processing time
that corresponds to real-time display rates (see Fig. 5).
We particularly targeted real-time playback performance, such
that slow-motion vector flow cineloops can be computed and
visualized at a target of 25 frames/s. Our framework has also
succeeded in achieving real-time dealiasing functionality for
higher aliasing orders L in vivo (see Fig. 6) and for practical
frame sizes with a reasonable number of flow pixels (see
Fig. 7). Among all the computational operations of our ELS-
VD framework, we found that block matching is generally
the most time-consuming (except in the case with an aliasing
order of L = 3) and occupies the majority of processing time
needed to derive each frame of dealiased vector flow map
(see Fig. 8).

B. Significance to Vector Doppler Technology

Aliasing removal in Doppler ultrasound has recently
received renewed attention with the advent of advanced
ultrasound techniques, such as high-frame-rate ultrasound
and vector Doppler [16], [17]. Our approach to dealiasing
is conceptually founded upon the rational use of speckle
tracking via block matching to overcome vector Doppler’s
inherent proneness to aliasing errors. Its real-time applicability
in this investigation was established by designing a new
GPU computing framework that involves parallel processing
principles. From an engineering standpoint, our framework can
be regarded as an enabling solution for achieving aliasing-
resistant flow vector estimation in real time.

Compared to other dealiasing algorithms, our GPU-based
ELS-VD technique is a flow vector estimation scheme that can
remain resilient against multicycle aliasing artifacts. It does
not require a priori knowledge of aliasing characteristics (i.e.,
no data training is needed), so it is fundamentally different
from inference-based dealiasing solutions that rely on deep
learning principles to correct for aliasing artifacts [38], [39].
Also, it is distinguished from dealiasing techniques that
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are based on a staggered transmission strategy [15], whose
dual-PRF configuration has demonstrated real-time feasibility
in achieving aliasing-resistant cross-beam vector Doppler in
single-cycle aliasing scenarios [16]. Because our GPU-based
ELS-VD technique does not require reconfiguration of the
transmit firing scheme, it is not subjected to uneven slow-time
data sampling that is inherent to the staggered transmission
approach and that adds challenge to the clutter filtering step
of Doppler processing [15]. Our dealiasing framework is
also different from other dealiasing methods that are based
on broadband transmissions [17]. The efficacy of the latter
approach is often degraded by Doppler spectral broadening
that considerably increases the difficulty to perform clutter
filtering effectively and, in turn, increases the variance of
Doppler frequency estimation.

It should be emphasized that our GPU-based ELS-VD
method does not seek to expand the range of measurable veloc-
ity by implementing a special transmission sequence, such
as one that alternates between packets of the same steering
angle to preserve the effective PRF for each angle [40], [41].
Instead, our framework tackles aliasing in vector Doppler
by considering Doppler frequency measurements from all
steering angles in one cohesive framework. It supports more
transmit steering angles with no constraints on the bandwidth
of the transmitted pulses, clutter filtering, or the size of
the ensemble. It can be readily applied to other Tx–Rx
angle pair combinations besides the seven-angle configuration
used in our experiments. Hence, it can provide more robust
velocity estimation as per previously reported least squares
vector Doppler findings [4]. Perhaps, one limitation of our
framework is its sensitivity to speckle correlation, which may
be low in conditions of in vivo flow. Nonetheless, time-domain
techniques have been similarly reported in early work on
aliasing removal [14], so it is after all feasible to leverage
speckle motion information for aliasing correction purposes.

C. Insights on GPU Acceleration of ELS-VD

In this work, GPU acceleration of the ELS-VD framework
was realized via SIMT parallelization with a three-level
hierarchy of threads: frame level, pixel level, and operational
level (see Fig. 1). This parallelization strategy naturally
emerged from the data independencies of the ELS-VD
framework, and it complemented the organization of threads
used in GPU architecture. This thread organization, however,
is dependent on specific ELS-VD computational steps being
accelerated, and thus, dedicated GPU kernels need to be
devised for each part of the algorithm. In addition to thread
organization, memory management is deemed to be another
important consideration. Achieving real-time performance
requires optimized use of the GPU’s on-chip memory, texture
memory, and global memory when executing each kernel.
While global memory is the largest in size, it is also the slowest
to access. Variables that need to be accessed multiple times,
such as the projection matrix AP in (8) and (9), should be
transferred to the shared memory first before the matrix-vector
operations are performed.

It is interesting to note that although our ELS-VD
framework has achieved real-time performance (see Fig. 7),
we were not able to achieve full parallelization in some
compute kernels because of practical constraints in the GPU’s
hardware resources. Compromises need to be made during
implementation (see Section III-F). Nonetheless, with the
continuing development of more powerful GPUs, the impact
of making these implementation compromises will likely be
mitigated, and it is reasonable to expect that our framework
can achieve an even higher processing throughput in the future.

As shown in our computing time analysis (see Fig. 8),
the BlockMatching kernel was the primary computational
bottleneck in our ELS-VD framework under almost all
parameter combinations. Block matching is important in the
ELS-VD framework for disambiguating velocity candidates
that cannot be differentiated by least-squares optimization
alone, and thus, it is ultimately responsible for selecting the
aliasing free velocity vector. From a computational standpoint,
the block matching bottleneck stems from the repeated and
random access of flow speckle image values from the GPU’s
off-chip memory. The number of these off-chip data accesses
increased for larger block matching windows (B, M) and
slow-time window sizes M . After all, both a relatively large
block matching window size (B = 20) and a relatively large
ensemble size (M = 30 samples) were needed to achieve
robust dealiasing performance in the stenosed carotid phantom
imaging scenario (or else significant spurious errors would
arise, as we have discovered in our in-house preliminary
tests). These findings are in accordance with the conclusions
made in the original ELS-VD algorithm paper [19], and
they are the typical limitations of block matching in speckle
tracking applications. Note that research has been done
on the performance of speckle tracking in different flow
conditions [42], [43]. In the future, it would be worthwhile
to incorporate these results to refine the performance of our
real-time ELS-VD framework.

D. Future Integration of Proposed Framework Into a
System

In principle, our GPU-based ELS-VD framework can be
integrated into any software-oriented ultrasound scanner that
seeks to realize an end-to-end GPU processing pipeline
from beamforming to display [10]. This framework should
be readily generalizable to most CUDA-compliant GPUs
without any theoretical or design modifications aside from,
perhaps, some performance fine-tuning if GPUs with vastly
different specifications are used. Note that the approach of
accelerating various aspects of the ultrasound processing
pipeline using GPU processing has been gaining momentum in
the ultrasound community [44]. This processing strategy has
been successfully applied to beamforming [26], [45], Doppler
processing [46], and strain imaging [23]. Our current work,
which is the first to achieve aliasing-resistant vector Doppler
imaging in real time, can be regarded as a further advancement
of GPU-based medical ultrasound technology.

In integrating our proposed framework into an end-to-end
GPU processing pipeline for vector Doppler imaging, other
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processing steps need to be included. These auxiliary steps
include: 1) transfer of raw RF data to the GPU; 2) filtering
and analytic signal conversion; 3) beamforming for multiple
steering angles; 4) Doppler estimation for multiple steering
angles; and 5) image rendering and display. As described
in our previous work [26], [27], [47], these auxiliary steps
altogether have an estimated GPU computation time of at
most 20 ms performed image for imaging parameters similar
to those used in this work. Since our framework’s ELS-VD
processing time is less than 20 ms/frame for the processing
parameters used in our human experiments, we anticipate that
a complete GPU pipeline of aliasing-resistant vector Doppler
imaging would need a total computing time of at most 40 ms
to generate each vector flow image from beamforming to
display. Accordingly, it should be feasible to realize live vector
Doppler imaging with a real-time navigation frame rate of at
least 25 frames/s. The frame rate may be further improved
by refining the ELS-VD framework to only process slow-time
ensembles that are deemed to belong to the flow region [48].

E. Implications for Practical Applications
Since ultrasound is widely expected to be a point-of-care

modality [21], it is of critical importance to engineer a reliable,
real-time vector Doppler implementation that has the same
accessibility as color Doppler. With the advent of such an
implementation, various clinical applications can be pursued,
such as the routine and point-of-care visualization of flow
dynamics to identify abnormal flow [49], [50]. Whereas an
experienced sonographer may be accustomed to occasional
aliasing in color Doppler imaging [51], aliasing in vector
Doppler imaging is more prevalent and manifests as more
complex artifacts that are difficult to interpret [see Fig. 6(a)].
Relevant scenarios with vector Doppler aliasing are those with
limited PRF due to imaging considerations (such as velocity
resolution and depth) or system requirements. Aliasing is also
relevant in vascular stenosis [6] or active hyperemia [29] (see
Fig. 6), where flow speeds may be high.

By deriving both flow speed and direction, our real-
time, aliasing-resistant vector Doppler imaging framework
may be suitable for capturing true velocity changes with
minimal operator dependence, wherein beam-to-flow angle
does not need to be specified. For instance, it may enable
more consistent estimation of systolic velocity, which is an
indicator for stenosis severity [6], throughout the imaging
view concurrently. Nevertheless, to truly capture peak systolic
velocity, it may be necessary to investigate the integration
of maximum Doppler frequency estimators [52] for vector
Doppler, as this framework was developed on the basis of
mean frequency estimation.

VII. CONCLUSION

Aliasing is a known problem that affects the performance
of vector Doppler estimation. It results in spurious rendering
of velocity fields in vector flow imaging, especially when
performed at high frame rates. To address such a problem,
this article has presented a real-time, GPU-based ELS-VD
framework that can facilitate the derivation of aliasing-resistant

flow vector maps. From a diagnostic efficacy standpoint,
deriving aliasing-free vector flow images is critical to clinical
cardiovascular diagnostics because complex flow patterns
are typically marked by the existence of a wide range
of flow speeds, for which slow speeds would emerge in
recirculation zones, while fast speeds would arise during
systole especially in a stenosed artery. Through more intuitive
and comprehensive visualization of blood flow, real-time
aliasing-resistant vector Doppler may eventually enable on-site
vascular diagnostics directly at the bedside. In turn, the clinical
value of vector flow imaging can be better substantiated.
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