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Frequency-Dependent F -Number Suppresses
Grating Lobes and Improves

the Lateral Resolution in
Coherent Plane-Wave Compounding

Martin F. Schiffner , Graduate Student Member, IEEE, and Georg Schmitz , Senior Member, IEEE

Abstract—Ultrafast imaging modes, such as coherent
plane-wave compounding (CPWC), increase image uni-
formity and reduce grating lobe artifacts by dynamic
receive apertures. The focal length and the desired
aperture width maintain a given ratio, which is called
the F-number. Fixed F-numbers, however, exclude useful
low-frequency components from the focusing and reduce
the lateral resolution. Herein, this reduction is avoided by
a frequency-dependent F-number. This F-number derives
from the far-field directivity pattern of a focused aperture
and can be expressed in closed form. The F-number,
at low frequencies, widens the aperture to improve the
lateral resolution. The F-number, at high frequencies, nar-
rows the aperture to avoid lobe overlaps and suppress
grating lobes. Phantom and in vivo experiments with a
Fourier-domain beamforming algorithm validated the pro-
posed F-number in CPWC. The lateral resolution, which
was measured by the median lateral full-widths at half-maximum of wires, improved by up to 46.8% and 14.9% in
a wire and a tissue phantom, respectively, in comparison to fixed F-numbers. Grating lobe artifacts, which were
measured by the median peak signal-to-noise ratios of wires, reduced by up to 9.9 dB in comparison to the full
aperture. The proposed F-number thus outperformed F-numbers that were recently derived from the directivity of the
array elements.

Index Terms— Dynamic aperture, F-number, Fourier-domain beamforming, frequency-dependent apodization, grating
lobes, ultrafast ultrasound imaging.

I. INTRODUCTION

ULTRAFAST ultrasound imaging (UI) modes, such as
coherent plane-wave compounding (CPWC) [1], [2], [3]

or synthetic aperture (SA) imaging [4], capture large fields
of view (FOVs) at kilohertz rates [5]. These rates result
from a combination of unfocused waves, which insonify the
entire FOV at each emission, and fully sampled transducer
arrays. A single pulse-echo measurement provides enough
data to form a low-quality image. The image formation is
based upon software [2], [5] and usually applies the delay-
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and-sum (DAS) algorithm [6]. This algorithm uses receive
focusing to determine the echogenicity of all volume elements
(voxels) in the image. This algorithm, moreover, enables the
superposition of the low-quality images to synthesize transmit
foci in retrospect and improve the image quality at the expense
of the frame rate.

Linear arrays, as shown in Fig. 1, are among the most
popular probe types [7], [8]. These arrays facilitate the
imaging of superficial structures, such as the peripheral vas-
culature [9] or parts of the musculoskeletal system [10], and
small organs [11]. The arrays widen the FOV near the skin
surface by a large element pitch pe of the order of the center
wavelength λc (i.e., pe ≈ λc) [6], [12]. This element pitch
reduces the number of elements in a given footprint and, thus,
system complexity and costs [13]. The element pitch, however,
also violates the sampling theorem and produces grating
lobes. Such lobes reduce the dynamic range available for
unambiguous imaging and can result in multiple images of the
same reflector [14, p. 438], [15]. Echoes from the grating lobe
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Highlights
• A frequency-dependent F -number is enabled by translating delay-and-sum beamforming into the Fourier domain

and selecting the receive aperture as a function of both the focus and the frequency.

• The frequency-dependent F -number reduces image artifacts to a similar extent as a fixed F -number but, owing to
wider apertures at low frequencies, improves significantly the lateral resolution.

• Frequency dependence of the F -number is easy to implement and can improve the lateral resolution of all delay-
and-sum-based imaging modes (e.g., synthetic aperture imaging or line-by-line scanning).

Fig. 1. Selection of the receive aperture. The DAS algorithm first uses
the focal length zf and the F-number (1) to compute the desired aperture
width A(zf) = zf/F. The algorithm then selects all array elements whose
lateral center coordinates lie within a distance of A(zf)/2 from the lateral
focal coordinate xf. These selected elements form the aperture. This
aperture has left and right bounds xl and xr that coincide with the left and
right edges of specific array elements and usually differ from the desired
bounds xf − A(zf)/2 and xf + A(zf)/2 (gray lines), respectively. Such
differences are aperture errors (shaded orange). In the illustrated case,
the positioning of the focus near the right edge of the array causes an
asymmetric aperture in which the right part (shaded green) is narrower
than the left part (shaded blue). The left part, however, is also too narrow
because the desired left bound xf − A(zf)/2 lies between the left edge of
an array element and an array element center. These errors also affect
the angular aperture (i.e., |αlb| > αub).

locations are mistaken for echoes from the focus. Ultrafast UI,
due to the insonification of the entire FOV, is more susceptible
to this mistake than line-by-line scanning [16], [17].

The DAS algorithm, as shown in Fig. 1, uses a technique
known as dynamic receive aperture to increase image unifor-
mity [14, Table 7.3] and reduce grating lobe artifacts [13],
[17], [18]. This technique ensures that the receive focusing,
for any given focus rf = (xf, 0, zf)

T, processes only those
echoes that are received by a specific set of array elements.
This set, which will be called “receive aperture,” is dynamic
because, ideally, it is centered on the lateral focal coordinate
xf and increases linearly in width with the focal length zf.
The focal length zf and the desired aperture width A(zf),
hence, maintain a given ratio, which is known as the F-number
[3, eq. (3)], [6, Sec. 2.D], [14, p. 173], [17, eq. (12)]

F =
zf

A(zf)
(1)

and typically ranges from 0.75 to 2 [1], [2], [3], [6], [8],
[19, p. 414]. Dynamic apertures, however, reduce the lateral
resolution [8], [14, Table 7.3], [20]. The aperture formation

from the discrete array elements, moreover, causes aperture
errors (see Fig. 1). These errors include miscentering, devia-
tions from the desired width, and asymmetry.

Little information is available about the physics of dynamic
apertures, the optimal value of the F-number (1), and
the effect of any aperture errors. Delannoy et al. [17] and
Bruneel et al. [18] showed analytically that the F-number (1)
controls the grating lobe level (GLL) (i.e., the ratio of the max-
imum amplitudes attained by the grating lobes and the main
lobe) of the monofrequent receive beam in the focal plane.
The analysis, however, used the Fresnel approximation, which
is only valid near the focus [21, Sec. 4.7], and obsolete array
geometries. Wilcox and Zhang [13] studied numerically the
effect of the grating lobes on the point spread function (PSF)
in SA imaging. Although the study validated an empirical rule
for the selection of the F-number, the physical reasons and the
scope of validity remain unclear.

Jensen et al. [1], Montaldo et al. [3], Perrot et al. [6], and
Szabo [19, Sec. 10.12.2] ignored the effect of the F-number
(1) on the GLL and justified the usage of a dynamic receive
aperture and the typical values of the F-number (1) with
the suppression of measurement noise. This noise has similar
power in all receive channels. An echo from the focus,
in contrast, arrives at each array element at a different angle
α with respect to the normal and generates a signal power
that decreases as a function of this angle because the array
elements have a directivity D(α). This directivity, in the far-
field, equals the product of an obliquity factor o(α) and a sinc
function, i.e., [14, Sec. 7.2.5], [19, Sec. 7.7]

D(α) = o(α) sinc
[
sin(α)

we

λ

]
(2)

where o(α) = cos(α) for a soft baffle, o(α) = 1 for
a rigid baffle, sinc(x) = sin(πx)/(πx), and we/λ is the
element width-to-wavelength ratio. To ensure that all pro-
cessed echoes have sufficient signal-to-noise ratios (SNRs), the
authors thresholded the directivity (2) to derive a maximum
acceptance angle α̂ ∈ (0; π/2) and, using the relation F =

1/[2 tan(α̂)] [6, eq. (12)], an F-number. Such directivity-
derived F-numbers, however, are deficient because they ignore
other sources of attenuation, such as absorption or diffraction,
and, more importantly, grating lobes. These lobes, in standard
UI systems, create stronger image artifacts than the noise.

All above studies suggest that the F-number (1) should
increase monotonically with the frequency f . Such frequency
dependence, which will be denoted by F( f ), describes a
dynamic aperture that not only varies with the focus rf but
also narrows with the frequency f . The DAS algorithm,
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however, requires a fixed F-number and typically uses the
values at the center frequency fc (i.e., F = F( fc), see [13],
[19, Sec. 10.12.2]) or the upper frequency bound fub
(i.e., F = F( fub), see [6]). Such fixed F-numbers are
suboptimal. The maximum value at the upper frequency bound
F( fub), for example, uses the narrowest aperture for all
lower frequencies and, thus, reduces unnecessarily the lateral
resolution. Clinical images, however, must discern the smallest
possible dimensions [8].

This article reminds the reader that dynamic receive aper-
tures suppress grating lobes and proposes two innovations.
First, frequency dependence of the F-number (1) is incorpo-
rated into the image formation. This incorporation is achieved
by translating the receive focusing, which the DAS algorithm
usually performs in the time domain, into the Fourier domain
and making the aperture selection dependent on both the focus
and the frequency. Second, a closed-form expression for a
frequency-dependent F-number is proposed that maximizes
the lateral resolution under two constraints on the grating
lobes. Both constraints derive from the far-field directivity
pattern of a focused aperture and limit the GLL to make a
minimum dynamic range available for unambiguous imaging.
Phantom and in vivo experiments show that the proposed F-
number not only improves the lateral resolution in comparison
to fixed F-numbers (1) but also outperforms two directivity-
derived F-numbers in the reduction of image artifacts. This
article significantly extends our previous work [22]. The exten-
sions include: 1) a description of the Fourier-domain receive
focusing; 2) the treatment of aperture errors; 3) a derivation of
the far-field directivity pattern using the method of stationary
phase; and 4) additional experiments.

II. THEORY

The Fourier-domain receive focusing, which incorporates
a frequency-dependent F-number F( f ), will be presented
first. This kind of focusing will subsequently be used to
derive the far-field directivity pattern of a focused aperture and
the proposed F-number. All derivations make the following
assumptions. The linear array, according to the Cartesian
coordinate system in Fig. 1, has Ne elements of width we and
height he. Their center coordinates are

xe,m = (m − Me)pe and ye,m = ze,m = 0 (3)

for all element indices m ∈ M = {0, 1, . . . , Ne − 1}, where
Me = (Ne − 1)/2 and pe > we is the element pitch. The
mth element, in each pulse-echo measurement, acquires the
radio frequency (RF) signal um(t), where t is the time elapsed
since the transmission of a plane wave (PW) at t = 0. Each
signal um(t) is assumed to be analytic [19, Sec. A.2.7] and
bandpass band-limited (i.e., there are lower and upper bounds
flb > 0 and fub > flb, respectively, such that the signal has
energy only in the range of frequencies flb ≤ f ≤ fub). The
acquired RF signals um(t) are processed in software to form
an image whose voxels are located on a regular grid in the xz
plane (i.e., y = 0).

A. Proposed Fourier-Domain Receive Focusing
The receive focusing estimates the pulse echoed by a single

image voxel, which is located at the focus rf, by summing

coherently the acquired RF signals um(t) [3, eq. (2)],
[6, eq. (9)], [13, eq. (1)]. These signals, however, result
from superposition of tens of thousands of spherical waves
at the array elements. Each wave emanates from an image
voxel upon insonification by the transmitted PW. Each signal
um(t), thus, contains not only the desired pulse but, aside
from measurement noise, also interference (i.e., undesired
pulses echoed by the image voxels away from the focus
rf). The coherent summation produces a focused RF signal
u(foc)(rf, t) in which the desired pulse is usually amplified
compared to the noise and the interference. The interference
from specific voxels, however, adds up constructively and,
if their echogenicity is high, obscures the desired pulse. This
applies to voxels near the focus rf and at the grating lobe
locations due to limited spatial resolution and too large an
element pitch, respectively. The influence of both causes will
be balanced for each frequency by expressing the focused
RF signal u(foc)(rf, t) in the Fourier domain [23] and using a
frequency-dependent F-number F( f ). The resulting dynamic
aperture, which varies not only with the focus rf but also with
the frequency f (see Section I), will be described by a set
A(rf, f ) ⊆ M of element indices.

The focused RF signal u(foc)(rf, t) has a finite time duration
Tfoc and, due to the band limits of the acquired RF signals
um(t), can be represented by the Fourier sum [24, eq. (2.12)]

u(foc)(rf, t) ≈

ub∑
= lb

U (foc)(rf, f )e j2π f t (4)

where j is the imaginary unit, f = /Tfoc are the discrete
frequencies, lb > 0 and ub > lb are the lower and
upper frequency indices, respectively, and U (foc)(rf, f ) are
the Fourier coefficients. These coefficients derive from the
coherent summation in the time domain. This summation,
as explained in [3, eq. (2)], [6, eq. (9)], and [13, eq. (1)],
is a two-stage process. First, the acquired RF signals um(t)
are shifted in time to correct any differences in the arrival
times 1tm(rf) of the spherical wave from the focus rf at the
individual array elements and align the desired pulses. These
time shifts, by the translation rule [25, eq. (2.18)], correspond
to shifting in phase the Fourier coefficients of the acquired RF
signals [24, eq. (2.13)]

Um( f ) =
1

Tfoc

∫ Tfoc

0
um(t)e− j2π f t dt (5)

by using the factors e j2π f 1tm(rf), where the frequency f
replaced the discrete frequencies f to simplify the notation.
Second, the shifted RF signals um[t +1tm(rf)] are weighted in
amplitude, a process known as “apodization” [14, Sec. 7.2.9],
and summed. This weighted summation, due to the linearity
of the Fourier analysis, corresponds to

U (foc)(rf, f ) =

Ne−1∑
m=0

wm(rf, f )Um( f ) (6)

where the complex-valued apodization weights

wm(rf, f ) = ām(rf, f )e j2π f 1tm(rf) (7)

combine the phase shifts with frequency-dependent versions
ām(rf, f ) of the time-domain apodization weights. These
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weights implement the dynamic aperture by masking all
array elements outside the set A(rf, f ) [i.e., ām(rf, f ) =

0 for all m /∈ A(rf, f )]. The selection of the set A(rf, f )

and the computations of both the weights ām(rf, f ) and
the arrival times 1tm(rf) within the aperture will now be
detailed. Of special interest will be the treatment of aper-
ture errors and a lower bound zf,lb on the focal length zf
(i.e., zf > zf,lb).

1) Dynamic Aperture: The receive aperture has the desired
width A(zf, f ) = zf/F( f ) and, adapting the selection method
in Fig. 1, consists of all array elements whose lateral center
coordinates xe,m lie within a distance of A(zf, f )/2 from the
lateral focal coordinate xf. These elements have the indices1

A(rf, f ) =

{
m ∈ M :

∣∣xe,m − xf
∣∣ ≤

zf

2 F( f )

}
(8)

for any given values of the focus rf = (xf, 0, zf)
T and the

frequency f . The left and right aperture bounds xl(rf, f )

and xr(rf, f ) coincide with the left and right edges of the
leftmost and rightmost array elements in (8), respectively,
and read

xl(rf, f ) =
[
min{A(rf, f )} − Me

]
pe −

we

2
(9a)

xr(rf, f ) =
[
max{A(rf, f )} − Me

]
pe +

we

2
(9b)

where the dependence on the focus rf and the frequency
f will from now on be omitted to simplify the notation.
Any deviations of the lateral bounds (9) from the desired
bounds (i.e., xl ̸= xf − A(zf, f )/2 or xr ̸= xf + A(zf, f )/2)
are aperture errors. These errors, which are usually ignored
by the DAS algorithm [3], [6], [13], can be described by
two additional F-numbers. These F-numbers will be called
“actual F-numbers” and will be shown in Section II-B to
determine key properties of the far-field directivity pattern of
the focused aperture. The actual F-numbers, unlike the given
F-number F( f ), cannot be defined by the user and vary
not only with the frequency f but also with the focus rf.
The lateral focal coordinate xf, as shown in Fig. 1, splits the
interval [xl; xr], which contains the aperture, into a left part
[xl; xf) of width Al/2 = xf − xl and a right part [xf; xr] of
width Ar/2 = xr − xf. The actual F-numbers Fl and Fr divide
the focal length zf by the widths Al and Ar, respectively, and
equal

Fl =
zf

Al
=

zf

2(xf − xl)
and Fr =

zf

Ar
=

zf

2(xr − xf)
. (10)

These F-numbers, in the presence of aperture errors, differ
from each other or from the given F-number F( f ). These
differences, for the typical values of the given F-number (i.e.,
F( f ) ∈ [0.75; 2], see Section I), are insignificant for foci rf in
the center of the FOV but increase in significance as the foci
rf move to the lateral bounds of the FOV. Such foci cause
asymmetric apertures in which one part is truncated by an
edge of the linear array and, thus, narrower than the other
part (e.g., Al ≫ Ar, see Fig. 1). One of the actual F-numbers

1An F-number of zero (i.e., F( f ) = 0), herein, denotes the usage of the
full aperture (i.e., A(rf, f ) = M) for all foci rf.

(10), then, exceeds the given F-number F( f ) by multiples.
The aperture errors, for small values of the given F-number
(i.e., F( f ) ≪ 0.75), are always significant because the desired
aperture width A(zf, f ) exceeds the width of the array (i.e.,
A(zf, f ) ≫ (Ne − 1)pe + we). Such small values of the given
F-number F( f ) will arise for low frequencies.

2) Apodization: The apodization reduces sidelobe artifacts,
which are caused by the aperture edges, at the expense of
the lateral resolution [14, Sec. 7.2.9]. The required weights
ām(rf, f ), which will now be proposed, provide two advan-
tages over the apodization weights in the literature [1], [3, eq.
(2)], [6, eq. (15)], [13, eq. (30)] or software packages [26].
First, a reduction of sidelobe artifacts is ensured even in
the presence of aperture errors (i.e., for foci rf near the
lateral bounds of the FOV or small values of the given
F-number F( f ), see Section II-A1). This advantage results
from a window function w(x) that is maximal near the lateral
focal coordinate xf and decreases gradually to zero near
both lateral aperture bounds (9). This function accounts for
asymmetric apertures by joining two window functions wl(x)

and wr(x) at the lateral focal coordinate xf and reads

w(x) =


0, for x ≤ xl or x ≥ xr

wl(x), for xl < x < xf

wr(x), for xf ≤ x < xr.

(11a)

The window functions wl(x) and wr(x) are centered on the
lateral focal coordinate xf and have the widths Al and Ar,
respectively. Suitable examples are the Hann windows wl(x) =

(1 + cos[2π(x − xf)/Al])/2 and wr(x) = (1 + cos[2π(x −

xf)/Ar])/2. Second, the uniformity of the image intensity is
improved, and the apodization-induced loss in the lateral reso-
lution is reduced. This advantage results from a normalization
of the proposed weights (i.e.,

∑Ne−1
m=0 ām(rf, f ) = 1) that read

ām(rf, f ) =
w(xe,m)∑Ne−1

m=0 w(xe,m)
(11b)

where w(xe,m) are samples of the window function (11a) at the
lateral center coordinates xe,m of the array elements defined in
(3). The normalization scales the Fourier coefficients of the
focused RF signal (6) as a function of both the focus rf and
the frequency f . This scaling compensates the effect of any
differences in the aperture width (i.e., the number of nonzero
summands) on the moduli of the coefficients (6). The scaling,
in particular, prevents an overweighting of low-frequency
coefficients (6) relative to high-frequency coefficients (6).
Low frequencies permit wider apertures than high frequen-
cies and, thus, lead to more nonzero summands [see, e.g.,
Fig. 4(b), (c), and (g)].

3) Arrival Times: The focusing requires the arrival times
1tm(rf) of the spherical wave, which emanates from the image
voxel at the focus rf upon insonification by the transmitted
PW, at the individual array elements. These times will now
be estimated using the average speed of sound c̄ in the
FOV and geometric distances. The required distances are
the transmit distance d(tx)(rf), which the transmitted PW
travels from the linear array to the focus rf, and the receive
distances d(rx)

m (rf), which the induced spherical wave travels
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from the focus rf to the centers of the individual array
elements. The transmit distance d(tx)(rf), for a PW with
the steering angle ϑ ∈ (−π/2; π/2) and the propagation
direction eϑ = (− sin(ϑ), 0, cos(ϑ))T, amounts to [3, eq. (4)],
[19, eq. (10.12)]

d(tx)(rf) = cos(ϑ)zf − sin(ϑ)(xf − xref) (12a)

where the lateral reference position xref = sgn(ϑ)Me pe
with the sign function sgn ensures nonnegative distances.
The receive distances d(rx)

m (rf), in contrast, are [3, eq. (5)],
[19, eq. (10.9)]

d(rx)
m (rf) =

√
(xe,m − xf)2 + zf

2. (12b)

The arrival times 1tm(rf), dividing the sum of the distances
(12a) and (12b) by the average speed of sound c̄ in the FOV,
become [3, eq. (6)], [6, eq. (2)]

1tm(rf) =
1
c̄

[
d(tx)(rf) + d(rx)

m (rf)
]
. (12c)

4) Minimum Focal Length: The usage of the dynamic aper-
ture (see Section II-A1) requires the focal length zf to exceed
a lower bound zf,lb (i.e., zf > zf,lb) [13]. The focusing,
in fact, can reduce the lateral beamwidth and, thus, improve
the lateral resolution only if the aperture is wide enough to
ensure near-field operation. Near-field operation requires the
near-field distance zNF of the unfocused aperture to exceed
the focal length zf (i.e., zNF > zf) [14, p. 173], [15],
[19, pp. 190–191], [20]. The near-field distance zNF, using
a rectangular piston with the width A(zf, f ) = zf/F( f )

to approximate the unfocused aperture, amounts to zNF ≈

A2(zf, f )/(2.88λ) [27] and increases quadratically with the
focal length zf. The focal length zf, hence, must exceed the
lower bound

zf,lb ≈ 2.88λF2( f ). (13)

This constraint (i.e., zf > zf,lb), conversely, limits the
F-number F( f ) for any given focal length zf.

B. Far-Field Directivity Pattern of the Focused Aperture

The effects of the actual F-numbers (10) and the fre-
quency on the far-field directivity pattern of the focused
aperture will now be discussed. These effects explain the
tradeoff between the reduction of grating lobe artifacts and
the improvement of the lateral resolution (see Section I)
and will be used in Section II-C to derive the proposed F-
number. The far-field directivity pattern, as shown in Appendix
A, quantifies the sensitivity of the Fourier coefficients of
the focused RF signal (6) to incoming PWs. Each PW
propagates parallel to the image plane in a specific direc-
tion eα = (sin(α), 0, − cos(α))T, where α ∈ (−π/2;π/2)

denotes the arrival angle with respect to the z-axis, and has
a specific normalized lateral frequency k̄x = sin(α). The
far-field directivity pattern S(k̄x) is a function of this frequency
k̄x and, as shown in Appendix B-A, superimposes a main

Fig. 2. Effects of the actual F-numbers (10) and the frequency f
on the far-field directivity pattern (14). This pattern, which is shown
for Fl ≈ 0.56, Fr ≈ 1.67, p̄e = 0.9, and the parameters given
in Section IV-A, describes the sensitivity of the focused aperture to
incoming plane waves. These waves propagate parallel to the image
plane and arrive at the aperture at the angle α = arcsin(k̄x) for
|k̄x| < 1. The pattern superimposes a desired main lobe and undesired
grating lobes. The angular bounds of the main lobe (16) increase in
modulus with decreasing F-numbers (10) but are independent of the
frequency f. The angular distances of the first-order grating lobes (17),
in contrast, decrease in modulus with decreasing F-numbers (10) and
increasing frequency f. These distances, due to the element directivity
(2), determine the grating lobe amplitudes. The asymmetry of the main
lobe (i.e., |αlb| > αub) results from different widths of the left and right
parts of the aperture (i.e., Fl ≪ Fr, see Fig. 1) and not beam steering.

lobe S0(k̄x) and infinitely many grating lobes Sl(k̄x) of the
order l ∈ Z \ {0}, i.e.,

S(k̄x) ∝ S0(k̄x) +

∞∑
|l|=1

Sl(k̄x) (14a)

where ∝ is proportionality. Each lobe Sl(k̄x) multiplies a
shifted copy H(k̄x−lk̄s) of a single Fourier transform H(k̄x)

by a sinc function and reads

Sl(k̄x) = τl sinc
(

k̄x
we

λ

)
H(k̄x−lk̄s) (14b)

where τl = (−1)l(Ne−1)/pe are weights and k̄s = λ/pe =

1/ p̄e is the normalized lateral sampling frequency with the
normalized element pitch p̄e = pe/λ. The Fourier transform
H(k̄x), which lacks a closed form, describes the far-field
directivity pattern of a continuous version of the aperture. The
shifted copies H(k̄x−lk̄s) result from the discretization of this
continuous aperture by the equispaced elements of the linear
array. The sinc function reflects the element directivity (2)
and decreases the modulus of the pattern (14) with increasing
lateral frequency |k̄x|. Two important properties of all lobes
(14b), however, justify an exclusive consideration of the main
lobe S0(k̄x) and the first-order grating lobes S±1(k̄x).

First, each lobe (14b) has specific lateral band limits (i.e.,
there are lower and upper bounds k̄(l)

x,lb and k̄(l)
x,ub > k̄(l)

x,lb,
respectively, such that |Sl(k̄x)| ≈ 0 for k̄x < k̄(l)

x,lb or k̄x > k̄(l)
x,ub).

These band limits, which will be called “lobe bounds,” result
from shifting the main lobe bounds k̄x,lb ∈ (−1; 0) and
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k̄x,ub ∈ (0; 1) by an integer multiple l of the normalized lateral
sampling frequency k̄s and read

k̄(l)
x,lb = lk̄s + k̄x,lb (15a)

k̄(l)
x,ub = lk̄s + k̄x,ub. (15b)

The main lobe bounds k̄x,lb and k̄x,ub, as shown in
Appendix B-B, derive from an approximation of the Fourier
transform H(k̄x) and only depend on the actual F-numbers
(10). The shift |lk̄s|, in contrast, increases with increasing order
|l| and, due to the identity k̄s = c̄/(pe f ), decreasing frequency
f . Only those lobes (14b) that lie in the lateral frequency
band associated with propagable PWs (i.e., |k̄x| < 1), however,
are relevant. Such lobes define angular sectors within which
incoming PWs can be detected and, in the near field, represent
receive beams. The main lobe S0(k̄x) is always relevant (i.e.,
−1 < k̄x,lb < k̄x,ub < 1) and represents the desired receive
beam. The first-order grating lobes S±1(k̄x), which occur next
to the main lobe S0(k̄x), become relevant before higher order
grating lobes (i.e., |l| > 1) and, then, represent undesired
receive beams that can cause interference.

Second, the lobes (14b) decrease in modulus with increasing
order |l|. This decrease results from the fact that the Fourier
transform H(k̄x) acts as a window function (i.e., |H(k̄x)| ≈ 0
for k̄x < k̄x,lb or k̄x > k̄x,ub, see Appendix B-B) whose shifted
copies H(k̄x−lk̄s) segment the sinc function. The segments
have the bounds (15) and, due to the decay of the sinc
function with increasing lateral frequency |k̄x|, decrease in
modulus as the order |l| increases. The main lobe S0(k̄x) and
the first-order grating lobes S±1(k̄x), thus, can attain higher
amplitudes than higher order grating lobes (i.e., |l| > 1),
and the associated receive beams can cause the strongest
interference. The amplitudes of the lobes S0(k̄x) and S±1(k̄x)

vary with the associated bounds (15). The dependence of these
bounds on the actual F-numbers (10) and the frequency f will
now be analyzed to describe the interference due to the limited
lateral resolution and the grating lobes.

1) Main Lobe Bounds: The main lobe S0(k̄x) is low-pass
band-limited (i.e., |S0(k̄x)| ≈ 0 for k̄x < k̄x,lb or k̄x > k̄x,ub).
The lower and upper bounds k̄x,lb and k̄x,ub, as shown in
Appendix B-B, only depend on the actual F-numbers (10)
of the left and right parts of the aperture, respectively. These
dependencies read

sin(αlb) = k̄x,lb = −
1√

1 + (2Fl)2
(16a)

sin(αub) = k̄x,ub =
1√

1 + (2Fr)2
(16b)

where αlb ∈ (−π/2; 0) and αub ∈ (0; π/2) denote the lower
and upper angular bounds of the main lobe, respectively.
The angular bounds (16), as shown in Fig. 2, increase in
modulus with decreasing F-numbers (10). This increase can be
explained by a simple model of the desired receive beam. This
model, as shown in Fig. 1, consists of two rays that start at the
aperture edges in the image plane and intersect at the focus.
The resulting angular aperture, due to basic trigonometric
relations, has the bounds (16) and, thus, equals the angular
sector within which the main lobe can detect incoming PWs.

2) First-Order Grating Lobe Bounds: The first-order grating
lobes S±1(k̄x) are bandpass band-limited (i.e., |Sl(k̄x)| ≈ 0 for
k̄x < lk̄s + k̄x,lb or k̄x > lk̄s + k̄x,ub with l = ±1). These
lobes, considering the identity k̄s = 1/ p̄e and the main lobe
bounds (16), are relevant only if the element pitch pe violates
the sampling theorem (i.e., p̄e > 0.5) and the actual F-
numbers (10) are sufficiently small. The upper bound k̄(−1)

x,ub =

−k̄s + k̄x,ub of the −1st grating lobe S−1(k̄x) and the lower
bound k̄(1)

x,lb = k̄s + k̄x,lb of the +1st grating lobe S1(k̄x)

then define signed angular distances χlb ∈ (−π/2; π/2) and
χub ∈ (−π/2; π/2), respectively. These distances meet

sin(χlb) = −k̄s + k̄x,ub = −
1
p̄e

+
1√

1 + (2Fr)2
(17a)

sin(χub) = k̄s + k̄x,lb =
1
p̄e

−
1√

1 + (2Fl)2
(17b)

and show that the main lobe S0(k̄x) and the first-order grating
lobes S±1(k̄x) can overlap (i.e., occupy the same angles).
Such overlaps, as will be argued in Section II-B3, distort
the desired receive beam and, thus, will be eliminated by
defining a suitable F-number. All the following discussions,
hence, apply to the interesting case in which lobe overlaps
are absent and the angular distances (17) satisfy χlb < αlb
and χub > αub. In this case, which is shown in Fig. 2, the
angular distances (17) decrease in modulus with: 1) decreasing
F-numbers (10) and 2) due to the inverse proportionality
k̄s ∝ 1/ f , increasing frequency. The sinc function, which
reflects the element directivity (2) in the lobes (14b), thereby
increases the grating lobe amplitudes. This increase results in a
tradeoff between the reduction of grating lobe artifacts and the
improvement of the lateral resolution. Any such improvement
requires wider apertures or, equivalently, smaller F-numbers
(10). Such F-numbers, however, decrease the grating lobe
distances (17) in modulus and, thus, increase the grating lobe
amplitudes.

3) Lobe Aliasing: Overlaps between the main and grating
lobes, due to the superposition (14a) of all lobes (14b), distort
the desired receive beam and, thus, must be avoided. Such
overlaps occur if the main lobe bounds (16) exceed the grating
lobe distances (17) (i.e., αlb < χlb or αub > χub). The
overlaps, to the best knowledge of the authors, have never been
reported in the literature and, according to the aliasing effect
in undersampled signals, will be called “lobe aliasing.” The
avoidance of lobe aliasing is a new method that is proposed
herein and will be called “lobe antialiasing.” This method
increases the given F-number F( f ) and, thus, the actual
F-numbers (10) with the frequency. The resulting reduction
in the moduli of the main lobe bounds (16) compensates the
effect of the normalized lateral sampling frequency k̄s. This
frequency k̄s, as explained in Section II-B2 and shown in
Fig. 2, reduces the grating lobe distances (17) in modulus with
increasing frequency f . Let the angle δ ∈ [0, π/2) denote a
safety margin that accounts for any approximation errors in the
main (16) and grating lobe bounds (17). The lobe antialiasing
conditions χlb < αlb − δ and χub > αub + δ then yield

cos(δ) + 2Fl sin(δ)√
1 + (2Fl)2

+
1√

1 + (2Fr)2
<

1
p̄e

(18a)
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Fig. 3. Effect of the proposed F-number (21) on the angular distances
of the first-order grating lobes (17). Both distances, if the aperture is
error-free [i.e., Fl = Fr = F(p̄e)], are equal (i.e., χub = −χlb = χ) and
exclusively depend on the frequency and the given F-number F(p̄e). The
proposed F-number (21), which is shown for χ0 = 45◦, Fub = 3, and
δ = 10◦, maximizes the lateral resolution under two constraints. This
F-number, for (a) low frequencies (i.e., p̄e ≤ 0.78), equals the lower
bound (19) to avoid lobe aliasing. The grating lobes, in this frequency
range, are either irrelevant or their angular distances (17) exceed the
given minimum (i.e., χ > χ0). The proposed F-number (21), for higher
frequencies (i.e., p̄e > 0.78), equals the lower bound (20). This bound,
around (b) center frequency (i.e., 0.78 < p̄e < p̄e,ub ≈ 1.15), fixes the
angular distances (17) and, thus, limits the grating lobe amplitudes. This
bound, for (c) high frequencies (i.e., p̄e ≥ p̄e,ub), equals the maximum
permissible F-number (i.e., F(p̄e) = Fub) to sustain the focusing. The
directivity-derived F-numbers (24) and (25), which will be introduced in
Section IV-D2 and are shown for we/pe = 91.8%, do not control the
grating lobes and serve as references.

cos(δ) + 2Fr sin(δ)√
1 + (2Fr)2

+
1√

1 + (2Fl)2
<

1
p̄e

(18b)

where the inequalities sin(χlb) < sin(αlb − δ) and sin(χub) >

sin(αub + δ) were expanded combining the sine addition
theorems with the main (16) and grating lobe bounds (17).

C. Proposed F-Number

The proposed F-number will now be derived. The derivation
will be simplified by replacing the frequency f as the inde-
pendent variable by the normalized element pitch p̄e = pe f/c̄.
The proposed F-number F̂( p̄e) maximizes the aperture width
and, thus, the lateral resolution under two constraints. Each
constraint, as will be shown, limits the GLL in a specific
frequency range and imposes a lower bound on the given
F-number F( p̄e). The first constraint limits the GLL for
low frequencies by avoiding lobe aliasing. This constraint
is represented by the antialiasing conditions (18) and yields
the lower bound F (A)

lb ( p̄e). The second constraint, in contrast,
limits the GLL for higher frequencies by using the element
directivity (2). This constraint imposes a lower bound on
the moduli of the grating lobe distances (17) to reduce the
grating lobe amplitudes (see Fig. 2) and yields the lower bound
F (G)

lb ( p̄e). Both constraints, which the proposed F-number
F̂( p̄e) meets by selecting the maximum of the associated
lower bounds, define a minimum dynamic range available for
unambiguous imaging.

The proposed F-number F̂( p̄e) must ensure that the above
constraints hold in the presence of aperture errors. Such errors,
which lead to significant deviations of the actual F-numbers
(10) from the given F-number F( p̄e) for foci rf near the
lateral bounds of the FOV or small values of the given
F-number F( p̄e) (see Section II-A1), have to be factored
into the apodization weights (11) and the far-field directivity
pattern (14). The following derivations, however, may be
simplified by assuming an error-free aperture [i.e., Fl = Fr =

F( p̄e)] because there are only two kinds of aperture errors, and
neither kind affects the lower bounds F (A)

lb ( p̄e) and F (G)
lb ( p̄e).

First, the lateral bounds (9) can exceed the desired bounds xf±

A(zf, p̄e)/2. Any such exceedance, however, is limited by half
the element width we/2 (i.e., xl ≥ xf −[A(zf, p̄e)+we]/2 and
xr ≤ xf + [A(zf, p̄e) + we]/2). This error is negligible for the
usual focal lengths zf [i.e., Fl, Fr ≥ F( p̄e) for zf ≫ we F( p̄e)].
Second, the lateral bounds (9) can fall below the desired
bounds. Such apertures, however, meet the above constraints if
the error-free aperture obeys them. The constraints hold more
easily for large actual F-numbers (10) (see Fig. 2), and at least
one actual F-number (10) exceeds the given F-number (e.g.,
Fr ≫ Fl ≈ F( p̄e), see Fig. 1).

1) Lobe Antialiasing Constraint: The antialiasing conditions
(18), considering an error-free aperture [i.e., Fl = Fr = F( p̄e)]
and assuming a small safety margin (i.e., δ ≪ 1), yield the
lower bound on the F-number

F (A)
lb ( p̄e) =


0, for p̄e < 0.5√

p̄e
2
− 0.25 + p̄e

2
δ

1 − p̄e
2
δ2

, for 0.5 ≤ p̄e < 1/δ

(19)

where the safety margin justified the approximations sin(δ) ≈

δ and cos(δ) ≈ 1. This bound, as shown in Fig. 3 for δ = 10◦,
permits the usage of the full aperture (i.e., F (A)

lb ( p̄e) = 0) if the
grating lobes are irrelevant (i.e., p̄e < 0.5). The bound then
increases from a value of approximately zero at p̄e = 0.5 to
a value of approximately three at p̄e = 2. The grating lobe
distances (17) decrease from χub = −χlb = χ ≈ 90◦

at p̄e = 0.5 to χ ≈ 20◦ at p̄e = 2 and amount to
only χ ≈ 35◦ near the center frequency (i.e., p̄e ≈ 1).
Small distances in the spectral center, however, permit strong
interference because the element directivity (2), as shown in
Fig. 2, increases the grating lobe amplitudes with decreasing
distances.

2) Minimum Angular Distance Constraint: The imposition of
a minimum angular distance χ0 ∈ (0; π/2] on the first-order
grating lobes, due to the element directivity (2), limits their
amplitudes. This limitation, however, requires frequencies
below a cutoff. This cutoff derives from a maximum permis-
sible F-number Fub > 0 that avoids very narrow apertures.
Such apertures cannot reduce the lateral beamwidth and render
the focusing ineffective (see Section II-A4). The grating lobe
distances (17), considering an error-free aperture [i.e., Fl =

Fr = F( p̄e)], noticing equal distances (i.e., χub = −χlb = χ ),
and imposing the given minimum [i.e., sin(χ) > sin(χ0)],
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Fig. 4. Proposed Fourier-domain beamforming algorithm. Inputs include (a) grid of voxels and (e) digitized RF signals. The algorithm first computes
(f) Fourier coefficients of the acquired RF signals (5) by a zero-padded FFT and then separately processes all image voxels. For any selected voxel
and each frequency, the receive aperture derives from (b) complex-valued apodization weights (7). The multiplication of these weights by (f) Fourier
coefficients of the acquired RF signals (5) yields (g) weighted coefficients and, upon lateral summation, (c) Fourier coefficients of the focused RF
signal (6). An inverse fast Fourier transform (IFFT) provides (d) focused RF signal (4). A specific sample of this signal yields (h) complex voxel value
(22). The steps [see (c) and (d)] can be summarized in a 2-D sum of (g) weighted coefficients if (b) complex-valued apodization weights (7) are
replaced by wm(rf, f )ej2πft0 .

yield the lower bound on the F-number

F (G)
lb ( p̄e) =


0, for p̄e ≤ p̄e,lb

1
2

√
1[

1/ p̄e − sin(χ0)
]2 − 1, for p̄e ∈ P

Fub, for p̄e ≥ p̄e,ub

(20a)

where P = ( p̄e,lb; p̄e,ub) and the lower and upper bounds on
the normalized element pitch are

p̄e,lb =
1

sin(χ0) + 1
(20b)

p̄e,ub =
1

sin(χ0) +
1√

1+(2Fub)2

. (20c)

This bound, as shown in Fig. 3 for χ0 = 45◦ and Fub = 3,
permits the usage of the full aperture (i.e., F (G)

lb ( p̄e) = 0) if
the grating lobes are irrelevant or their distances exceed the
minimum (i.e., p̄e ≤ p̄e,lb ≈ 0.59). The bound then increases
steeply from the value of zero at p̄e = p̄e,lb to the maximum
permissible F-number at p̄e = p̄e,ub ≈ 1.15. The grating lobe
distances (17) thereby equal the given minimum (i.e., χ = χ0).
The bound equals the maximum permissible F-number (i.e.,
F (G)

lb ( p̄e) = Fub) for p̄e ≥ p̄e,ub to sustain the focusing. The
lower bound (20), however, falls below the antialiasing bound
(19) for 0.5 ≤ p̄e < 0.78 and, thus, permits lobe aliasing.

3) Proposition: The proposed F-number F̂( p̄e) equals the
maximum of the lower bounds (19) and (20) to avoid lobe
aliasing and impose a minimum distance on the first-order
grating lobes. The proposed F-number F̂( p̄e), thus, reads

F̂( p̄e) = max
{

F (A)
lb ( p̄e), F (G)

lb ( p̄e)
}

(21)

for p̄e < 1/δ. This F-number, as shown in Fig. 3 for χ0 =

45◦, Fub = 3, and δ = 10◦, avoids lobe aliasing for p̄e ≤

0.78. It fixes the grating lobe distances (17) for 0.78 < p̄e <

p̄e,ub ≈ 1.15 and sustains the focusing for p̄e ≥ p̄e,ub. Note
that larger F-numbers [i.e., F( p̄e) > F̂( p̄e)] also meet both
lower bounds. Such F-numbers, however, narrow the aperture
and, thus, reduce the lateral resolution.

III. IMPLEMENTATION

The algorithm, which implemented the image formation in
the Fourier domain, will now be described. This algorithm,
as shown in Fig. 4, determined the echogenicity of each image
voxel by estimating the echoed pulse (see Section II-A) and
measuring its amplitude. The value I (rf) of the voxel at the
focus rf, as shown in Fig. 4(d) and (h), equaled the focused
RF signal (4) at a given time t0, i.e.,

I (rf) ≈

ub∑
= lb

Ne−1∑
m=0

wm(rf, f )e j2π f t0Um( f ). (22)
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The time t0 depended on the electromechanical pulse-echo
response and, as shown in Fig. 4(d), equaled the time of the
maximum envelope. The Fourier coefficients of the acquired
RF signals (5), as shown in Fig. 4(e) and (f), were computed
from digitized versions of the acquired RF signals um(t) using
zero-padded fast Fourier transforms (FFTs) [24, Sec. 2.4.]. The
zero padding prevented aliasing in the focused RF signal (4)
by accounting for its maximum time duration Tfoc,ub for all
foci. This duration equaled the sum of the duration of the
acquired RF signals um(t) and the maximum difference in the
arrival times (12) for any fixed focus and all array elements.
The lower and upper frequency indices lb and ub amounted
to lb = ⌈Tfoc,ub flb⌉ and ub = ⌊Tfoc,ub fub⌋, respectively, where
flb and fub are the band limits of the acquired RF signals
um(t) (see Section II) and ⌈·⌉ and ⌊·⌋ are the ceiling and floor
functions, respectively.

IV. METHODS

Five experiments validated the proposed F-number (21).
The first two experiments exposed the effect of the F-number
on the receive beam in the focal plane. The remaining experi-
ments showed the advantages of the proposed F-number (21)
in the formation of B-mode images. The specifications of
the linear array (Ne = 128, we = 279.8 µm, he = 4 mm,
and pe = 304.8 µm), in all experiments, were identical. The
lower and upper frequency bounds were flb = 2.25 MHz
and fub = 6.75 MHz, respectively. Dynamic receive aper-
tures with the proposed F-number (21) and three additional
F-numbers, which will be described in the end of this section,
were compared to the full aperture (i.e., F = 0). The
apodization weights (11) derived from Tukey windows with a
cosine fraction of 20 %. MATLAB R2021a (The MathWorks,
Inc., Natick, MA, USA) enabled all numerical calculations.

A. Receive Beam in the Focal Plane
The receive beam in the focal plane revealed the lateral

width of the main lobe and the positions and the maximum
amplitude of the grating lobes. All numerical calculations used
the exact equations in Appendixes A and B-A. The far-field
directivity pattern (31) was inserted into the inverse transverse
Fourier transform (29a). The focus rf/pe = (32, 0, 107)T

promoted asymmetric apertures (i.e., Al ≫ Ar, see Fig. 1
and Section II-A1). The normalized element pitch p̄e, com-
bining the frequency bounds with an average speed of
sound c̄ = 1540 m/s and an absorption coefficient α/ f =

0.5 dB/MHz/cm, ranged from 0.45 to 1.34. The inverse trans-
form (29a) was evaluated for voxel positions r0 = (x0, 0, zf)

T,
where the lateral distance 1x = x0 − xf ranged from −101 to
101 mm. The sampling period was a quarter of the minimum
wavelength λlb and equaled λlb/4 ≈ 57 µm. The subtraction
of the main lobe from the far-field directivity pattern (31),
according to the Poisson summation formula (33), isolated the
grating lobes. Their lower and upper lateral bounds xg,lb and
xg,ub were estimated as

xg,lb = xf − zf tan(χub) (23a)
xg,ub = xf − zf tan(χlb). (23b)

The lateral main lobe width at each frequency derived from
the full-width at half-maximum (FWHM), and the maximum
grating lobe amplitude was assessed by the GLL.

B. Parameter Sweeps

Four parameter sweeps revealed the effects of the given
F-number F( p̄e) and the minimum angular distance χ0, which
the proposed F-number (21) imposed on the first-order grating
lobes, on the GLL of the receive beam in the focal plane.
All sweeps, unless mentioned otherwise, used the parame-
ters from Section IV-A. The first sweep covered all actual
F-numbers (10) that the linear array allowed for the focus
rf/pe = (63.5, 0, 44)T. These F-numbers included values
down to Fl ≈ 0.17, which cause severe grating lobes. Three
additional sweeps used the results of the first sweep to cover
the minimum angular distances χ0 from 26◦ to 90◦ with a step
size of 1◦. The maximum permissible F-number, considering
the minimum focal length (13) at the maximum wavelength
λub ≈ 684 µm, was Fub = 2.6, and the safety margins were
δ ∈ {0◦, 10◦

}. The minimum angular distance bound (20)
served as a reference to show the lobe antialiasing effect.

C. B-Mode Image Formation

B-mode images were formed to investigate their quality.
A programmable UI system (SonixTouch Research, Analogic
Corporation, Richmond, BC, Canada) with a linear array
(model: L14-5/38) acquired and stored all RF channel data for
offline processing (sampling rate: 40 MHz). Two phantoms,
namely a wire and a tissue phantom, and the common carotid
artery of a volunteer (in vivo) were scanned. Each scan used
11 steering angles between −20◦ and 20◦ with a spacing of 4◦.
Only one scan per object was processed to ensure that all
receive aperture types use the same RF data set and, thus,
produce comparable images. Single PW images were formed
using steering angles of 0◦ for the wire phantom and −20◦ for
both remaining objects. Both angles ensured an insonification
of off-axis reflectors and, thus, promoted the emergence of
grating lobe artifacts. Compound images were formed using
three (−16◦, 0◦, 16◦) and all 11 steering angles. The number
of image voxels and their spacing on each axis amounted to
512 and pe/4 = 76.2 µm, respectively.

1) Phantoms: The wire phantom consisted of nine wires
suspended in a tap water tank (c̄ = 1470 m/s). The axial
wire distances from the linear array approximately ranged
from 31.6 to 62.4 mm, and the mean axial and lateral spac-
ings amounted to approximately 4 and 3 mm, respectively.
An acoustic absorber reduced reflections of the waves at
the bottom of the water tank. The tissue phantom (model
040, Computerized Imaging Reference Systems, Inc., Norfolk,
VA, USA) mimicked human liver tissue (c̄ = 1539 m/s
and attenuation: 0.5 dB/MHz/cm). The phantom additionally
embedded 16 wires, two anechoic regions, and two hypere-
choic regions. The axial wire distances from the linear array
approximately ranged from 5.8 to 39.7 mm, and the axial and
lateral spacings ranged from 1 to 10 mm. The image plane,
in both phantoms, crossed the wires to obtain the PSFs.
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2) In Vivo: The internal jugular vein and the common
carotid artery of a volunteer (c̄ = 1540 m/s and attenuation:
0.5 dB/MHz/cm) were scanned in the axial plane.

3) Quality Assessment: The single PW images were first
assessed by inspecting visually the lateral resolution, the
image uniformity, and the intensity of grating lobe artifacts.
These artifacts were identified by a two-stage process. First,
candidate artifacts were located by searching visually all
images for moiré patterns (i.e., patterns of alternating dark
and bright areas [28, p. 1]). These patterns result from the
interference caused by strong reflectors, such as wires or
interfaces, and differ from the usual speckle pattern [29]. The
moiré patterns can most easily be detected in hypoechoic
regions and decrease in intensity as the number of steering
angles increases. Strong reflectors within the estimated bounds
(23) of the undesired receive beams near the focal plane
are another indicator. Second, the presence of grating lobe
artifacts in each candidate area was confirmed by overlaying
the image with the receive beams (see Section IV-A) for a
focus in the artifact area at multiple frequencies and locating
the interference sources. These sources lie in the undesired
beams represented by the grating lobes and affect the voxel
value (22). The lateral resolution, the reduction of grating lobe
artifacts, and the contrast were then measured by the lateral
FWHMs of the wires in each phantom, the peak signal-to-
noise ratios (PSNRs) of the wires in the wire phantom, and
the generalized contrast-to-noise ratios (gCNRs) [30] of the
anechoic regions in the tissue phantom, respectively. Each
metric produced a spatial distribution (i.e., a set of values that
depend on the positions of the wires or the anechoic regions
in the FOV). The spatial distributions of the lateral FWHMs
and the PSNRs, due to the large numbers of wires, were
represented by the medians, the interquartile ranges (IQRs),
and the extrema. The medians served as single references for
comparisons, whereas the IQRs and the extrema quantified the
spatial variability to enable an assessment of the image unifor-
mity. The spatial distributions for the same object and the same
number of steering angles, due to the offline processing of the
same RF data and, thus, the same realization of the measure-
ment noise, could be compared without statistical tests. These
comparisons and those involving different numbers of steering
angles, due to the low noise power, likely hold for all noise
realizations.

D. Investigated F-Numbers
1) Fixed F-Number: The smallest F-number that eliminated

most grating lobe artifacts in the single PW image served as
a reference. This F-number, for each object, derived from an
F-number sweep that covered the range from 0.1 to 3 with a
step size of 0.1.

2) Directivity-Derived F-Numbers: Two F-numbers that seek
to ensure a sufficient SNR in the focused RF signal (4) were
taken from the literature. Both F-numbers thresholded the
element directivity (2) under a specific boundary condition (see
Section I) and, thus, were frequency-dependent. This depen-
dence, for the first time, was completely accounted for by

the proposed algorithm to assess whether such optimizations
of the SNR yield suitable F-numbers. The first F-number,
which was proposed by Perrot et al. [6, eqs. (12) and (13)],
assumed the array elements to be embedded in a soft baffle
[i.e., o(α) = cos(α)] and permitted a maximum attenuation of
3 dB (i.e., D(α) ≥ 0.71). The result

F =
1

2 tan(α̂)
with α̂ = arg min

α∈(0;π/2)

|D(α) − 0.71| (24)

required a numerical solution for the acceptance angle α̂. This
F-number, which will be called “Directivity S3,” approxi-
mately maintained a constant value of 0.5 for low frequencies
and then increased almost linearly up to a value of 2, as shown
in Fig. 3. The second F-number, which was proposed by
Szabo [19, eq. (10.11)], assumed the array elements to be
embedded in a rigid baffle (i.e., o(α) = 1) and permitted
a maximum attenuation of 6 dB (i.e., D(α) ≥ 0.5). The
half-beamwidth in the focal plane x6, however, was approxi-
mated by x6 ≈ 0.6λzf/we and yielded

F =
zf

2 x6
=

we

1.2λ
. (25)

This F-number, which will be called “Directivity R6,”
increased linearly with the frequency up to a value of 1.5,
as shown in Fig. 3.

V. RESULTS

A. Receive Beam in the Focal Plane

The beam profiles revealed the grating lobe positions and a
tradeoff between the lateral main lobe width and the GLL,
as shown in Fig. 5. The first-order grating lobes entered
the FOV for normalized element pitches p̄e exceeding 0.7.
The estimated bounds of these lobes (23) agreed with the
actual bounds for angular distances χub, −χlb > 30◦. Note
that negative angles (see Fig. 2) resulted in positive lateral
distances. The beams were identical if the given F-numbers
fell below the minimum F-number that could be achieved by
the linear array for the selected focus (i.e., Fl ≈ 0.55). The
full aperture consistently yielded the smallest FWHMs but the
largest GLLs for all frequencies. The dynamic aperture with
a fixed F-number, conversely, yielded the largest FWHMs
but the smallest GLLs. All frequency-dependent F-numbers
ranged between these two extremes. The proposed F-number
(21), however, effectively reduced the lateral FWHMs of the
main lobe to the same value as the full aperture (i.e., FWHM ≤

1.1 mm) and additionally limited the GLLs to the same value
as the fixed F-number (i.e., GLL ≤ −27 dB).

B. Parameter Sweeps

The proposed F-number (21) limited the GLL, as shown in
Fig. 6. The GLLs in Fig. 6(a) strongly resemble the angular
distances of the first-order grating lobes (see Fig. 3). This
notion is confirmed by the presentation of the GLLs as a
function of the minimum angular distance χ0, as shown in
Fig. 6(b). The GLL, for a fixed minimum angular distance
χ0 and low frequencies, increased initially due to the lobe
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Fig. 5. Effect of all apertures on the receive beam in the focal plane. Only the dynamic aperture with the proposed F-number (21) reduced
the lateral width of the main lobe and additionally limited the maximum amplitude of the grating lobes. The images show the absolute values of
the receive beam (29) as functions of the normalized element pitch p̄e = pe/λ and the lateral distance ∆x = x0 − xf for (a) full aperture and
(b)–(e) dynamic apertures with various F-numbers. These F-numbers include (b) fixed F-number of F = 3, (c) directivity-derived F-number (24),
(d) directivity-derived F-number (25), and (e) proposed F-number (21) with χ0 = 45◦, Fub = 3, and δ = 10◦. The lateral main lobe width is measured
by (f) lateral FWHM, and the maximum grating lobe amplitude is assessed by (g) GLL.

Fig. 6. Effect of the F-number and the frequency on the GLL of the receive beam in the focal plane. The minimum angular distance χ0, which
the proposed F-number (21) imposed on the first-order grating lobes, controlled the maximum GLL, and the lobe antialiasing bound (19) prevented
large GLLs of up to -3.5 dB. The images show the GLLs as functions of the normalized element pitch p̄e = pe/λ and (a) given F-number or
(b) minimum angular distance χ0 in the proposed F-number (21) with Fub = 2.6 and δ = 10◦. Curves show (c) maximum GLL for a normalized
element pitch p̄e in the interval [0.45; p̄e,ub], where p̄e,ub is the cutoff (20c), as a function of the minimum angular distance χ0.

antialiasing bound (19). The GLL peaked at the transition
frequency, where the minimum angular distance bound (20)
exceeded the lobe antialiasing bound (19) and then stayed
roughly constant, similar to the example in Fig. 5(g). The GLL
increased once the maximum permissible F-number Fub was
achieved at the cutoff frequency (20c). The lobe antialiasing,
as shown in Fig. 6(c), reduced the maximum GLL by up
to 10 dB. The increase of the safety margin from δ = 0◦

to δ = 10◦ reduced this metric by up to 4 dB. Larger
safety margins (i.e., δ > 10◦) did not further reduce this
metric.

C. B-Mode Image Formation
The receive aperture strongly affected the B-mode images,

as shown in Fig. 7. The full aperture maximized the lateral
resolution at the expense of both image uniformity and grating
lobe artifacts, as shown in Fig. 7(a). The image quality varied
significantly across the FOV because the actual F-numbers
(10) increased with the axial position and diverged with the
lateral position. The grating lobe artifacts near the edges of the
linear array rendered the images unusable in clinical practice.
The dynamic aperture with a fixed F-number, in contrast,
increased the image uniformity and eliminated most grating
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Fig. 7. Single PW images of the wire phantom (top row), the tissue phantom (center row), and the common carotid artery (in vivo, bottom row).
Only the proposed F-number (21) eliminated most grating lobe artifacts and reduced the associated loss in the lateral resolution. Grating lobe
artifacts resemble moiré patterns (i.e., patterns of alternating dark and bright areas). These patterns differ from the usual speckle pattern and can
most easily be detected in hypoechoic regions. The images show the absolute voxel values (22) for (a) full aperture and (b)–(e) dynamic apertures
with various F-numbers. These F-numbers include (b) fixed F-numbers of F = {3, 1.5,2} (top to bottom row), (c) directivity-derived F-number (24),
(d) directivity-derived F-number (25), and (e) proposed F-number (21) with χ0 = {40◦,60◦,80◦

}, Fub = {3,1.5,2}, and δ = 10◦. The inset images
magnify the regions indicated by the squares. These regions either contain wires (top and center rows) or grating lobe artifacts (bottom row). The
ellipses indicate additional locations of grating lobe artifacts. The red color denotes a low resolution or the presence of artifacts. The green color
denotes a high resolution or the reduction of artifacts.

lobe artifacts at the expense of the lateral resolution, as shown
in Fig. 7(b). The image uniformity resulted from the control
of the actual F-numbers (10). This control most affected small
axial positions and only failed near the lateral bounds of
the FOV, where the asymmetry of the aperture reduced the
lateral resolution. The reduction of the grating lobe artifacts
agreed with the minimum GLLs for all frequencies [see
Fig. 5(g)]. The loss in the lateral resolution, likewise, agreed
with the maximum FWHMs of the main lobe for all fre-
quencies [see Fig. 5(f)]. All frequency-dependent F-numbers
reduced this resolution loss, as shown in Fig. 7(c)–(e). Both
directivity-derived F-numbers (24) and (25), however, rein-
troduced grating lobe artifacts (see ellipses). These artifacts
were less severe for the F-number (24), which used the soft
baffle boundary condition. Only the proposed F-number (21)
reduced grating lobe artifacts to a similar extent as the fixed
F-number. The fluctuations of the lateral FWHMs of the
main lobe with the frequency [see Fig. 5(f)] caused oscillating
sidelobes in the PSFs, as shown in the top row of Fig. 7(e).

The image quality metrics confirmed the above findings
and demonstrated the effect of the coherent compounding,
as shown in Fig. 8. The full aperture and the dynamic aperture
with a fixed F-number consistently achieved the minimum and
maximum median lateral FWHMs, respectively, as shown in
Fig. 8(a) and (b). All frequency-dependent F-numbers ranged
between these two extremes. The proposed F-number (21)
increased the median lateral FWHMs in comparison to both
directivity-derived F-numbers (24) and (25) but reduced this
metric in comparison to the fixed F-number by up to 0.61 mm
(46.8%) for the wire phantom and 0.12 mm (14.9%) for the
tissue phantom. The proposed F-number (21), however, also
eliminated grating lobe artifacts and achieved the best median
PSNRs, as shown in Fig. 8(c). The median PSNRs increased
by up to 9.9 dB (21.2%) in comparison to the full aper-
ture. The contrast of the shallow anechoic region (diameter:
2 mm) increased with smaller lateral FWHMs of the wires,
as shown in Fig. 8(d). The frequency-dependent F-numbers
thus improved this contrast by up to 13.1% in comparison
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Fig. 8. Effect of all receive apertures on the B-mode image quality. All dynamic apertures with frequency-dependent F-numbers, in comparison
to the fixed F-number, significantly reduced the lateral FWHMs of the wires in both phantoms. Only the proposed F-number (21), however,
also eliminated grating lobe artifacts and, thus, achieved the best PSNRs. Each distribution describes the spatial variability of a metric in a
single B-mode image (i.e., the statistical sample size is unity). The horizontal lines indicate the medians, the boxes show the IQRs, and the
whiskers represent the extrema. Overlaps between adjacent distributions can result from similar values of the metrics at different locations
in the FOV. The metrics include (a) lateral FWHMs of the wires in the wire phantom, (b) lateral FWHMs of the wires in the tissue phantom,
(c) PSNRs of the wires in the wire phantom, and (d) gCNRs of the anechoic regions in the tissue phantom.

to the fixed F-number. The contrast of the deep anechoic
region (diameter: 4 mm), however, increased with the PSNRs
of the wires. The proposed F-number (21) thus improved this
contrast by up to 5.9% in comparison to the full aperture.
The coherent compounding improved all quality metrics and
reduced the differences between the receive apertures.

VI. DISCUSSION

Dynamic receive apertures, according to the differences in
the B-mode image quality (see Figs. 7 and 8), are essential
for ultrafast UI with linear arrays. The frequency-dependent
F-numbers, in comparison to the fixed F-number (1), improve
the lateral resolution by widening the aperture for low frequen-
cies. The complex-valued apodization weights (7) implement
a low-pass filter [see Fig. 4(b)], whose cutoff frequency
decreases with increasing lateral distance between the array
element and the focus. The grating lobe artifacts, as expected,
dispute the derivation of F-numbers from the element direc-
tivity (2). Both directivity-derived F-numbers (24) and (25)
ignore grating lobes, which are more important than the
measurement noise (see Section I), and, thus, reduced image
artifacts less effectively than the proposed F-number (21).
This F-number reduced grating lobe artifacts by two mecha-
nisms. First, it steered the grating lobes away from the wires
in the top-left corner of the wire phantom using a minimum
angular distance of χ0 = 40◦ [see the top row in Fig. 7(e)].
Second, it limited the GLL [see Fig. 6(c)] in both remaining
objects, where the grating lobes always caused interference.

The derivation of the proposed F-number (21) relied on
the far-field directivity pattern (14) because, to the best
knowledge of the authors, a simple and accurate analytic
expression for the grating lobes in the focal plane does not
exist. The method of stationary phase (see Appendix B-B),
unfortunately, fails for the receive beam, which is represented
by the inverse transverse Fourier transform (29a), because the
far-field directivity pattern (14), as shown in Fig. 2, oscillates
too quickly as a function of the angle [31]. A selection of
the F-number based on numerical results, such as the GLL
shown in Fig. 6(a), however, could be more accurate. Wilcox
and Zhang [13, Fig. 5 and eq. (32)], for example, derived an
empirical expression for a fixed F-number (1) from simulated
PSFs in SA imaging. This expression, surprisingly, equals the
lobe antialiasing bound (19) with a safety margin of δ = 0 at
the center frequency.

The computational costs of the proposed algorithm exceed
those of the DAS algorithm. The proposed algorithm exe-
cutes the DAS algorithm for each frequency and requires
additional FFTs of the RF signals. The apodization weights
(7), however, are independent of the RF signals and can be
precomputed. The Fourier domain, moreover, permits the inde-
pendent processing of different frequencies and, thus, lends
itself to multithreading on massively parallel architectures.
The running times of an exemplary CUDA implementation
ranged from 20 to 40 s on a GeForce GTX 1080 Ti (NVIDIA
Corporation, Santa Clara, CA, USA). The authors speculate
that a simplified algorithm based on filter banks [32, Fig. 4.]
and the usage of a fixed F-number in each band can achieve
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similar benefits at reduced costs. Such a simplification, how-
ever, requires the proposed algorithm as a benchmark. The
authors maintain a public version of the source code [33] to
support the reproduction of the results and facilitate further
research.

The acoustic reciprocity ensures that the proposed
F-number (21) also holds for the transmit focusing.
Element-specific excitation voltages, which result from the
complex-valued apodization weights (7), thus control the
grating lobes in the syntheses of focused beams or diverging
waves with virtual sources. A suppression of both transmit and
receive grating lobes may further improve the image quality.

Only a few nonadaptive methods suppress grating lobes in
ultrafast UI. Bae and Song [34] optimized the steering angles
of the transmitted PWs to suppress transmit grating lobes in
CPWC. The method, however, requires tens of steering angles
and, thus, limits the frame rate. Ponnle et al. [16] modulated
the focused receive beams in sector scans depending on the
steering angle. This method, unlike the proposed method, uses
beam steering. Heller and Schmitz [35] exploited the lateral
motion of the array to decrease the element pitch of a synthetic
receive aperture. The motion-induced shift, however, must
be known exactly. Kou et al. [36] superimposed the enve-
lope images created by three different apodization schemes
in the receive focusing. The envelope detection, however,
is nonlinear and removes phase information. Wojcik et al. [29]
averaged the RF signals provided by adjacent elements to
synthesize a receive aperture with half the element pitch. The
method, however, only suppresses odd-order grating lobes and
relies on boxcar windows.

VII. CONCLUSION

Dynamic receive apertures with a fixed F-number (1) are
a standard in ultrafast UI with linear arrays. This article has
proposed a frequency-dependent F-number (21) that reduces
grating lobe artifacts to a similar extent as a fixed F-number
(1) but additionally improves the lateral resolution. Experi-
ments with a Fourier-domain beamforming algorithm showed
improvements in the lateral resolution by up to 46.8% in
comparison to fixed F-numbers (1). Grating lobe artifacts
are reduced by up to 9.9 dB in comparison to the full
aperture. The proposed F-number (21) thus outperformed two
F-numbers that were recently derived from the element direc-
tivity (2) in the reduction of image artifacts. The presented
theory improves the understanding of dynamic apertures and
facilitates the F-number selection.

APPENDIX A
The far-field directivity pattern of the focused aperture will

now be derived and the underlying simplifications will be jus-
tified. To simplify the notation, the dependence of all variables
on the focus rf and the frequency f will usually be omitted.
The scattering of the transmitted acoustic pressure field p(tx)(r)
by the image voxel at the position r0 = (x0, 0, z0)

T results in
the acoustic pressure field [14, eq. (5.33)], [21, eq. (6.53)]

p(sc)(r) = P(r0)g(r − r0) (26a)

at the position r = (x, y, z)T, where P(r0) =

k21V ϵ(r0)p(tx)(r0) is the amplitude, k = β− jα is the
complex-valued wavenumber with the phase term β = 2π/λ
and the absorption coefficient α, 1V is the voxel volume,
ϵ(r0) is the echogenicity, and g is Green’s function

g(r) = −
1

4π

e− jk∥r∥2

∥r∥2
(26b)

with the ℓ2-norm ∥r∥2 = (x2
+ y2

+ z2)1/2.
The Fourier coefficients of the acquired RF signals (5) result

from the transduction of the force exerted by the acoustic
pressure field (26) on the face Lm of the mth array element
[14, p. 299], [37, eq. (9.13)]. These coefficients, neglecting the
elevational focusing by the acoustic lens [8], equal

Um = 2 h(rx)

∫
Lm

p(sc)(rρ, 0)drρ

where the factor of 2 accounts for a rigid baffle, h(rx) is
the common electromechanical transfer function of all receive
channels, and rρ = (x, y)T is the transverse position. The
Fourier coefficients of the focused RF signal (6) thus read

U (foc)(rf) = C(r0)

∫
R2

s(rρ)g(x − x0, y, −z0)drρ (27)

where C(r0) = 2 h(rx) P(r0) denotes the amplitude and s(rρ)

is the aperture function. This function equals

s(rρ) = rect
( y

he

) Ne−1∑
m=0

wm(rf, f ) rect
( x − xe,m

we

)
(28a)

and uses the products of the rectangle function

rect(x) =

{
1, for |x | < 1/2
0, for |x | > 1/2

(28b)

to represent all faces Lm of the array elements.
The Fourier coefficients (27) can be related to the far-field

directivity pattern of the focused aperture by a PW expansion
of Green’s function (26b). This so-called Weyl expansion reads
[21, eq. (4.4)]

g(r) =
jγ

8π2

∫
R2

e− jγ [⟨k̄ρ ,rρ⟩+k̄z(k̄ρ )|z|]

k̄z(k̄ρ)
dk̄ρ

where γ = β(1 − (α/β)2)1/2 is a reference phase term, k̄ρ =

(k̄x, k̄y)
T are the normalized transverse frequencies, ⟨k̄ρ, rρ⟩ =

k̄xx + k̄y y is the dot product, and k̄z(k̄ρ) is the complex-valued
square root

k̄z(k̄ρ) =

√
1 −

∥∥k̄ρ

∥∥2
2 − j

2αβ

γ 2

with Im{k̄z(k̄ρ)} ≤ 0. The insertion of this expansion into (27)
yields the inverse transverse Fourier transform

U (foc)(rf) =
jγ C(r0)

8π2

×

∫
R2

S(k̄ρ)e− jγ k̄z(k̄ρ )z0

k̄z(k̄ρ)
e jγ k̄xx0 dk̄ρ (29a)
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where S(k̄ρ) denotes the far-field directivity pattern

S(k̄ρ) =

∫
R2

s(rρ)e− jγ ⟨k̄ρ ,rρ⟩drρ . (29b)

This result has a simple interpretation. The far-field direc-
tivity pattern (29b) describes the sensitivity of the focused
aperture to incoming PWs with the wave vectors

k(k̄ρ) = γ
[
k̄ρ, −k̄z(k̄ρ)

]T
. (30)

These PWs, for small normalized transverse frequencies (i.e.,
∥k̄ρ∥2 < 1), are propagable and contribute to the focused RF
signal. Propagable PWs are either homogeneous (if α = 0)
or weakly inhomogeneous (if α > 0). The PWs, for large nor-
malized transverse frequencies (i.e., ∥k̄ρ∥2 > 1), however, are
evanescent and may be neglected due to a strong attenuation
along the z-axis. Hence, the far-field directivity pattern (29b)
for ∥k̄ρ∥2 < 1 suffices.

Soft tissues permit two simplifications. First, the phase
velocities c( f ) in different tissues are similar and almost
independent of the frequency [38]. This justifies the simpli-
fication c̄ ≈ c( f ) = λ f ≈ 1500 m/s, where c̄ denotes the
average speed of sound in the arrival times (12). Second, both
the absorption coefficient α and the phase term β increase
almost linearly with the frequency [38]. The slopes, which typ-
ically amount to 1 dB/MHz/cm for the absorption coefficient
and 2π/c( f ) ≈ 42/MHz/cm for the phase term, however,
significantly differ. This difference justifies the assumption
α/β ≈ 0.27% ≪ 1 and the simplification γ ≈ β. The far-field
directivity pattern (29b), inserting the aperture function (28),
thus reduces to

S(k̄ρ) = Ŝ(rf) sinc
(

k̄x
we

λ

)
sinc

(
k̄y

he

λ

)
Ĥ(k̄x) (31a)

with Ŝ(rf) = wehee jβd(tx)(rf) and the discrete-space Fourier
transform (DSFT)

Ĥ(k̄x) =

Ne−1∑
m=0

ām(rf, f )e− jβ[k̄xxe,m−d(rx)
m (rf)]. (31b)

The array geometry permits a final simplification. The
element height he usually equals multiple wavelengths λ (i.e.,
he ≫ λ) [14, p. 447]. The sinc functions, thus, rapidly decrease
the pattern (31) in modulus with increasing normalized ele-
vational frequency k̄y. They limit the reception to PWs that
propagate parallel to the image plane. This property justifies
the simplification k̄y ≈ 0 and the treatment of the pattern (31)
as a univariate function of the normalized lateral frequency
k̄x [see (14)]. This frequency, after the real part of the wave
vector (30), defines the angle α = arcsin(k̄x) at which the PW
with the direction eα = (sin(α), 0, − cos(α))T arrives at the
aperture if |k̄x| < 1.

APPENDIX B

The DSFT (31b) in the far-field directivity pattern (31)
lacks a simple form and must be approximated to derive
the bounds of the main (16) and grating lobes (17). The
proposed approximation consists of two steps. First, the Pois-
son summation formula [24, Th. 6.4], [25, Th. 2.4] is used

to show that the evaluation of a single Fourier transform
H(k̄x) suffices to determine the DSFT (31b). The DSFT
(31b), in fact, superimposes weighted and shifted copies of the
Fourier transform H(k̄x). Each copy, upon multiplication by
the sinc functions in (31a), creates a lobe (14b) in the far-field
directivity pattern (14). The Fourier transform H(k̄x) creates
the main lobe, and the copies create the grating lobes. The
Fourier transform H(k̄x), however, lacks a closed form and,
thus, prevents analysis. Second, the method of stationary phase
[39, Ch. 4] is used to approximate the Fourier transform H(k̄x)

in closed form and, by superimposing weighted and shifted
copies of the result, the DSFT (31b). This approximation
predicts low-pass band limits (i.e., there are lower and upper
bounds k̄x,lb ∈ (−1; 0) and k̄x,ub ∈ (0; 1), respectively, such
that |H(k̄x)| ≈ 0 for k̄x < k̄x,lb or k̄x > k̄x,ub). These band
limits not only equal the main lobe bounds (16) but can also
be used to predict the grating lobes bounds (15) and (17).

A. Poisson Summation Formula

The first step requires a continuous function h(x) whose
samples h(xe,m) at the lateral center coordinates (3) explain
the DSFT (31b). This function describes a continuous focused
aperture and reads

h(x) = ā(x, rf, f )e jβ
√

(x−xf)2+zf
2

(32)

where β = 2π/λ is the wavenumber and ā(x, rf, f ) is
a continuous version of the apodization weights (11). This
version simply evaluates the window function (11a) in the
numerator of (11b) at arbitrary lateral positions x . The version,
hence, vanishes outside the aperture [i.e., ā(x, rf, f ) = 0 for
all x ≤ xl or x ≥ xr with the lateral bounds (9)] and equals
the weights (11) within [i.e., ā(xe,m, rf, f ) = ām(rf, f ) for all
m ∈ A(rf, f ) with the set (8)]. The DSFT (31b), according to
the Poisson summation formula, then equals

Ĥ(k̄x) =

∞∑
l=−∞

τl H(k̄x−lk̄s) (33a)

where τl = (−1)l(Ne−1)/pe are weights, k̄s = λ/pe is the
normalized lateral sampling frequency, and

H(k̄x) =

∫
∞

−∞

h(x)e− jβ k̄xx dx (33b)

is the Fourier transform of the function (32). The superposition
(33a) consists of weighted copies of the Fourier transform
(33b), each shifted by an integer multiple of the normalized
lateral sampling frequency k̄s. Each summand, upon multipli-
cation by the sinc functions in (31a), creates a lobe (14b)
in the far-field directivity pattern (14). The summand for
l = 0 creates the main lobe. The remaining summands create
infinitely many grating lobes, and the integer l ̸= 0 denotes
their order.

B. Approximation by the Method of Stationary Phase

The Fourier transform (33b) lacks a closed form and, thus,
prevents analysis. The properties of the integrand, however,
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enable the method of stationary phase [39, Ch. 4] to approxi-
mate this transform in closed form. The integral, substituting
the normalized lateral position x̄ = (x − xf)/zf, becomes

H(k̄x) = zfe− jβ k̄xxf

×

∫ x̄ r

x̄ l

ā(xf + x̄ zf, rf, f )e− jσφ(x̄)dx̄ (34a)

where the endpoints of the integration interval x̄ l = (xl −

xf)/zf = −1/(2Fl) and x̄ r = (xr − xf)/zf = 1/(2Fr)

derive from the actual F-numbers (10), the parameter
σ = βzf = 2π z̄f with the focal length-to-wavelength ratio
z̄f = zf/λ indicates the oscillation frequency, and the phase
φ(x̄) reads

φ(x̄) = k̄x x̄ −

√
1 + x̄2. (34b)

The focal length zf usually exceeds multiple wavelengths
(i.e., z̄f ≫ 1). The parameter σ , hence, exceeds 2π (i.e.,
σ ≫ 2π ), and the complex exponential function oscillates
quickly across the receive aperture. The apodization weights,
in contrast, slowly modulate the amplitude of the oscillations.
In the limit σ → ∞, only critical positions of the phase (34b)
contribute to the integral. Such positions include stationary
positions, where the first derivative vanishes, and integration
endpoints.

The first and second derivatives of the phase (34b) with
respect to the normalized lateral position x̄ equal

φ′(x̄) = k̄x −
x̄√

1 + x̄2
and φ′′(x̄) = −

1√
1 + x̄2

3

respectively, and show that a local maximum exists at the
stationary position

x̄ s =
k̄x√

1 − k̄x
2
. (35)

This position, as the normalized lateral frequency |k̄x| <

1 increases, moves from negative infinity across the aperture
to positive infinity. The position coincides with the integration
endpoints x̄ l and x̄ r for k̄x = k̄x,lb = −1/(1 + (2Fl)

2)1/2 and
k̄x = k̄x,ub = 1/(1 + (2Fr)

2)1/2, respectively. This coincidence
requires a special version of the stationary phase method that
unifies the treatment of the stationary position (35) and the
integration endpoints [39, Secs. 4.1a and 4.6a].

The Fourier transform (34), inserting the second-order Tay-
lor polynomial of the phase (34b) about the stationary position

φ(x̄) ≈ φ(x̄ s) +
φ′′(x̄ s)

2
(x̄ − x̄ s)

2

with the coefficients

φ(x̄ s) = −

√
1 − k̄x

2
and φ′′(x̄ s) = −

√
1 − k̄x

2
3

adding 0 = ā(xf + x̄ szf, rf, f ) − ā(xf + x̄ szf, rf, f ) to the
apodization weights, and integrating by parts, meets

H(k̄x) ≈ zfe− jβ k̄xxf e− jσφ(x̄ s)
[
H1(k̄x) + H2(k̄x)

]
(36a)

where the summands read

H1(k̄x) = ā(xf + x̄ szf, rf, f )

√
π

2σ
∣∣φ′′(x̄ s)

∣∣
× e− j3π/4 erf

[
(x̄ − x̄ s)

√
σ
∣∣φ′′(x̄ s)

∣∣
2

e j3π/4
]∣∣∣∣x̄ r

x̄ l

(36b)

with the error function [40, eq. (7.2.1)]

erf(x) =
2

√
π

∫ x

0
e−τ 2

dτ

and

H2(k̄x) =
je− jσφ′′(x̄ s)(x̄−x̄ s)

2/2

σφ′′(x̄ s)

×
ā(xf + x̄ zf, rf, f ) − ā(xf + x̄ szf, rf, f )

x̄ − x̄ s

∣∣∣∣x̄ r

x̄ l

.

(36c)

The first summand H1(k̄x), which is of the order 1/
√

σ

and, thus, most important, describes the contribution of the
aperture. The second summand H2(k̄x), which is of the order
1/σ and, thus, less important, provides corrections required
by the edges of the aperture. This summand, as the stationary
position (35) approaches the integration endpoints, depends
on the derivatives of the apodization weights ā(x, rf, f ). Both
summands show that the Fourier transform (34) approximates
zero if the stationary position (35) leaves the receive aperture
[i.e., |H(k̄x)| ≈ 0 for k̄x < k̄x,lb or k̄x > k̄x,ub; see (16)]. The
approximation error, which is of the order 1/σ 2, decreases
with the square of the focal length-to-wavelength ratio z̄f and,
thus, is usually small. The grating lobes, according to the
superposition (33a), extend from lk̄s + k̄x,lb to lk̄s + k̄x,ub with
l ̸= 0 [see (15) and (17)].

REFERENCES

[1] J. Jensen, M. B. Stuart, and J. A. Jensen, “Optimized plane wave imaging
for fast and high-quality ultrasound imaging,” IEEE Trans. Ultrason.,
Ferroelectr., Freq. Control, vol. 63, no. 11, pp. 1922–1934, Nov. 2016.

[2] B. Denarie et al., “Coherent plane wave compounding for very high
frame rate ultrasonography of rapidly moving targets,” IEEE Trans. Med.
Imag., vol. 32, no. 7, pp. 1265–1276, Jul. 2013.

[3] G. Montaldo, M. Tanter, J. Bercoff, N. Benech, and M. Fink, “Coherent
plane-wave compounding for very high frame rate ultrasonography
and transient elastography,” IEEE Trans. Ultrason., Ferroelectr., Freq.
Control, vol. 56, no. 3, pp. 489–506, Mar. 2009.

[4] J. A. Jensen, S. I. Nikolov, K. L. Gammelmark, and M. H. Pedersen,
“Synthetic aperture ultrasound imaging,” Ultrasonics, vol. 44, Supple-
ment, pp. e5–e15, Dec. 2006.

[5] M. Tanter and M. Fink, “Ultrafast imaging in biomedical ultrasound,”
IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 61, no. 1,
pp. 102–119, Jan. 2014.

[6] V. Perrot, M. Polichetti, F. Varray, and D. Garcia, “So you think you
can DAS? A viewpoint on delay-and-sum beamforming,” Ultrasonics,
vol. 111, Mar. 2021, Art. no. 106309.

[7] R. De Luca, L. Forzoni, F. Gelli, and J. Bamber, “An educational
overview of ultrasound probe types and their fields of application,” Arch.
Acoust., vol. 46, no. 1, pp. 3–15, Mar. 2021.

[8] T. L. Szabo and P. A. Lewin, “Ultrasound transducer selection in clinical
imaging practice,” J. Ultrasound Med., vol. 32, no. 4, pp. 573–582,
Apr. 2013.

[9] M. Couade, “The advent of ultrafast ultrasound in vascular imaging:
A review,” J. Vasc. Diagn. Intervent., vol. 4, pp. 9–22, May 2016.



SCHIFFNER AND SCHMITZ: FREQUENCY-DEPENDENT F-NUMBER IMPROVES THE LATERAL RESOLUTION 1117

[10] M. S. Taljanovic et al., “Shear-wave elastography: Basic physics
and musculoskeletal applications,” RadioGraphics, vol. 37, no. 3,
pp. 855–870, May 2017.

[11] L. Rocher et al., “Testicular ultrasensitive Doppler preliminary experi-
ence: A feasibility study,” Acta Radiologica, vol. 59, no. 3, pp. 346–354,
Mar. 2018.

[12] J. T. Yen, J. P. Steinberg, and S. W. Smith, “Sparse 2-D array design
for real time rectilinear volumetric imaging,” IEEE Trans. Ultrason.,
Ferroelectr., Freq. Control, vol. 47, no. 1, pp. 93–110, Jan. 2000.

[13] P. D. Wilcox and J. Zhang, “Quantification of the effect of array element
pitch on imaging performance,” IEEE Trans. Ultrason., Ferroelectr.,
Freq. Control, vol. 65, no. 4, pp. 600–616, Apr. 2018.

[14] R. S. C. Cobbold, Foundations of Biomedical Ultrasound. Oxford, U.K.:
Oxford Univ. Press, Sep. 2006.

[15] O. T. von Ramm and S. W. Smith, “Beam steering with linear
arrays,” IEEE Trans. Biomed. Eng., vol. BME-30, no. 8, pp. 438–452,
Aug. 1983.

[16] A. Ponnle, H. Hasegawa, and H. Kanai, “Suppression of grating lobe
artifacts in ultrasound images formed from diverging transmitting beams
by modulation of receiving beams,” Ultrasound Med. Biol., vol. 39,
no. 4, pp. 681–691, Apr. 2013.

[17] B. Delannoy, R. Torguet, C. Bruneel, E. Bridoux, J. M. Rouvaen,
and H. Lasota, “Acoustical image reconstruction in parallel-processing
analog electronic systems,” J. Appl. Phys., vol. 50, no. 5, pp. 3153–3159,
May 1979.

[18] C. Bruneel, E. Bridoux, B. Delannoy, B. Nongaillard, J. M. Rouvaen,
and R. Torguet, “Effect of spatial sampling on an acoustical image
reconstruction,” J. Appl. Phys., vol. 49, no. 2, pp. 569–573, Feb. 1978.

[19] T. L. Szabo, Diagnostic Ultrasound Imaging: Inside Out, 2nd ed.
Amsterdam, The Netherlands: Elsevier, Dec. 2013.

[20] J.-Y. Lu, H. Zou, and J. F. Greenleaf, “Biomedical ultrasound beam
forming,” Ultrasound Med. Biol., vol. 20, no. 5, pp. 403–428, Jan. 1994.

[21] A. J. Devaney, Mathematical Foundations of Imaging, Tomography and
Wavefield Inversion, 1st ed. Cambridge, U.K.: Cambridge Univ. Press,
Jul. 2012.

[22] M. F. Schiffner and G. Schmitz, “Frequency-dependent F-number
increases the contrast and the spatial resolution in fast pulse-echo ultra-
sound imaging,” in Proc. IEEE Int. Ultrason. Symp. (IUS), Sep. 2021,
pp. 1–4.

[23] M. F. Schiffner and G. Schmitz, “A low-rate parallel Fourier domain
beamforming method for ultrafast pulse-echo imaging,” in Proc. IEEE
Int. Ultrason. Symp. (IUS), Sep. 2016, pp. 1–4.

[24] W. L. Briggs and V. E. Henson, The DFT: An Owner’s Manual for
the Discrete Fourier Transform (Other Titles in Applied Mathematics).
Philadelphia, PA, USA: Society for Industrial and Applied Mathematics,
1995.

[25] S. Mallat, A Wavelet Tour of Signal Processing: The Sparse Way, 3rd
ed. Cambridge, MA, USA: Academic Press, 2009.

[26] A. Rodriguez-Molares et al., “The ultrasound toolbox,” in Proc. IEEE
Int. Ultrason. Symp. (IUS), Sep. 2017, pp. 1–4.

[27] J. Marini and J. Rivenez, “Acoustical fields from rectangular ultrasonic
transducers for non-destructive testing and medical diagnosis,” Ultra-
sonics, vol. 12, no. 6, pp. 251–256, Nov. 1974.

[28] I. Amidror, The Theory of the Moiré Phenomenon (Computational
Imaging and Vision), 2nd ed. Berlin, Germany: Springer, Mar. 2009.

[29] J. Wojcik, M. Lewandowski, and N. Żołek, “Grating lobes suppression
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